|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file set_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_SET_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_SET_OPS_H_
-
- #include "graph/operator.h"
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Applies set operation along last dimension of 2 Tensor inputs . \n
-
- *@par Inputs:
- *Inputs include:
- * @li x1: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, string.
- * @li x2: A Tensor. Must have the same type as x1 . \n
-
- *@par Attributes:
- *@li set_operation: A string.
- *@li validate_indices: An optional bool. Defaults to True . \n
-
- *@par Outputs:
- *@li y_indices: A Tensor of type int64.
- *@li y_values: A Tensor. Has the same type as x1.
- *@li y_shape: A Tensor of type int64 . \n
-
- *@attention Constraints:
- *The implementation for DenseToDenseSetOperation on Ascend uses AICPU, with bad performance.
-
- *@par Third-party framework compatibility
- *@li compatible with tensorflow DenseToDenseSetOperation operator.
- */
- REG_OP(DenseToDenseSetOperation)
- .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(x2, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .OUTPUT(y_indices, TensorType({DT_INT64}))
- .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .OUTPUT(y_shape, TensorType({DT_INT64}))
- .ATTR(set_operation, String, "")
- .ATTR(validate_indices, Bool, true)
- .OP_END_FACTORY_REG(DenseToDenseSetOperation)
-
- /**
- *@brief Applies set operation along last dimension of Tensor and SparseTensor . \n
-
- *@par Inputs:
- *Inputs include:
- * @li x1: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, string.
- * @li x2_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor.
- * @li x2_values: A Tensor. Must have the same type as set1. 1D Tensor, values of a SparseTensor.
- * @li x2_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor . \n
-
- *@par Attributes:
- *@li set_operation: A string.
- *@li validate_indices: An optional bool. Defaults to True . \n
-
- *@par Outputs:
- *@li y_indices: A Tensor of type int64.
- *@li y_values: A Tensor. Has the same type as x1.
- *@li y_shape: A Tensor of type int64 . \n
-
- *@attention Constraints:
- *The implementation for DenseToSparseSetOperation on Ascend uses AICPU, with bad performance.
-
- *@par Third-party framework compatibility
- *@li compatible with tensorflow DenseToSparseSetOperation operator.
- */
- REG_OP(DenseToSparseSetOperation)
- .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(x2_indices, TensorType({DT_INT64}))
- .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(x2_shape, TensorType({DT_INT64}))
- .OUTPUT(y_indices, TensorType({DT_INT64}))
- .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .OUTPUT(y_shape, TensorType({DT_INT64}))
- .ATTR(set_operation, String, "")
- .ATTR(validate_indices, Bool, true)
- .OP_END_FACTORY_REG(DenseToSparseSetOperation)
-
- /**
- *@brief Applies set operation along last dimension of 2 SparseTensor inputs . \n
-
- *@par Inputs:
- *Inputs include:
- * @li x1_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor.
- * @li x1_values: A Tensor. Must be one of the following types: int8, int16,
- int32, int64, uint8, uint16, string. 1D Tensor, values of a SparseTensor.
- * @li x1_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor.
- * @li x2_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor.
- * @li x2_values: A Tensor. Must have the same type as set1_values. 1D Tensor, values of a SparseTensor.
- * @li x2_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor . \n
-
- *@par Attributes:
- *@li set_operation: A string.
- *@li validate_indices: An optional bool. Defaults to True . \n
-
- *@par Outputs:
- *@li y_indices: A Tensor of type int64.
- *@li y_values: A Tensor. Has the same type as x1_values.
- *@li y_shape: A Tensor of type int64 . \n
-
- *@attention Constraints:
- *The implementation for SparseToSparseSetOperation on Ascend uses AICPU, with bad performance.
-
- *@par Third-party framework compatibility
- *@li compatible with tensorflow SparseToSparseSetOperation operator.
- */
- REG_OP(SparseToSparseSetOperation)
- .INPUT(x1_indices, TensorType({DT_INT64}))
- .INPUT(x1_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(x1_shape, TensorType({DT_INT64}))
- .INPUT(x2_indices, TensorType({DT_INT64}))
- .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(x2_shape, TensorType({DT_INT64}))
- .OUTPUT(y_indices, TensorType({DT_INT64}))
- .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \
- DT_INT32, DT_INT64, DT_STRING}))
- .OUTPUT(y_shape, TensorType({DT_INT64}))
- .ATTR(set_operation, String, "")
- .ATTR(validate_indices, Bool, true)
- .OP_END_FACTORY_REG(SparseToSparseSetOperation)
-
- /**
- *@brief Number of unique elements along last dimension of input set . \n
-
- *@par Inputs:
- *Inputs include:
- * @li set_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor.
- * @li set_values: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16.
- * @li set_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor . \n
-
- *@par Attributes:
- *validate_indices: An optional bool. Defaults to True . \n
-
- *@par Outputs:
- *size: A Tensor of type int32 . \n
-
- *@attention Constraints:
- *The implementation for SetSize on Ascend uses AICPU, with bad performance.
-
- *@par Third-party framework compatibility
- *@li compatible with tensorflow SetSize operator.
- */
- REG_OP(SetSize)
- .INPUT(set_indices, TensorType({DT_INT64}))
- .INPUT(set_values, TensorType({DT_INT8, DT_INT16, \
- DT_UINT8, DT_UINT16, DT_INT32, DT_INT64, DT_STRING}))
- .INPUT(set_shape, TensorType({DT_INT64}))
- .OUTPUT(size, TensorType({DT_INT32}))
- .ATTR(validate_indices, Bool, true)
- .OP_END_FACTORY_REG(SetSize)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_SET_OPS_H_
|