/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_SSDDETECTIONOUTPUT_OPS_H_ #define GE_OP_SSDDETECTIONOUTPUT_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Returns detection result. *@par Inputs: * Four inputs, including: *@li mbox_conf: An ND tensor of type floa16 or float32, specifying the box confidences data, used as the input of operator SSDDetectionOutput. *@li mbox_loc: An ND tensor of type floa16 or float32, specifying the box loc predictions, used as the input of operator SSDDetectionOutput. *@li mbox_priorbox: An ND tensor of type floa16 or float32, output from operator PriorBoxD, used as the input of operator SSDDetectionOutput. *@par Attributes: *@li num_classes: An optional int32, specifying the number of classes to be predicted. Defaults to "2". The value must be greater than 1 and lesser than 1025. *@li share_location: An option bool, specify the shared location. Defaults to True *@li background_label_id: An option int32, specify the background label id. Must be 0 *@li nms_threshold: An option float32, specify the nms threshold *@li top_k: An option int32, specify the topk value. Defaults to 200 *@li eta: An option float32, specify the eta value. Defaults to 1 *@li variance_encoded_in_target: An option bool, specify whether variance encoded in target or not. Defaults to False *@li code_type: An option int32, specify the code type. Defaults to 1(only supports 2). The corner is 1, center_size is 2, corner_size is 3 *@li keep_top_k: An option int32, specify the topk value after nms. Defaults to -1 *@li confidence_threshold: An option float32, specify the topk filter threshold. Only consider detections with confidence greater than the threshold *@li kernel_name: An optional string, specifying the operator name. Defaults to "ssd_detection_output". *@par Outputs: *out_boxnum: An NCHW tensor of type int32, specifying the number of output boxes. *y: An NCHW tensor of type float16, describing the information of each output box, including the coordinates, class, and confidence. */ REG_OP(SSDDetectionOutput) .INPUT(bbox_delta, TensorType({DT_FLOAT, DT_FLOAT16})) .INPUT(score, TensorType({DT_FLOAT, DT_FLOAT16})) .INPUT(anchors, TensorType({DT_FLOAT, DT_FLOAT16})) .OUTPUT(out_boxnum, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) .ATTR(num_classes, Int, 2) .ATTR(share_location, Bool, true) .ATTR(background_label_id, Int, 0) .ATTR(iou_threshold, Float, 0.3) .ATTR(top_k, Int, 200) .ATTR(eta, Float, 1.0) .ATTR(variance_encoded_in_target, Bool, false) .ATTR(code_type, Int, 1) .ATTR(keep_top_k, Int, -1) .ATTR(confidence_threshold, Float, 0.0) .OP_END_FACTORY_REG(SSDDetectionOutput) } #endif