|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_NN_OPS_H_
- #define GE_OP_NN_OPS_H_
-
- #include "graph/operator_reg.h"
- #include "graph/operator.h"
-
- namespace ge {
-
- /**
- *@brief Computes gradient of the FractionalMaxPool function.
-
- *@par Inputs:
- *Inputs include: \n
- * @li orig_input: A Tensor. Must be one of the following types: float32, float64, int32, int64.
- * @li orig_output: A Tensor. Must have the same type as orig_input.
- * @li out_backprop: A Tensor. Must have the same type as orig_input. \n
- 4-D with shape [batch, height, width, channels].
- * @li row_pooling_sequence: A Tensor of type int64.
- * @li col_pooling_sequence: A Tensor of type int64.
-
- *@par Attributes:
- *overlapping: An optional bool. Defaults to False.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as orig_input.
-
- *@attention Constraints:\n
- *-The implementation for FractionalMaxPoolGrad on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(FractionalMaxPoolGrad)
- .INPUT(orig_input, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .INPUT(orig_output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .INPUT(row_pooling_sequence, TensorType({ DT_INT64 }))
- .INPUT(col_pooling_sequence, TensorType({ DT_INT64 }))
- .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64 }))
- .ATTR(overlapping, Bool, false)
- .OP_END_FACTORY_REG(FractionalMaxPoolGrad)
-
- /**
- *@brief Performs fractional average pooling on the input.
-
- *@par Inputs:
- *Inputs include: \n
- *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n
- 4-D with shape [batch, height, width, channels].
-
- *@par Attributes:
- *@li pooling_ratio: A list of floats that has length >= 4.
- *@li pseudo_random: An optional bool. Defaults to False.
- *@li overlapping: An optional bool. Defaults to False. When set to True, it means when pooling.
- *@li deterministic: An optional bool. Defaults to False.
- *@li seed: An optional int. Defaults to 0.
- *@li seed2: An optional int. Defaults to 0.
-
- *@par Outputs:
- *@li y: A Tensor. Has the same type as x.
- *@li row_pooling_sequence: A Tensor of type int64.
- *@li col_pooling_sequence: A Tensor of type int64.
-
- *@attention Constraints:\n
- *-The implementation for FractionalAvgPool on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(FractionalAvgPool)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .OUTPUT(row_pooling_sequence, TensorType({DT_INT64}))
- .OUTPUT(col_pooling_sequence, TensorType({DT_INT64}))
- .ATTR(pooling_ratio, ListFloat, {})
- .ATTR(pseudo_random, Bool, false)
- .ATTR(overlapping, Bool, false)
- .ATTR(deterministic, Bool, false)
- .ATTR(seed, Int, 0)
- .ATTR(seed2, Int, 0)
- .OP_END_FACTORY_REG(FractionalAvgPool)
-
- /**
- *@brief Performs fractional max pooling on the input.
-
- *@par Inputs:
- *Inputs include: \n
- *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n
- 4-D with shape [batch, height, width, channels].
-
- *@par Attributes:
- *@li pooling_ratio: A list of floats that has length >= 4. Pooling ratio for each dimension of value.
- *@li pseudo_random: An optional bool. Defaults to False.
- *@li overlapping: An optional bool. Defaults to False.
- *@li deterministic: An optional bool. Defaults to False.
- *@li seed: An optional int. Defaults to 0.
- *@li seed2: An optional int. Defaults to 0.
-
- *@par Outputs:
- *@li y: A Tensor. Has the same type as x.
- *@li row_pooling_sequence: A Tensor of type int64.
- *@li col_pooling_sequence: A Tensor of type int64.
-
- *@attention Constraints:\n
- *-The implementation for FractionalMaxPool on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(FractionalMaxPool)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .OUTPUT(row_pooling_sequence, TensorType({DT_INT64}))
- .OUTPUT(col_pooling_sequence, TensorType({DT_INT64}))
- .ATTR(pooling_ratio, ListFloat, {})
- .ATTR(pseudo_random, Bool, false)
- .ATTR(overlapping, Bool, false)
- .ATTR(deterministic, Bool, false)
- .ATTR(seed, Int, 0)
- .ATTR(seed2, Int, 0)
- .OP_END_FACTORY_REG(FractionalMaxPool)
-
- /**
- *@brief Finds values of the n-th order statistic for the last dimension.
-
- *@par Inputs:
- *Inputs include: \n
- * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, \n
- int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
- * @li n: A Tensor of type int32. 0-D.
-
- *@par Attributes:
- *reverse: An optional bool. Defaults to False.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as x.
-
- *@attention Constraints:\n
- *-The implementation for NthElement on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(NthElement)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16,
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .INPUT(n, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16,
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(NthElement)
-
- /**
- *@brief Computes gradient of the FractionalAvgPool function.
-
- *@par Inputs:
- *Inputs include: \n
- * @li orig_input_tensor_shape: A Tensor of type int64.
- * @li out_backprop: A Tensor. Must be one of the following types: float32, float64, \n
- int32, int64. 4-D with shape [batch, height, width, channels].
- * @li row_pooling_sequence: A Tensor of type int64.
- * @li col_pooling_sequence: A Tensor of type int64.
-
- *@par Attributes:
- *overlapping: An optional bool. Defaults to False.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as out_backprop.
-
- *@attention Constraints:\n
- *-The implementation for FractionalAvgPoolGrad on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(FractionalAvgPoolGrad)
- .INPUT(orig_input_tensor_shape, TensorType({DT_INT64}))
- .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .INPUT(row_pooling_sequence, TensorType({DT_INT64}))
- .INPUT(col_pooling_sequence, TensorType({DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .ATTR(overlapping, Bool, false)
- .OP_END_FACTORY_REG(FractionalAvgPoolGrad)
-
- /**
- *@brief Returns the permuted vector/tensor in the destination data format given the.
-
- *@par Inputs:
- *Inputs include: \n
- *x: A Tensor. Must be one of the following types: int32, int64. Vector of size 4 \n
- or Tensor of shape (4, 2) in source data format.
-
- *@par Attributes:
- *@li src_format: An optional string. Defaults to "NHWC". source data format.
- *@li dst_format: An optional string. Defaults to "NCHW". destination data format.
-
- *@par Outputs:
- *y: A Tensor. Has the same type as x.
-
- *@attention Constraints:\n
- *-The implementation for DataFormatVecPermute on Ascend uses AICPU, with bad performance.\n
-
- */
- REG_OP(DataFormatVecPermute)
- .INPUT(x, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(y, TensorType({ DT_INT32, DT_INT64 }))
- .ATTR(src_format, String, "NHWC")
- .ATTR(dst_format, String, "NCHW")
- .OP_END_FACTORY_REG(DataFormatVecPermute)
-
- } // namespace ge
-
- #endif // GE_OP_NN_OPS_H_
|