|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file hcom_ops.h
- * \brief huawei collective communication library ops.
- */
- #ifndef GE_OP_HCOM_OPS_H_
- #define GE_OP_HCOM_OPS_H_
-
- #include "graph/operator_reg.h"
-
- namespace ge {
- /**
- * @brief Outputs a tensor gathering all input tensors.
- * @par Inputs:
- * x: A tensor. Must be one of the following types: int8, int16, int32, float16,
- * float32.
- * @par Attributes:
- * @li rank_size: A required integer identifying the number of ranks
- * participating in the op.
- * @li group: A required string identifying the group name of ranks
- * participating in the op.
- * @par Outputs:
- * y: A Tensor. Has the same type as "x".
- * @attention Constraints:\n
- * "group" is limited to 128 characters. Use "hccl_world_group"
- * as the name of a world group.
- */
- REG_OP(HcomAllGather)
- .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(rank_size, Int)
- .REQUIRED_ATTR(group, String)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomAllGather)
-
- /**
- * @brief Outputs a tensor containing the reduction across all input tensors
- * passed to op.
- * @par Inputs:
- * x: A tensor. Must be one of the following types: int8, int16, int32, float16,
- * float32.
- * @par Attributes:
- * @li reduction: A required string identifying the reduction operation to
- * perform.The supported operation are: "sum", "max", "min", "prod".
- * @li group: A required string identifying the group name of ranks
- * participating in the op.
- * @li fusion: An optional integer identifying the fusion flag of the op. \n
- * 0: no fusion; 1 (default): fusion; 2: fusion the ops by fusion id.
- * @li fusion_id: An optional integer identifying the fusion id of the op.
- * The HcomAllReduce ops with the same fusion id will be fused.
- * @par Outputs:
- * y: A Tensor. Has the same type as "x".
- * @attention Constraints: \n
- * "group" is limited to 128 characters. Use "hccl_world_group"
- * as the name of a world group.
- */
- REG_OP(HcomAllReduce)
- .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(reduction, String)
- .REQUIRED_ATTR(group, String)
- .ATTR(fusion, Int, 1)
- .ATTR(fusion_id, Int, -1)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomAllReduce)
-
- /**
- * @brief Broadcasts the input tensor in root rank to all ranks.
- * @par Inputs:
- * x: A list of dynamic input tensor. Must be one of the following types:
- * int8, int16, int32, float16, float32.
- * @par Attributes:
- * @li root_rank: A required integer identifying the root rank in the op
- * input of this rank will be broadcast to other ranks.
- * @li group: A required string identifying the group name of ranks
- * participating in the op.
- * @par Outputs:
- * y: A list of dynamic output tensor. Has the same type and length as "x".
- * @attention Constraints:\n
- * "group" is limited to 128 characters. Use "hccl_world_group"
- * as the name of a world group.
- */
- REG_OP(HcomBroadcast)
- .DYNAMIC_INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .DYNAMIC_OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(root_rank, Int)
- .REQUIRED_ATTR(group, String)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomBroadcast)
-
- /**
- * @brief Performs reduction across all input tensors, scattering in equal
- * blocks among ranks, each rank getting a chunk of data based on its rank
- * index.
- * @par Inputs:
- * x: A tensor. Must be one of the following types: int8, int16, int32, float16,
- * float32.
- * @par Attributes:
- * @li reduction: A required string identifying the reduction operation to
- * perform. The supported operation are: "sum", "max", "min", "prod".
- * @li group: A required string identifying the group name of ranks
- * participating in the op.
- * @li rank_size: A required integer identifying the number of ranks
- * participating in the op.
- * @par Outputs:
- * y: A Tensor. Has the same type as "x".
- * @attention Constraints:\n
- * "group" is limited to 128 characters. Use "hccl_world_group"
- * as the name of a world group.
- */
- REG_OP(HcomReduceScatter)
- .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(reduction, String)
- .REQUIRED_ATTR(group, String)
- .REQUIRED_ATTR(rank_size, Int)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomReduceScatter)
-
- /**
- * @brief Sends the input tensor to destination rank.
- * @par Inputs:
- * x: A tensor. Must be one of the following types: int8, int16, int32, float16,
- * float32.
- * @par Attributes:
- * @li sr_tag: A required integer identifying the send/recv message tag. The
- * message will be received by the HcomReceive op with the same "sr_tag".
- * @li dest_rank: A required integer identifying the destination rank.
- * @li group: A string identifying the group name of ranks participating in
- * the op.
- * @par Outputs:
- * None.
- * @attention Constraints:\n
- * @li "group" is limited to 128 characters. Use
- * "hccl_world_group" as the name of a world group.
- * @li Operators HcomSend and HcomReceive have the same "sr_tag".
- * @see HcomReceive
- */
- REG_OP(HcomSend)
- .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(group, String)
- .REQUIRED_ATTR(sr_tag, Int)
- .REQUIRED_ATTR(dest_rank, Int)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomSend)
-
- /**
- * @brief Receives the tensor from source rank.
- * @par Inputs:
- * None.
- * @par Attributes:
- * @li sr_tag: A required integer identifying the send/recv message tag. The
- * message will be send by the HcomSend op with the same "sr_tag".
- * @li src_rank: A required integer identifying the source rank.
- * @li group: A required string identifying the group name of ranks
- * participating in the op.
- * @li shape: A required list identifying the shape of the tensor to be
- * received.
- * @li dtype: A required integer identifying the type of the tensor to be
- * received. The supported types are: int8, int16, int32, float16, float32.
- * @par Outputs:
- * y: A tensor with type identified in "dtype".
- * @attention Constraints:\n
- * @li "group" is limited to 128 characters. Use
- * "hccl_world_group" as the name of a world group.
- * @li Operators HcomSend and HcomReceive have the same "sr_tag".
- * @li "shape" should be same as the input tensor of HcomSend.
- * @li "dtype" should be same as the input tensor of HcomSend.
- * @see HcomSend
- */
- REG_OP(HcomReceive)
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16}))
- .REQUIRED_ATTR(group, String)
- .REQUIRED_ATTR(sr_tag, Int)
- .REQUIRED_ATTR(src_rank, Int)
- .REQUIRED_ATTR(shape, ListInt)
- .REQUIRED_ATTR(dtype, Type)
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .OP_END_FACTORY_REG(HcomReceive)
-
- } // namespace ge
- #endif // GE_OP_HCOM_OPS_H_
|