|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_STATELESS_RANDOM_OPS_H
- #define GE_OP_STATELESS_RANDOM_OPS_H
-
- #include "graph/operator.h"
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Draws samples from a multinomial distribution.
-
- *@par Inputs:
- include: \n
- *@li logits:2-D Tensor with shape [batch_size, num_classes]. Each slice [i, :]\n
- *represents the unnormalized log probabilities for all classes.
- *@li num_samples:0-D. Number of independent samples to draw for each row slice.
- *@li seed:The seed to generate random.
-
- *@par Attributes:
- *output_dtype:Output data type.
-
- *@par Outputs:
- *y:Output random number.
-
- *@see StatelessMultinomial()
-
- */
- REG_OP(StatelessMultinomial)
- .INPUT(logits, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE}))
- .INPUT(num_samples, TensorType({DT_INT32}))
- .INPUT(seed, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .ATTR(output_dtype, Type, DT_INT64)
- .OP_END_FACTORY_REG(StatelessMultinomial)
-
- /**
- *@brief Outputs deterministic pseudorandom random integers from a uniform distribution.
-
- *@par Inputs:
- *@li shape: The shape of the output tensor.
- *@li seed: 2 seeds (shape [2]).
- *@li minval: Minimum value (inclusive, scalar).
- *@li maxval: Maximum value (exclusive, scalar).
-
- *@par Outputs:
- *y: Returns Random values with specified shape.
-
- */
-
- REG_OP(StatelessRandomUniformInt)
- .INPUT(shape, TensorType({DT_INT32, DT_INT64}))
- .INPUT(seed, TensorType({DT_INT32, DT_INT64}))
- .INPUT(minval, TensorType({DT_INT32, DT_INT64}))
- .INPUT(maxval, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .OP_END_FACTORY_REG(StatelessRandomUniformInt)
-
- } // namespace ge
-
- #endif //GE_OP_STATELESS_RANDOM_OPS_H
|