/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_QUANTIZE_OPS_H #define GE_OP_QUANTIZE_OPS_H #include "../graph/operator_reg.h" namespace ge { REG_OP(QuantizedInnerProduct) .INPUT(x, TensorType({DT_UINT8})) .INPUT(w, TensorType({DT_INT8})) .OPTIONAL_INPUT(b, TensorType({DT_INT32})) .OPTIONAL_INPUT(scale_q, TensorType({DT_FLOAT16})) .OPTIONAL_INPUT(offset_q, TensorType({DT_FLOAT16})) .OPTIONAL_INPUT(scale_deq_req, TensorType({DT_FLOAT16})) .OPTIONAL_INPUT(offset_req, TensorType({DT_FLOAT16})) .OUTPUT(y, TensorType({DT_FLOAT16})) .REQUIRED_ATTR(quant_algo, ListInt) .REQUIRED_ATTR(scale_sqrt, ListInt) .REQUIRED_ATTR(num_output, Int) .ATTR(transpose, Bool, false) .ATTR(bias_term, Bool, false) .ATTR(axis, Int, 1) .OP_END_FACTORY_REG(QuantizedInnerProduct) /** * @brief Dequantizes the input tensor into a float tensor.\n * [input_min_range, input_max_range] are scalar floats that specify the range * for "output_data". * The "mode" attribute controls exactly which calculations are used to convert\n * the float values to their quantized equivalents. * @par Inputs: * @li input_data: A Tensor. Must be one of the following types: int8, uint8, * int32. * @li input_min_range: A Tensor of type float32. * Specifies the minimum scalar value possibly produced for the input. * @li input_max_range: A Tensor of type float32. * Specifies the maximum scalar value possibly produced for the input. * @par Attributes: * mode: An optional string from: "MIN_COMBINED", "MIN_FIRST", and "SCALED". * Defaults to "MIN_COMBINED". * @par Outputs: * output_data: A dictionary of type float32. * @attention Constraints: * @li "input_min_range" and "input_max_range" have the same shapes. * @li "input_data" and "output_data" have the same shapes. */ REG_OP(Dequantize) .INPUT(x, TensorType(DT_QINT8, DT_QUINT8, DT_QINT32, DT_QINT16, DT_QUINT16)) .INPUT(min_range, TensorType{DT_FLOAT}) .INPUT(max_range, TensorType{DT_FLOAT}) .OUTPUT(y, TensorType({DT_FLOAT})) .ATTR(mode, String, "MIN_COMBINED") .OP_END_FACTORY_REG(Dequantize) REG_OP(AscendQuant) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32})) .OUTPUT(y, TensorType({DT_INT8})) .REQUIRED_ATTR(scale, Float) .REQUIRED_ATTR(sqrt_mode, Bool) .REQUIRED_ATTR(offset, Float) .ATTR(round_mode, String, "Round") .OP_END_FACTORY_REG(AscendQuant) REG_OP(AscendDequant) .INPUT(x, TensorType({DT_INT32})) .INPUT(deq_scale, TensorType({DT_FLOAT16, DT_UINT64})) .OUTPUT(y, TensorType({DT_FLOAT16})) .REQUIRED_ATTR(sqrt_mode, Bool) .REQUIRED_ATTR(relu_flag, Bool) .OP_END_FACTORY_REG(AscendDequant) } // namespace ge #endif // GE_OP_QUANTIZE_OPS_H