/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hybrid/executor/node_state.h" #include #include "framework/common/debug/log.h" #include "graph/compute_graph.h" #include "graph/utils/tensor_utils.h" #include "hybrid_execution_context.h" #include "subgraph_context.h" namespace ge { namespace hybrid { namespace { // 5s * 120, wait for 10m constexpr auto kWaitInternal = 5; constexpr auto kMaxWaitTimes = 120; } ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(node_item) { InitShapeState(); } void ShapeInferenceState::InitShapeState() { this->num_pending_shapes_ = node_item.num_inputs - node_item.num_static_input_shapes; GELOGD("[%s] ShapeInferenceState created, pending shape count = %d", node_item.NodeName().c_str(), this->num_pending_shapes_); input_tensor_desc.resize(node_item.num_inputs); for (int i = 0; i < node_item.num_inputs; ++i) { node_item.GetInputDesc(i, input_tensor_desc[i]); } output_tensor_desc.resize(node_item.num_outputs); for (int i = 0; i < node_item.num_outputs; ++i) { node_item.GetOutputDesc(i, output_tensor_desc[i]); } } Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) { if (node_item.IsInputShapeStatic(idx)) { GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]", node_item.NodeName().c_str(), idx, node_item.MutableInputDesc(idx)->GetShape().ToString().c_str(), target.GetShape().ToString().c_str()); return SUCCESS; } std::lock_guard lk(mu_); auto &input_desc = input_tensor_desc[idx]; GeShape shape = target.GetShape(); input_desc.SetShape(shape); input_desc.SetOriginShape(target.GetOriginShape()); int64_t tensor_size = -1; (void) TensorUtils::GetSize(target, tensor_size); if (tensor_size <= 0) { Format format = input_desc.GetFormat(); DataType data_type = input_desc.GetDataType(); if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) { GELOGE(FAILED, "[Invoke][CalcTensorMemSize] failed for [%s].", node_item.NodeName().c_str()); REPORT_CALL_ERROR("E19999", "CalcTensorMemSize failed for [%s].", node_item.NodeName().c_str()); return FAILED; } } GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld", node_item.NodeName().c_str(), idx, shape.ToString().c_str(), target.GetOriginShape().ToString().c_str(), tensor_size); (void) TensorUtils::SetSize(input_desc, tensor_size); if (--num_pending_shapes_ <= 0) { ready_cv_.notify_all(); } return SUCCESS; } void ShapeInferenceState::UpdateInputShapeFuture(int idx, ShapeFuture &&future) { if (node_item.IsInputShapeStatic(idx)) { GELOGD("[%s] Trying to update constant shape, idx = %d", node_item.NodeName().c_str(), idx); return; } GELOGD("[%s] Update input shape [%d] with ShapeFuture.", node_item.NodeName().c_str(), idx); std::lock_guard lk(mu_); shape_futures.emplace_back(idx, std::move(future)); if (--num_pending_shapes_ == 0) { ready_cv_.notify_all(); } } Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &context) { if (!node_item.is_dynamic) { return SUCCESS; } std::unique_lock lk(mu_); if (num_pending_shapes_ > 0) { GELOGD("[%s] Await pending shape or shape future start.", node_item.NodeName().c_str()); int try_count = 0; bool wait_success = false; while (try_count++ < kMaxWaitTimes) { if (ready_cv_.wait_for(lk, std::chrono::seconds(kWaitInternal), [&]() { return num_pending_shapes_ == 0; })) { GELOGD("[%s] Await pending shape or shape future end.", node_item.NodeName().c_str()); wait_success = true; break; } if (context.is_eos_) { GELOGD("[%s] Await pending shape cancelled due to end of sequence", node_item.NodeName().c_str()); return END_OF_SEQUENCE; } if (context.GetStatus() != SUCCESS) { GELOGE(FAILED, "[Check][Status][%s] Await pending shape cancelled.", node_item.NodeName().c_str()); REPORT_CALL_ERROR("E19999", "[%s] Await pending shape cancelled.", node_item.NodeName().c_str()); break; } } if (!wait_success) { GELOGE(FAILED, "[Check][Status][%s] Wait for shape timeout:%d.", node_item.NodeName().c_str(), kWaitInternal); REPORT_CALL_ERROR("E19999", "[%s] Wait for shape timeout:%d.", node_item.NodeName().c_str(), kWaitInternal); return FAILED; } } { const auto &guard = node_item.MutexGuard("AwaitShapesReady"); for (size_t i = 0; i < input_tensor_desc.size(); ++i) { auto dst_tensor_desc = node_item.MutableInputDesc(i); if (dst_tensor_desc == nullptr) { continue; } auto &tensor_desc = input_tensor_desc[i]; int64_t tensor_size = -1; (void)TensorUtils::GetSize(tensor_desc, tensor_size); dst_tensor_desc->SetShape(tensor_desc.MutableShape()); dst_tensor_desc->SetOriginShape(tensor_desc.GetOriginShape()); (void)TensorUtils::SetSize(*dst_tensor_desc, tensor_size); } (void)guard; } for (auto &p : shape_futures) { auto idx = p.first; auto &future = p.second; RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx); const GeTensorDesc* src_tensor_desc = nullptr; GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(&src_tensor_desc)); GE_CHECK_NOTNULL(src_tensor_desc); RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx); int64_t tensor_size = -1; (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size); GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s], index = %zu", node_item.NodeName().c_str(), idx, src_tensor_desc->GetShape().ToString().c_str(), src_tensor_desc->GetOriginShape().ToString().c_str(), tensor_size); const auto &guard = node_item.MutexGuard("AwaitShapesReady"); auto input_desc = node_item.MutableInputDesc(idx); GE_CHECK_NOTNULL(input_desc); input_desc->SetShape(src_tensor_desc->GetShape()); input_desc->SetOriginShape(src_tensor_desc->GetOriginShape()); (void) TensorUtils::SetSize(*input_desc, tensor_size); (void)guard; } return SUCCESS; } const vector &ShapeInferenceState::GetOutputTensorDesc() const { return output_tensor_desc; } Status ShapeInferenceState::UpdateOutputDesc() { for (size_t i = 0; i < output_tensor_desc.size(); ++i) { auto src_tensor_desc = node_item.MutableOutputDesc(i); GE_CHECK_NOTNULL(src_tensor_desc); auto &dst_tensor_desc = output_tensor_desc[i]; dst_tensor_desc.SetShape(src_tensor_desc->MutableShape()); dst_tensor_desc.SetOriginShape(src_tensor_desc->GetOriginShape()); int64_t tensor_size = -1; (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size); (void) TensorUtils::SetSize(dst_tensor_desc, tensor_size); } return SUCCESS; } ShapeFuture::ShapeFuture(NodeState *src_node, uint32_t src_index, SubgraphContext *subgraph_context) : src_node_(src_node), src_index_(src_index), subgraph_context_(subgraph_context) { } NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context) : node_item_(&node_item), shape_inference_state_(node_item), subgraph_context_(subgraph_context) { this->op_desc_ = node_item.node->GetOpDesc(); } Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const { if (node_item_->IsMergeOp()) { GELOGD("[%s] merge index %d, input nodes: %zu", GetName().c_str(), merge_index_, node_item_->data_recv_.size()); return SUCCESS; } for (auto &src_node : node_item_->dependents_for_execution) { GELOGD("[%s] Start to wait for data dependent node: [%s]", node_item_->NodeName().c_str(), src_node->GetName().c_str()); RECORD_EXECUTION_EVENT(&context, node_item_->NodeName().c_str(), "[AwaitNodeDone] [%s] Start", src_node->GetName().c_str()); HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node), "[%s] Await node [%s] failed.", GetName().c_str(), src_node->GetName().c_str()); RECORD_EXECUTION_EVENT(&context, node_item_->NodeName().c_str(), "[AwaitNodeDone] [%s] End", src_node->GetName().c_str()); GELOGD("[%s] Done waiting node: [%s]", node_item_->NodeName().c_str(), src_node->GetName().c_str()); } return SUCCESS; } Status NodeState::WaitForPrepareDone() { if (prepare_future_.valid()) { GELOGD("[%s] Start to wait for prepare future.", GetName().c_str()); GE_CHK_STATUS_RET(prepare_future_.get(), "[Check][Status][%s] PreRun failed.", GetName().c_str()); } return SUCCESS; } Status NodeState::UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape) { auto self_tensor_desc = op_desc_->MutableOutputDesc(index); GE_CHECK_NOTNULL(self_tensor_desc); self_tensor_desc->SetShape(shape); self_tensor_desc->SetOriginShape(ori_shape); return SUCCESS; } void NodeState::SetTaskContext(std::shared_ptr &task_context) { task_context_ = task_context; } std::shared_ptr NodeState::GetTaskContext() { return task_context_; } void NodeState::ResetContext(int group) { SetGroup(group); if (loop_count_ == 0) { ++loop_count_; return; } ++loop_count_; if (loop_count_ == UINT64_MAX) { loop_count_ = 1; } switch_index_ = -1; const auto &guard = node_item_->MutexGuard("ResetContext"); shape_inference_state_.InitShapeState(); subgraph_context_->ResetContext(node_item_->node); GELOGD("Node[%s] in while loop, current loop: %lu, merge