| @@ -128,7 +128,6 @@ else () | |||||
| message(STATUS "PLATFORM param is invalid, should be train or inference, you choose nothing!") | message(STATUS "PLATFORM param is invalid, should be train or inference, you choose nothing!") | ||||
| endif() | endif() | ||||
| endif() | endif() | ||||
| set(METADEF_DIR ${CMAKE_CURRENT_LIST_DIR}/metadef) | set(METADEF_DIR ${CMAKE_CURRENT_LIST_DIR}/metadef) | ||||
| set(PARSER_DIR ${CMAKE_CURRENT_LIST_DIR}/parser) | set(PARSER_DIR ${CMAKE_CURRENT_LIST_DIR}/parser) | ||||
| set(GE_DEPEND_DIR ${CMAKE_CURRENT_LIST_DIR}/..) | set(GE_DEPEND_DIR ${CMAKE_CURRENT_LIST_DIR}/..) | ||||
| @@ -9,10 +9,6 @@ if (GE_PB_PKG) | |||||
| set(REQ_URL "${GE_PB_PKG}/libs/ge_nlohmann_json/include.zip") | set(REQ_URL "${GE_PB_PKG}/libs/ge_nlohmann_json/include.zip") | ||||
| set(MD5 "0dc903888211db3a0f170304cd9f3a89") | set(MD5 "0dc903888211db3a0f170304cd9f3a89") | ||||
| set(JSON_INCLUDE_DIR ${JSON_SRC_DIR}) | set(JSON_INCLUDE_DIR ${JSON_SRC_DIR}) | ||||
| #elseif (ENABLE_GITEE) | |||||
| # set(REQ_URL "https://gitee.com/mirrors/JSON-for-Modern-CPP/repository/archive/v3.6.1.zip") | |||||
| # set(MD5 "5bda78ce308e6cfcf614dcf1d5ff27a7") | |||||
| #set(JSON_INCLUDE_DIR "${JSON_SRC_DIR}/include") | |||||
| else() | else() | ||||
| set(REQ_URL "https://github.com/nlohmann/json/releases/download/v3.6.1/include.zip") | set(REQ_URL "https://github.com/nlohmann/json/releases/download/v3.6.1/include.zip") | ||||
| set(MD5 "0dc903888211db3a0f170304cd9f3a89") | set(MD5 "0dc903888211db3a0f170304cd9f3a89") | ||||
| @@ -16,6 +16,7 @@ set(GE_SRC_LIST | |||||
| "task/label_goto_task.cc" | "task/label_goto_task.cc" | ||||
| "task/label_set_task.cc" | "task/label_set_task.cc" | ||||
| "task/label_switch_task.cc" | "task/label_switch_task.cc" | ||||
| "task/label_manager.cc" | |||||
| ) | ) | ||||
| add_library(ge_runtime SHARED ${GE_SRC_LIST}) | add_library(ge_runtime SHARED ${GE_SRC_LIST}) | ||||
| @@ -21,6 +21,7 @@ | |||||
| #include "common/ge_inner_error_codes.h" | #include "common/ge_inner_error_codes.h" | ||||
| #include "common/types.h" | #include "common/types.h" | ||||
| #include "common/util.h" | #include "common/util.h" | ||||
| #include "common/math/math_util.h" | |||||
| #include "framework/common/debug/ge_log.h" | #include "framework/common/debug/ge_log.h" | ||||
| #include "framework/common/op/op_parser_util.h" | #include "framework/common/op/op_parser_util.h" | ||||
| #include "graph/types.h" | #include "graph/types.h" | ||||
| @@ -52,15 +52,7 @@ HcclTask::HcclTask(const ModelContext &model_context, const std::shared_ptr<Hccl | |||||
| } | } | ||||
| } | } | ||||
| HcclTask::~HcclTask() { | |||||
| if (workspace_mem_ != nullptr) { | |||||
| rtError_t rt_ret = rtFree(workspace_mem_); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "rtFree workspace_mem_ failed! ret: 0x%X.", rt_ret); | |||||
| } | |||||
| workspace_mem_ = nullptr; | |||||
| } | |||||
| } | |||||
| HcclTask::~HcclTask() {} | |||||
| bool HcclTask::Distribute() { | bool HcclTask::Distribute() { | ||||
| // Ops kernel info store | // Ops kernel info store | ||||
| @@ -79,11 +71,7 @@ bool HcclTask::Distribute() { | |||||
| SetSecondaryStream(); | SetSecondaryStream(); | ||||
