/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_SET_OPS_H_ #define GE_OP_SET_OPS_H_ #include "graph/operator.h" #include "graph/operator_reg.h" namespace ge { REG_OP(DenseToDenseSetOperation) .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(DenseToDenseSetOperation) REG_OP(DenseToSparseSetOperation) .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_indices, TensorType({DT_INT64})) .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_shape, TensorType({DT_INT64})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(DenseToSparseSetOperation) REG_OP(SparseToSparseSetOperation) .INPUT(x1_indices, TensorType({DT_INT64})) .INPUT(x1_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x1_shape, TensorType({DT_INT64})) .INPUT(x2_indices, TensorType({DT_INT64})) .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_shape, TensorType({DT_INT64})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(SparseToSparseSetOperation) REG_OP(SetSize) .INPUT(set_indices, TensorType({DT_INT64})) .INPUT(set_values, TensorType({DT_INT8, DT_INT16, \ DT_UINT8, DT_UINT16, DT_INT32, DT_INT64})) .INPUT(set_shape, TensorType({DT_INT64})) .OUTPUT(size, TensorType({DT_INT32})) .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(SetSize) } // namespace ge #endif // GE_OP_SET_OPS_H_