|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_NN_OTHER_OPS_H
- #define GE_OP_NN_OTHER_OPS_H
- #include "../graph/operator_reg.h"
-
- namespace ge {
- REG_OP(Erf)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erf)
-
- REG_OP(Erfc)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erfc)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n
- * that fell into every bin.The bins are equal width and determined by the arguments \n
- * 'value_range' and 'nbins'. \n
-
- *@par Inputs:
- *Three inputs, including: \n
- *@li x: A Tensor of type float32,float16,int32.
- *@li range: A Tensor of type float32,float16,int32.
- *@li nbins: A Tensor of type int32.
-
- *@par Attributes:
- * dtype: An optional attribute. Defaults to "int32".
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32.
- */
- REG_OP(HistogramFixedWidth)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(nbins, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .ATTR(dtype, String, "int32")
- .OP_END_FACTORY_REG(HistogramFixedWidth)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n
- * that fell into every bin.The bins are equal width and determined by the arguments \n
- * 'value_range' and 'nbins'. \n
-
- *@par Inputs:
- *Two inputs, including: \n
- *@li x: A Tensor of type float32,float16,int32.
- *@li range: A Tensor of type float32,float16,int32.
-
- *@par Attributes:
- *@li dtype: An optional attribute. Defaults to "int32".
- *@li nbins: A required attribute,the type is int32.
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32.
- */
- REG_OP(HistogramFixedWidthD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(nbins, Int)
- .ATTR(dtype, String, "int32")
- .OP_END_FACTORY_REG(HistogramFixedWidthD)
-
- REG_OP(LayerNorm)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(gamma, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16}))
- .ATTR(begin_norm_axis, Int, 0)
- .ATTR(begin_params_axis, Int, 0)
- .OP_END_FACTORY_REG(LayerNorm)
-
- REG_OP(LayerNormGrad)
- .INPUT(dy, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(gamma, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_gamma, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_beta, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OP_END_FACTORY_REG(LayerNormGrad)
-
- REG_OP(LayerNormXBackprop)
- .INPUT(dy, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(gamma, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OP_END_FACTORY_REG(LayerNormXBackprop)
-
- REG_OP(LayerNormBetaGammaBackprop)
- .INPUT(dy, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_gamma, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(pd_beta, TensorType({DT_FLOAT, DT_FLOAT16}))
- .REQUIRED_ATTR(shape_gamma, ListInt)
- .OP_END_FACTORY_REG(LayerNormBetaGammaBackprop)
-
- REG_OP(DropOutDoMask)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
- .INPUT(mask, TensorType({DT_UINT8}))
- .INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16}))
- .OP_END_FACTORY_REG(DropOutDoMask)
-
- } // namespace ge
-
- #endif // GE_OP_NN_OTHER_OPS_H
|