| if (task_info_->workspace_size() > 0) { | if (task_info_->workspace_size() > 0) { | ||||
| rtError_t rt_ret = rtMalloc(&workspace_mem_, task_info_->workspace_size(), RT_MEMORYINFO_HBM); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return false; | |||||
| } | |||||
| workspace_mem_ = task_info_->workspace_addr(); | |||||
| } | } | ||||
| GELOGI("HcclTaskInfo Distribute Start. begin to call function LoadTask in hccl."); | GELOGI("HcclTaskInfo Distribute Start. begin to call function LoadTask in hccl."); | ||||
| @@ -16,33 +16,46 @@ | |||||
| #include "ge_runtime/task/label_goto_task.h" | #include "ge_runtime/task/label_goto_task.h" | ||||
| #include "ge_runtime/task/task_factory.h" | #include "ge_runtime/task/task_factory.h" | ||||
| #include "framework/common/util.h" | |||||
| namespace ge { | namespace ge { | ||||
| namespace model_runner { | namespace model_runner { | ||||
| LabelGotoTask::LabelGotoTask(const ModelContext &model_context, const std::shared_ptr<LabelGotoTaskInfo> &task_info) | LabelGotoTask::LabelGotoTask(const ModelContext &model_context, const std::shared_ptr<LabelGotoTaskInfo> &task_info) | ||||
| : TaskRepeater<LabelGotoTaskInfo>(model_context, task_info), task_info_(task_info) { | |||||
| : TaskRepeater<LabelGotoTaskInfo>(model_context, task_info), | |||||
| task_info_(task_info), | |||||
| stream_(nullptr), | |||||
| index_value_(nullptr) { | |||||
| if (task_info_ == nullptr) { | if (task_info_ == nullptr) { | ||||
| GELOGW("task_info_ is null!"); | GELOGW("task_info_ is null!"); | ||||
| return; | return; | ||||
| } | } | ||||
| auto stream_list = model_context.stream_list(); | auto stream_list = model_context.stream_list(); | ||||
| auto label_list = model_context.label_list(); | auto label_list = model_context.label_list(); | ||||
| rt_model_handle_ = model_context.rt_model_handle(); | |||||
| uint32_t stream_id = task_info->stream_id(); | uint32_t stream_id = task_info->stream_id(); | ||||
| uint32_t label_id = task_info->label_id(); | |||||
| label_id_ = task_info->label_id(); | |||||
| GELOGI("Stream list size:%zu, stream id:%u.", stream_list.size(), stream_id); | GELOGI("Stream list size:%zu, stream id:%u.", stream_list.size(), stream_id); | ||||
| GELOGI("Label list size:%zu, label id:%u.", label_list.size(), label_id); | |||||
| if (stream_id >= stream_list.size() || label_id >= label_list.size()) { | |||||
| GELOGI("Label list size:%zu, label id:%u.", label_list.size(), label_id_); | |||||
| if (stream_id >= stream_list.size() || label_id_ >= label_list.size()) { | |||||
| GELOGW("Stream/Label id invalid."); | GELOGW("Stream/Label id invalid."); | ||||
| return; | return; | ||||
| } | } | ||||
| stream_ = stream_list[stream_id]; | stream_ = stream_list[stream_id]; | ||||
| label_ = label_list[label_id]; | |||||
| label_manager_ = LabelManager::GetInstance(); | |||||
| if (label_manager_ == nullptr) { | |||||
| GELOGW("Get label manager instance failed."); | |||||
| return; | |||||
| } | |||||
| label_info_ = label_manager_->GetLabelInfo(rt_model_handle_, {label_id_}, label_list); | |||||
| } | } | ||||
| LabelGotoTask::~LabelGotoTask() { | LabelGotoTask::~LabelGotoTask() { | ||||
| GE_FREE_RT_LOG(label_info_); | |||||
| GE_FREE_RT_LOG(index_value_); | |||||
