/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_NN_OPS_H_ #define GE_OP_NN_OPS_H_ #include "graph/operator_reg.h" #include "graph/operator.h" namespace ge { /** *@brief Computes gradient of the FractionalMaxPool function. *@par Inputs: *Inputs include: \n * @li orig_input: A Tensor. Must be one of the following types: float32, float64, int32, int64. * @li orig_output: A Tensor. Must have the same type as orig_input. * @li out_backprop: A Tensor. Must have the same type as orig_input. \n 4-D with shape [batch, height, width, channels]. * @li row_pooling_sequence: A Tensor of type int64. * @li col_pooling_sequence: A Tensor of type int64. *@par Attributes: *overlapping: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as orig_input. *@attention Constraints:\n *-The implementation for FractionalMaxPoolGrad on Ascend uses AICPU, with bad performance.\n */ REG_OP(FractionalMaxPoolGrad) .INPUT(orig_input, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(orig_output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(row_pooling_sequence, TensorType({ DT_INT64 })) .INPUT(col_pooling_sequence, TensorType({ DT_INT64 })) .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64 })) .ATTR(overlapping, Bool, false) .OP_END_FACTORY_REG(FractionalMaxPoolGrad) /** *@brief Performs fractional average pooling on the input. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n 4-D with shape [batch, height, width, channels]. *@par Attributes: *@li pooling_ratio: A list of floats that has length >= 4. *@li pseudo_random: An optional bool. Defaults to False. *@li overlapping: An optional bool. Defaults to False. When set to True, it means when pooling. *@li deterministic: An optional bool. Defaults to False. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0. *@par Outputs: *@li y: A Tensor. Has the same type as x. *@li row_pooling_sequence: A Tensor of type int64. *@li col_pooling_sequence: A Tensor of type int64. *@attention Constraints:\n *-The implementation for FractionalAvgPool on Ascend uses AICPU, with bad performance.\n */ REG_OP(FractionalAvgPool) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(row_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(col_pooling_sequence, TensorType({DT_INT64})) .ATTR(pooling_ratio, ListFloat, {}) .ATTR(pseudo_random, Bool, false) .ATTR(overlapping, Bool, false) .ATTR(deterministic, Bool, false) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(FractionalAvgPool) /** *@brief Performs fractional max pooling on the input. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: float32, float64, int32, int64. \n 4-D with shape [batch, height, width, channels]. *@par Attributes: *@li pooling_ratio: A list of floats that has length >= 4. Pooling ratio for each dimension of value. *@li pseudo_random: An optional bool. Defaults to False. *@li overlapping: An optional bool. Defaults to False. *@li deterministic: An optional bool. Defaults to False. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0. *@par Outputs: *@li y: A Tensor. Has the same type as x. *@li row_pooling_sequence: A Tensor of type int64. *@li col_pooling_sequence: A Tensor of type int64. *@attention Constraints:\n *-The implementation for FractionalMaxPool on Ascend uses AICPU, with bad performance.\n */ REG_OP(FractionalMaxPool) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .OUTPUT(row_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(col_pooling_sequence, TensorType({DT_INT64})) .ATTR(pooling_ratio, ListFloat, {}) .ATTR(pseudo_random, Bool, false) .ATTR(overlapping, Bool, false) .ATTR(deterministic, Bool, false) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(FractionalMaxPool) /** *@brief Finds values of the n-th order statistic for the last dimension. *@par Inputs: *Inputs include: \n * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, \n int16, int8, int64, bfloat16, uint16, half, uint32, uint64. * @li n: A Tensor of type int32. 0-D. *@par Attributes: *reverse: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as x. *@attention Constraints:\n *-The implementation for NthElement on Ascend uses AICPU, with bad performance.\n */ REG_OP(NthElement) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .INPUT(n, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE})) .ATTR(reverse, Bool, false) .OP_END_FACTORY_REG(NthElement) /** *@brief Computes gradient of the FractionalAvgPool function. *@par Inputs: *Inputs include: \n * @li orig_input_tensor_shape: A Tensor of type int64. * @li out_backprop: A Tensor. Must be one of the following types: float32, float64, \n int32, int64. 4-D with shape [batch, height, width, channels]. * @li row_pooling_sequence: A Tensor of type int64. * @li col_pooling_sequence: A Tensor of type int64. *@par Attributes: *overlapping: An optional bool. Defaults to False. *@par Outputs: *y: A Tensor. Has the same type as out_backprop. *@attention Constraints:\n *-The implementation for FractionalAvgPoolGrad on Ascend uses AICPU, with bad performance.\n */ REG_OP(FractionalAvgPoolGrad) .INPUT(orig_input_tensor_shape, TensorType({DT_INT64})) .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .INPUT(row_pooling_sequence, TensorType({DT_INT64})) .INPUT(col_pooling_sequence, TensorType({DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64})) .ATTR(overlapping, Bool, false) .OP_END_FACTORY_REG(FractionalAvgPoolGrad) /** *@brief Returns the permuted vector/tensor in the destination data format given the. *@par Inputs: *Inputs include: \n *x: A Tensor. Must be one of the following types: int32, int64. Vector of size 4 \n or Tensor of shape (4, 2) in source data format. *@par Attributes: *@li src_format: An optional string. Defaults to "NHWC". source data format. *@li dst_format: An optional string. Defaults to "NCHW". destination data format. *@par Outputs: *y: A Tensor. Has the same type as x. *@attention Constraints:\n *-The implementation for DataFormatVecPermute on Ascend uses AICPU, with bad performance.\n */ REG_OP(DataFormatVecPermute) .INPUT(x, TensorType({ DT_INT32, DT_INT64 })) .OUTPUT(y, TensorType({ DT_INT32, DT_INT64 })) .ATTR(src_format, String, "NHWC") .ATTR(dst_format, String, "NCHW") .OP_END_FACTORY_REG(DataFormatVecPermute) } // namespace ge #endif // GE_OP_NN_OPS_H_