/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_RANDOM_OPS_H_ #define GE_OP_RANDOM_OPS_H_ #include #include "graph/operator_reg.h" namespace ge { REG_OP(Multinomial) .INPUT(logits, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(num_samples, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) .ATTR(output_dtype, Type, DT_INT64) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(Multinomial) REG_OP(ParameterizedTruncatedNormal) .INPUT(shape, TensorType({DT_INT32})) .INPUT(means, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(stdevs, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(min, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(max, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(ParameterizedTruncatedNormal) REG_OP(RandomGammaGrad) .INPUT(alpha, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(sample, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(RandomGammaGrad) REG_OP(RandomGamma) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(alpha, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomGamma) REG_OP(RandomPoisson) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(rate, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ DT_INT32, DT_INT64})) .ATTR(dtype, Type, DT_INT64) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomPoisson) REG_OP(RandomShuffle) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \ DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, \ DT_UINT64, DT_BOOL, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \ DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, \ DT_UINT64, DT_BOOL, DT_DOUBLE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomShuffle) REG_OP(RandomStandardNormal) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .REQUIRED_ATTR(dtype, Type) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomStandardNormal) REG_OP(RandomUniformInt) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(min, TensorType({DT_INT32, DT_INT64})) .INPUT(max, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomUniformInt) REG_OP(RandomUniform) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .REQUIRED_ATTR(dtype, Type) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomUniform) REG_OP(TruncatedNormal) .INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) .OUTPUT(y, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE })) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(TruncatedNormal) REG_OP(DropOutGenMask) .INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) .INPUT(prob, TensorType({ DT_FLOAT16, DT_FLOAT })) .OUTPUT(y, TensorType({ DT_UINT8 })) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(DropOutGenMask) REG_OP(LinSpaceD) .INPUT(assist, TensorType({DT_FLOAT})) .INPUT(start, TensorType({DT_FLOAT})) .INPUT(stop, TensorType({DT_FLOAT})) .INPUT(num, TensorType::IndexNumberType()) .OUTPUT(output, TensorType({DT_FLOAT})) .OP_END_FACTORY_REG(LinSpaceD) REG_OP(LinSpace) .INPUT(start, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(stop, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(num, TensorType::IndexNumberType()) .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(LinSpace) REG_OP(Dropout) .INPUT(x, TensorType{DT_FLOAT}) .OUTPUT(y, TensorType{DT_FLOAT}) .ATTR(dropout_ratio, Float, 0.5) .ATTR(scale_train, Bool, true) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(Dropout) REG_OP(RandomChoiceWithMask) .INPUT(x, TensorType({DT_BOOL})) .OUTPUT(y, TensorType({DT_INT32})) .OUTPUT(mask, TensorType({DT_BOOL})) .ATTR(count, Int, 0) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomChoiceWithMask) } // namespace ge #endif // GE_OP_RANDOM_OPS_H_