|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_STATEFUL_RANDOM_OPS_H
- #define GE_OP_STATEFUL_RANDOM_OPS_H
-
- #include "graph/operator.h"
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Non-deterministically generates some integers.
-
- *@par Inputs:
- *This op may use some OS-provided source of non-determinism (e.g. an RNG), \n
- *so each execution will give different results. Inputs included:
- *@li shape: The shape of the output tensor.
-
- *@par Outputs:
- *y:A Returns Non-deterministic integer values with specified shape.
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow NonDeterministicInts operator.
- */
-
- REG_OP(NonDeterministicInts)
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32,DT_INT64}))
- .REQUIRED_ATTR(dtype, Type)
- .OP_END_FACTORY_REG(NonDeterministicInts)
-
- /**
- *@brief Advance the counter of a counter-based RNG. The state of the RNG after \n
- *`rng_skip(n)` will be the same as that after `stateful_uniform([n])` \n
- *(or any other distribution). The actual increment added to the \n
- *counter is an unspecified implementation detail.
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li delta: The amount of advancement.
-
- *@par Outputs:
- *y:A Returns the created operation.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow RngSkip operator.
- */
-
- REG_OP(RngSkip)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(delta, TensorType({DT_INT64}))
- .OP_END_FACTORY_REG(RngSkip)
-
- /**
- *@brief Outputs random integers from a uniform distribution. \n
- The generated values are uniform integers in the range `[minval, maxval)`. \n
- The lower bound `minval` is included in the range, while the upper bound \n
- `maxval` is excluded. \n
- The random integers are slightly biased unless `maxval - minval` is an exact \n
- power of two. The bias is small for values of `maxval - minval` significantly \n
- smaller than the range of the output (either `2^32` or `2^64`).
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
- *@li minval: Minimum value (inclusive, scalar).
- *@li maxval: Maximum value (exclusive, scalar).
-
- *@par Outputs:
- *y:A Returns Random values with specified shape.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulRandomBinomial operator.
- */
-
- REG_OP(StatefulRandomBinomial)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32}))
- .INPUT(counts, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .INPUT(probs, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
- .REQUIRED_ATTR(dtype, Type)
- .OP_END_FACTORY_REG(StatefulRandomBinomial)
-
- /**
- *@brief Outputs random values from a normal distribution. \n
- *The generated values will have mean 0 and standard deviation 1.
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
-
- *@par Outputs:
- *y:A Returns A tensor of the specified shape filled with random normal values.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulStandardNormalV2 operator.
- */
-
- REG_OP(StatefulStandardNormalV2)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(StatefulStandardNormalV2)
-
- /**
- *@brief Outputs random values from a truncated normal distribution. \n
- *The generated values follow a normal distribution with mean 0 and standard \n
- *deviation 1, except that values whose magnitude is more than 2 standard \n
- *deviations from the mean are dropped and re-picked.
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
-
- *@par Outputs:
- *y:A Returns Random values with specified shape.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulTruncatedNormal operator.
- */
-
- REG_OP(StatefulTruncatedNormal)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(StatefulTruncatedNormal)
-
- /**
- *@brief Outputs random values from a uniform distribution. \n
- The generated values follow a uniform distribution in the range `[0, 1)`. The \n
- lower bound 0 is included in the range, while the upper bound 1 is excluded. \n
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
-
- *@par Outputs:
- *y:A Returns Random values with specified shape.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulUniform operator.
- */
-
- REG_OP(StatefulUniform)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT}))
- .OP_END_FACTORY_REG(StatefulUniform)
-
- /**
- *@brief Outputs random integers from a uniform distribution. \n
- The generated values are uniform integers covering the whole range of `dtype`.
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
-
- *@par Outputs:
- *y:A Returns Random values with specified shape.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulUniformFullInt operator.
- */
-
- REG_OP(StatefulUniformFullInt)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_UINT64}))
- .OP_END_FACTORY_REG(StatefulUniformFullInt)
-
- /**
- *@brief Outputs random integers from a uniform distribution. \n
- The generated values are uniform integers in the range `[minval, maxval)`. \n
- The lower bound `minval` is included in the range, while the upper bound \n
- `maxval` is excluded. \n
- The random integers are slightly biased unless `maxval - minval` is an exact \n
- power of two. The bias is small for values of `maxval - minval` significantly \n
- smaller than the range of the output (either `2^32` or `2^64`).
-
- *@par Inputs:
- *@li resource: The handle of the resource variable that stores the state of the RNG.
- *@li algorithm: The RNG algorithm.
- *@li shape: The shape of the output tensor.
- *@li minval: Minimum value (inclusive, scalar).
- *@li maxval: Maximum value (exclusive, scalar).
-
- *@par Outputs:
- *y:A Returns Random values with specified shape.
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow StatefulUniformInt operator.
- */
-
- REG_OP(StatefulUniformInt)
- .INPUT(x, TensorType({DT_RESOURCE}))
- .INPUT(algorithm, TensorType({DT_INT64}))
- .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
- .INPUT(minval, TensorType({DT_INT64}))
- .INPUT(maxval, TensorType({DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT64}))
- .OP_END_FACTORY_REG(StatefulUniformInt)
-
- } // namespace ge
-
- #endif //GE_OP_STATELESS_RANDOM_OPS_H
|