index: %d", GetName().c_str(), loop_count_, merge_index_); (void)guard; } void NodeState::ResetSchedule() { std::lock_guard lk(mu_); data_scheduled_ = static_cast(node_item_->root_data_.size()); ctrl_scheduled_ = static_cast(node_item_->root_ctrl_.size()); GELOGD("[%s] set schedule for root nodes, data: %u, ctrl: %u", GetName().c_str(), data_scheduled_, ctrl_scheduled_); } Status NodeState::NodeScheduled(const std::function &ready) const { // Schedule data output. for (const auto &node : node_item_->data_send_) { const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node); GE_CHECK_NOTNULL(dst_node_state); dst_node_state->SetDataSchedule(node_item_, ready); } // Schedule ctrl output. for (const auto &node : node_item_->ctrl_send_) { const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node); GE_CHECK_NOTNULL(dst_node_state); dst_node_state->SetCtrlSchedule(node_item_, ready); } // Schedule switch group. if (switch_index_ >= 0 && static_cast(switch_index_) < node_item_->switch_groups_.size()) { GELOGI("After [%s] scheduled, switch index: %d", GetName().c_str(), switch_index_); for (const auto &node : node_item_->switch_groups_[switch_index_]) { const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node); GE_CHECK_NOTNULL(dst_node_state); dst_node_state->SetCtrlSchedule(node_item_, ready); } } return SUCCESS; } bool NodeState::IsScheduleReady() const { GELOGD("[%s] data[input: %zu, scheduled: %u], ctrl[input: %zu, scheduled: %u]", GetName().c_str(), node_item_->data_recv_.size(), data_scheduled_, node_item_->ctrl_recv_.size(), ctrl_scheduled_); if (ctrl_scheduled_ != node_item_->ctrl_recv_.size()) { return false; } if (node_item_->IsMergeOp()) { return data_scheduled_ > 0; } // Exit may feed loop times... return data_scheduled_ >= node_item_->data_recv_.size(); } void NodeState::SetDataSchedule(const NodeItem *node_item, const std::function &ready) { GELOGD("[%s] data schedule node[%s], data num: %zu, current scheduled: %u, ctrl num: %zu, current scheduled: %u", node_item->node_name.c_str(), GetName().c_str(), node_item_->data_recv_.size(), data_scheduled_, node_item_->ctrl_recv_.size(), ctrl_scheduled_); std::lock_guard lk(mu_); ++data_scheduled_; if (node_item_->IsMergeOp()) { const auto it = node_item_->data_recv_.find(node_item); if (it != node_item_->data_recv_.end()) { merge_index_ = it->second; (void)AttrUtils::SetInt(node_item_->node->GetOpDesc(), ATTR_NAME_MERGE_INPUT_INDEX, it->second); GELOGD("[%s] scheduled, [%s] set merge index: %d", node_item->node_name.c_str(), GetName().c_str(), it->second); } else { GELOGW("[%s] scheduled, [%s] not followed", node_item->node_name.c_str(), GetName().c_str()); } } if (IsScheduleReady()) { ready(node_item_); } } void NodeState::SetCtrlSchedule(const NodeItem *node_item, const std::function &ready) { GELOGD("[%s] ctrl schedule node[%s], data num: %zu, current scheduled: %u, ctrl num: %zu, current scheduled: %u", node_item->node_name.c_str(), GetName().c_str(), node_item_->data_recv_.size(), data_scheduled_, node_item_->ctrl_recv_.size(), ctrl_scheduled_); std::lock_guard lk(mu_); ++ctrl_scheduled_; if (IsScheduleReady()) { ready(node_item_); } } void NodeState::SetScheduleFuture(std::future &&future) { schedule_future_ = std::move(future); } Status NodeState::WaitForScheduleDone() { if (schedule_future_.valid()) { GELOGD("[%s] Start to wait for schedule future.", GetName().c_str()); GE_CHK_STATUS_RET(schedule_future_.get(), "[Check][Status][%s] wait thread failed", GetName().c_str()); } return SUCCESS; } Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) { GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str()); HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled"); auto &output_desc = src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_); shape = output_desc.GetShape(); ori_shape = output_desc.GetOriginShape(); GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str()); return SUCCESS; } Status ShapeFuture::GetTensorDesc(const GeTensorDesc **tensor_desc) { GE_CHECK_NOTNULL(tensor_desc); GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str()); HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled"); *tensor_desc = &src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_); return SUCCESS; } } // namespace hybrid } // namespace ge