|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file ragged_conversion_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Converts a RaggedTensor into a SparseTensor with the same values . \n
-
- *@par Inputs:
- *Two inputs, including:
- *@li rt_nested_splits: A list of at least 1 Tensor objects with the same type
- in: int32, int64. The row_splits for the RaggedTensor. It's a dynamic input.
- *@li rt_dense_values: A Tensor. The flat_values for the RaggedTensor
- Must be one of the following types: bool, int8, int16, uint16, int32,
- int64, double, float, float16 . \n
-
- *@par Attributes:
- *@li RAGGED_RANK: the dynamic of input rt_nested_splits with type int.
- *@li Tsplits: A required attribute, the type is int64 . \n
-
- *@par Outputs:
- *@li sparse_indices: A Tensor of type int64.
- *@li sparse_values: A Tensor. Has the same type as rt_dense_values.
- *@li sparse_dense_shape: A Tensor of type int64 . \n
-
- *@par Third-party framework compatibility
- * Compatible with TensorFlow operator RaggedTensorToSparse.
- */
- REG_OP(RaggedTensorToSparse)
- .DYNAMIC_INPUT(rt_nested_splits, TensorType({DT_INT32, DT_INT64}))
- .INPUT(rt_dense_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(sparse_indices, TensorType({DT_INT64}))
- .OUTPUT(sparse_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(sparse_dense_shape, TensorType({DT_INT64}))
- .ATTR(RAGGED_RANK, Int, 1)
- .ATTR(Tsplits, Type, DT_INT64)
- .OP_END_FACTORY_REG(RaggedTensorToSparse)
-
- /**
- *@brief Create a dense tensor from a ragged tensor, possibly altering its shape . \n
-
- *@par Inputs:
- *@li shape:A `Tensor`. Must be one of the following types: `int64`, `int32`.
- *@li values:A 1D tensor representing the values of the ragged tensor.
- *@li default_value:A `Tensor`. Must have the same type as `values`.
- *@li row_partition_tensors:A list of at least 1 `Tensor` objects with the same
- type in: `int64`, `int32` . It's a dynamic input.\n
-
- *@par Attributes:
- *@li num_row_partition_tensors:Numbers of row partition tensors.
- *@li row_partition_types: A list of `strings`.
- The types of the row partition tensors. At present, these can be:
- * "ROW_SPLITS": the row_splits tensor from the ragged tensor.
- * "VALUE_ROWIDS": the value_rowids tensor from the ragged tensor.
- * "FIRST_DIM_SIZE": if value_rowids is used for the first dimension, then it
- is preceeded by "FIRST_DIM_SIZE" . \n
-
- *@par Outputs:
- *result: A `Tensor`. Has the same type as `values`.
- */
- REG_OP(RaggedTensorToTensor)
- .INPUT(shape, TensorType({DT_INT32, DT_INT64}))
- .INPUT(values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .INPUT(default_value, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16,
- DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .DYNAMIC_INPUT(row_partition_tensors, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(result, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .REQUIRED_ATTR(num_row_partition_tensors, Int)
- .REQUIRED_ATTR(row_partition_types, ListString)
- .OP_END_FACTORY_REG(RaggedTensorToTensor)
-
-
- } // namespace ge
- #endif // OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_
|