/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_MATH_OPS_H_ #define GE_OP_MATH_OPS_H_ #include "graph/operator_reg.h" #include "graph/operator.h" namespace ge { /** *@brief Compute the lower regularized incomplete Gamma function P(a, x). *@par Inputs: *The input a and x must have the same type. Inputs include: \n *@li a:A Tensor. Must be one of the following types: float, double. *@li x:A Tensor. Must have the same type as a. *@par Outputs: *z:A Tensor. Has the same type as a. */ REG_OP(Igamma) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(Igamma) /** *@brief Compute the upper regularized incomplete Gamma function Q(a, x). *@par Inputs: *The input a and x must have the same type. Inputs include: \n *@li a:A Tensor. Must be one of the following types: float, float64. *@li x:A Tensor. Must have the same type as a. *@par Outputs: *z:A Tensor. Has the same type as a. */ REG_OP(Igammac) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(Igammac) /** *@brief Compare values of input to threshold and pack resulting bits into \n a uint8. *@par Inputs: *The input size must be a non-negative int32 scalar Tensor. Inputs include: \n *@li input:Values to compare against threshold and bitpack. *@li threshold:Threshold to compare against. *@par Outputs: *y:The bitpacked comparisons. *@attention Constraints: \n *Currently, the innermost dimension of the tensor must be divisible by 8. \n */ REG_OP(CompareAndBitpack) .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, \ DT_INT16, DT_INT32, DT_INT64, DT_BOOL })) .INPUT(threshold, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \ DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_BOOL })) .OUTPUT(y, TensorType(DT_UINT8)) .OP_END_FACTORY_REG(CompareAndBitpack) /** *@brief Counts the number of occurrences of each value in an integer array. \n Outputs a vector with length size and the same dtype as weights. If weights \n are empty, then index i stores the number of times the value i is counted in \n arr. If weights are non-empty, then index i stores the sum of the value in \n weights at each index. *@par Inputs: *The input size must be a non-negative int32 scalar Tensor. Inputs include: \n *@li array:int32 Tensor. *@li size:non-negative int32 scalar Tensor. *@li weights: is an int32, int64, float32, or double Tensor with the same \n shape as arr, or a length-0 Tensor, in which case it acts as all weights \n equal to 1. *@par Outputs: *bins:1D Tensor with length equal to size. The counts or summed weights for \n each value in the range [0, size). */ REG_OP(Bincount) .INPUT(array, TensorType(DT_INT32)) .INPUT(size, TensorType(DT_INT32)) .INPUT(weights, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE })) .OUTPUT(bins, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE })) .OP_END_FACTORY_REG(Bincount) /** *@brief Compute the regularized incomplete beta integral. *@par Inputs: *The input b and x must have the same types as a. Inputs include: \n *@li a:A Tensor. Must be one of the following types: float32, double. *@li b:A Tensor. Must have the same type as a. *@li x:A Tensor. Must have the same type as a. *@par Outputs: *z:A Tensor. Has the same type as a. */ REG_OP(Betainc) .INPUT(a, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(b, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT})) .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT})) .OP_END_FACTORY_REG(Betainc) /** *@brief Compute the Hurwitz zeta function *@par Inputs: *The input q must be the same type as x. Inputs include: \n *@li x:A Tensor. Must be one of the following types: float32, double. *@li q:A Tensor. Must have the same type as x. *@par Outputs: *z:A Tensor. Has the same type as x. *@attention Constraints: \n *The implementation for Zeta on Ascend uses ai cpu, with bad performance. \n */ REG_OP(Zeta) .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(q, TensorType({DT_DOUBLE, DT_FLOAT})) .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT})) .OP_END_FACTORY_REG(Zeta) /** *@brief Bucketizes 'input' based on 'boundaries'. For example, if the inputs \n are boundaries = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]] then \n the output will be output = [[0, 3] [3, 2] [1, 3]] *@par Inputs: *The dtype of input x must be int or float. Inputs include: \n *x:Any shape of Tensor contains with int or float type. *@par Attributes: *boundaries:A sorted list of floats gives the boundary of the buckets. *@par Outputs: *y:Same shape with 'input', each value of input replaced with bucket index. */ REG_OP(Bucketize) .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT})) .OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(boundaries, ListFloat) .OP_END_FACTORY_REG(Bucketize) /** *@brief Computes the sum along sparse segments of a tensor. *@par Inputs: *The input indices and segment_ids must have same rank. Inputs include: \n *@li x:A Tensor. Must be one of the following types: float, double, int32, \n uint8, int16, int8, int64, uint16, uint32, uint64. *@li indices: A Tensor. Must be one of the following types: int32, int64. \n A 1-D tensor. Has same rank as segment_ids. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be \n sorted and can be repeated. *@par Outputs: *y:A Tensor. Has the same type as x. */ REG_OP(SparseSegmentSum) .