|
- /**
- * Copyright (c) Huawei Technologies Co., Ltd. 2021. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file vector_search.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
- #include "graph/operator_reg.h"
-
- namespace ge {
- /**
- * @brief Generate ADC(asymmetric distance computation) table. \n
- *
- * @par Inputs:
- * Four inputs, including:
- * @li query: A Tensor. Must be one of the following types: float16, float32.
- * @li code_book: A Tensor. Must be one of the following types: float16, float32.
- * @li centroids: A Tensor. Must be one of the following types: float16, float32.
- * @li bucket_list: A Tensor. Must be one of the following types: int32, int64.
- *
- * @par Outputs:
- * adc_tables: A Tensor. Must be one of the following types: float16, float32.
- *
- * @par Attributes:
- * distance_type: The string indicates the distance type of ADC tables. Examples: `"l2sqr", "inner_product"`.
- The default value is "l2sqr".
- */
- REG_OP(GenADC)
- .INPUT(query, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(code_book, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(centroids, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(distance_type, String, "l2sqr")
- .OP_END_FACTORY_REG(GenADC)
-
- /**
- * @brief Finds values and indices of the "k" largest or least elements for the last dimension. \n
- *
- * @par Inputs:
- * Dynamin inputs, including:
- * @li actual_count: A Tensor of type int32, the actual number of pq_distance.
- * @li pq_distance: A Tensor, Will be updated after calculation. Must be one of the following types: float32, float16.
- * @li grouped_extreme_distance: A Tensor, the extremum in each group. Must be one of the following types: float32, float16.
- * @li pq_index: A Tensor of type int32, index corresponding to pq_distance.
- * @li pq_ivf: A Tensor of type int32 , the bucket number corresponding to pq_distance.
- *
- * @par Attributes:
- * @li order: A string, indicates the sorting method of topk_pq_distance. \n
- * @li k: Int, k maximum or minimum values. \n
- * @li group_size: Int, the group size of the extremum. \n
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(TopKPQDistance)
- .DYNAMIC_INPUT(actual_count, TensorType({DT_INT32}))
- .DYNAMIC_INPUT(pq_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
- .DYNAMIC_INPUT(grouped_extreme_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
- .DYNAMIC_INPUT(pq_ivf, TensorType({DT_INT32}))
- .DYNAMIC_INPUT(pq_index, TensorType({DT_INT32}))
- .OUTPUT(topk_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(topk_ivf, TensorType({DT_INT32}))
- .OUTPUT(topk_index, TensorType({DT_INT32}))
- .ATTR(order, String, "ASC")
- .REQUIRED_ATTR(k, Int)
- .REQUIRED_ATTR(group_size, Int)
- .OP_END_FACTORY_REG(TopKPQDistance)
-
- /**
- * @brief Calculate PQ distance. \n
- *
- * @par Inputs:
- * Six inputs, including:
- * @li ivf: A Tensor, dtype is uint8.
- * @li bucket_list: A Tensor, dtype is int32.
- * @li bucket_base_distance: A Tensor, dtype is float16.
- * @li bucket_limits: A Tensor, dtype is int32.
- * @li bucket_offsets: A Tensor, dtype is int32.
- * @li adc_tables: A Tensor. dtype is float16. \n
- *
- * @par Outputs:
- * Five outputs, including:
- * @li actual_count: A Tensor, dtype is int32, the first element means the length of processed ivf.
- * @li pq_distance: A Tensor, dtype is float16.
- * @li grouped_extreme_distance: A Tensor, dtype is float16.
- * @li pq_ivf: A Tensor, dtype is int32.
- * @li pq_index: A Tensor, dtype is int32. \n
- *
- * @par Attributes:
- * Five attributes, including:
- * @li group_size: A Scalar, indicates the group size when compute grouped_extreme_distance.
- * @li total_limit: A Scalar, indicates the total length of the outputs.
- * @li extreme_mode: A Scalar, indicates the type of extremum, 0 means minimum, and 1 means maximum.
- * @li split_count: A Scalar.
- * @li split_index: A Scalar. \n
- *
- */
- REG_OP(ScanPQCodes)
- .INPUT(ivf, TensorType({DT_UINT8}))
- .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
- .INPUT(bucket_base_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(bucket_limits, TensorType({DT_INT32}))
- .INPUT(bucket_offsets, TensorType({DT_INT64}))
- .INPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(actual_count, TensorType({DT_INT32}))
- .OUTPUT(pq_distance, TensorType({DT_FLOAT16}))
- .OUTPUT(grouped_extreme_distance, TensorType({DT_FLOAT16}))
- .OUTPUT(pq_ivf, TensorType({DT_INT32}))
- .OUTPUT(pq_index, TensorType({DT_INT32}))
- .REQUIRED_ATTR(total_limit, Int)
- .ATTR(group_size, Int, 64)
- .ATTR(extreme_mode, Int, 0)
- .ATTR(split_count, Int, 1)
- .ATTR(split_index, Int, 0)
- .OP_END_FACTORY_REG(ScanPQCodes)
-
- /**
- * @brief Calculate buckets limit and offset. \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li bucket_list: A 1-D tensor of type int32 with the value of ivf_counts and ivf_offset index. \n
- * @li ivf_counts: A 1-D tensor of type int32 with the value of ivf counts. \n
- * @li ivf_offset: A 1-D tensor of type int32 or int64 with the value of ivf offset. \n
-
- * @par Attributes:
- * total_limit: A int64 type maximum value of the sum of ivf_counts corresponding to bucket_list. \n
-
- * @par Outputs:
- * @li buckets_limit: A 1-D tensor of type int32 with the sum <= total_limit. \n
- * @li buckets_offset: A 1-D tensor of type int32 or int64 with the value of ivf_offset corresponding to bucket_list. \n
- */
- REG_OP(CalcBucketsLimitAndOffset)
- .INPUT(bucket_list, TensorType({DT_INT32}))
- .INPUT(ivf_counts, TensorType({DT_INT32}))
- .INPUT(ivf_offset, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(buckets_limit, TensorType({DT_INT32}))
- .OUTPUT(buckets_offset, TensorType({DT_INT32, DT_INT64}))
- .REQUIRED_ATTR(total_limit, Int)
- .OP_END_FACTORY_REG(CalcBucketsLimitAndOffset)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
|