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .OP_END_FACTORY_REG(SparseSegmentSum) /** *@brief Computes the mean along sparse segments of a tensor. *@par Inputs: *The input indices and segment_ids must have same rank. Inputs include: \n *@li x: A Tensor. Must be one of the following types: float, double. *@li indices: A Tensor. Must be one of the following types: int32, int64. \n A 1-D tensor. Has same rank as segment_ids. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be \n sorted and can be repeated. *@par Outputs: *y:A Tensor. Has the same type as x. */ REG_OP(SparseSegmentMean) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(SparseSegmentMean) /** *@brief Computes gradients for SparseSegmentMean. *@par Inputs: *The input grad must have be type float or double. Inputs include: \n *@li grad: A Tensor. Must be one of the following types: float, double. \n gradient propagated to the SparseSegmentMean op. *@li indices: A Tensor. Must be one of the following types: int32, int64. \n indices passed to the corresponding SparseSegmentMean op. *@li segment_ids: A Tensor of type int32. segment_ids passed to the \n corresponding SparseSegmentMean op. *@li output_dim0: A Tensor of type int32. dimension 0 of "x" passed to \n SparseSegmentMean op. *@par Outputs: *y:A Tensor. Has the same type as grad. */ REG_OP(SparseSegmentMeanGrad) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .INPUT(output_dim0, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(SparseSegmentMeanGrad) /** *@brief Computes the gradient of igamma(a, x) wrt a *@par Inputs: *The input a and x must have the same type. Inputs include: \n *@li a:A Tensor. Must be one of the following types: float32, double. *@li x:A Tensor. Must have the same type as a. *@par Outputs: *y:A Tensor. Has the same type as a. */ REG_OP(IgammaGradA) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(IgammaGradA) /** *@brief Initialize data process channel. *@par Attributes: *channel_name: A string. Default "". */ REG_OP(InitData) .ATTR(channel_name, String, "") .OP_END_FACTORY_REG(InitData) /** *@brief Get the next batch of data in data processing. *@par Attributes: *@li output_types: A nested structure of DType objects corresponding to each \n component of an element of this dataset. *@li output_shapes: A nested structure of TensorShape objects corresponding \n to each component of an element of this dataset. *@li channel_name: A string. Default "". *@par Outputs: *y:A nested structure of Tensor objects. */ REG_OP(GetNext) .DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL})) .ATTR(output_types, ListInt, {}) .ATTR(output_shapes, ListListInt, {}) .ATTR(output_num, Int, 1) .ATTR(channel_name, String, "") .OP_END_FACTORY_REG(GetNext) /** *@brief: Computes the Gauss error function of `x` element-wise. *@par Inputs:\n *x: A Tensor of type float16 or float32. *@par Outputs: *y: A Tensor. Has the same type as "x". */ REG_OP(Erf) .INPUT(x, TensorType::FloatingDataType()) .OUTPUT(y, TensorType::FloatingDataType()) .OP_END_FACTORY_REG(Erf) /** *@brief: Computes the Gauss complementary error function of "x" element-wise. *@par Inputs:\n *x: A Tensor of type float16 or float32. *@par Outputs: *y: A Tensor. Has the same type as "x". */ REG_OP(Erfc) .INPUT(x, TensorType::FloatingDataType()) .OUTPUT(y, TensorType::FloatingDataType()) .OP_END_FACTORY_REG(Erfc) /** *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n * that fell into every bin.The bins are equal width and determined by the arguments \n * 'value_range' and 'nbins'. \n *@par Inputs: *Three inputs, including: \n *@li x: A Tensor of type float32,float16,int32. *@li range: A Tensor of type float32,float16,int32. *@li nbins: A Tensor of type int32. *@par Attributes: * dtype: An optional attribute. Defaults to "int32". *@par Outputs: *y: A Tensor. A Tensor of type int32. */ REG_OP(HistogramFixedWidth) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) .INPUT(nbins, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT32})) .ATTR(dtype, String, "int32") .OP_END_FACTORY_REG(HistogramFixedWidth) /** *@brief This operation returns a rank 1 histogram counting the number of entries in `values` \n * that fell into every bin.The bins are equal width and determined by the arguments \n * 'value_range' and 'nbins'. \n *@par Inputs: *Two inputs, including: \n *@li x: A Tensor of type float32,float16,int32. *@li range: A Tensor of type float32,float16,int32. *@par Attributes: *@li dtype: An optional attribute. Defaults to "int32". *@li nbins: A required attribute,the type is int32. *@par Outputs: *y: A Tensor. A Tensor of type int32. */ REG_OP(HistogramFixedWidthD) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) .OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(nbins, Int) .ATTR(dtype, String, "int32") .OP_END_FACTORY_REG(HistogramFixedWidthD) /** *@brief Returns the next representable value of x1 in the direction of x2, element-wise. *@par Inputs: *The input X1 and x2 must have the same type. Inputs include: \n *@li x1:A Tensor. Must be one of the following types: float32, double. *@li x2:A Tensor. Must have the same type as x1. *@par Outputs: *output:A Tensor. Has the same type as x1. */ REG_OP(NextAfter) .INPUT(x1, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(NextAfter) /** * *@brief Compute element-wise finiteness, return a boolean tensor. * * *@par Inputs: * *x:A Tensor. * * *@par Outputs: * *y:A Tensor. Has the same shape as x. * * */ REG_OP(IsFinite) .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_BOOL})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(IsFinite) } // namespace ge #endif // GE_OP_MATH_OPS_H_