| if (index_value_ != nullptr) { | |||||
| rtError_t rt_ret = rtFree(index_value_); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "rtFree index_value_ failed! ret: 0x%X.", rt_ret); | |||||
| } | |||||
| index_value_ = nullptr; | |||||
| } | |||||
| } | } | ||||
| bool LabelGotoTask::Distribute() { | bool LabelGotoTask::Distribute() { | ||||
| @@ -94,21 +107,34 @@ bool LabelGotoTask::CheckParamValid() { | |||||
| return false; | return false; | ||||
| } | } | ||||
| if (label_ == nullptr) { | |||||
| GELOGE(PARAM_INVALID, "label is null!"); | |||||
| if (label_info_ == nullptr) { | |||||
| GELOGE(PARAM_INVALID, "label info is null!"); | |||||
| return false; | return false; | ||||
| } | } | ||||
| if (label_info_ != nullptr) { | |||||
| GELOGE(PARAM_INVALID, "label_info_ has dirty data."); | |||||
| return false; | |||||
| if (index_value_ == nullptr) { | |||||
| rtError_t rt_ret = rtMalloc(&index_value_, sizeof(uint64_t), RT_MEMORY_HBM); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return false; | |||||
| } | |||||
| uint64_t index = 0; | |||||
| rt_ret = rtMemcpy(index_value_, sizeof(uint64_t), &index, sizeof(index), RT_MEMCPY_HOST_TO_DEVICE); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return false; | |||||
| } | |||||
| } | } | ||||
| if (index_value_ != nullptr) { | |||||
| GELOGE(PARAM_INVALID, "index_value_ has dirty data."); | |||||
| void *label_info = label_info_->GetLabelInfo(); | |||||
| rtError_t rt_ret = rtLabelSwitchByIndex(index_value_, 1, label_info, stream_); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return false; | return false; | ||||
| } | } | ||||
| GELOGI("DistributeTask end."); | |||||
| return true; | return true; | ||||
| } | } | ||||
| @@ -18,7 +18,11 @@ | |||||
| #define GE_GE_RUNTIME_TASK_LABEL_GOTO_TASK_H_ | #define GE_GE_RUNTIME_TASK_LABEL_GOTO_TASK_H_ | ||||
| #include <memory> | #include <memory> | ||||
| #include <vector> | |||||
| #include <map> | |||||
| #include <mutex> | |||||
| #include "ge_runtime/task/task.h" | #include "ge_runtime/task/task.h" | ||||
| #include "ge_runtime/task/label_manager.h" | |||||
| namespace ge { | namespace ge { | ||||
| namespace model_runner { | namespace model_runner { | ||||
| @@ -31,13 +35,13 @@ class LabelGotoTask : public TaskRepeater<LabelGotoTaskInfo> { | |||||
| bool Distribute() override; | bool Distribute() override; | ||||
| private: | private: | ||||
| bool CheckParamValid(); | |||||
| std::shared_ptr<LabelGotoTaskInfo> task_info_; | std::shared_ptr<LabelGotoTaskInfo> task_info_; | ||||
| void *stream_{nullptr}; | |||||
| void *label_{nullptr}; | |||||
| void *label_info_{nullptr}; | |||||
| void *index_value_{nullptr}; | |||||
| void *stream_; | |||||
| std::shared_ptr<LabelGuard> label_info_; | |||||
| void *index_value_; | |||||
| uint32_t label_id_; | |||||
| rtModel_t rt_model_handle_; | |||||
| std::shared_ptr<LabelManager> label_manager_; | |||||
| }; | }; | ||||
| } // namespace model_runner | } // namespace model_runner | ||||
| } // namespace ge | } // namespace ge | ||||
| @@ -0,0 +1,119 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "ge_runtime/task/label_manager.h" | |||||
| #include <algorithm> | |||||
| #include <string> | |||||
| #include "runtime/mem.h" | |||||
| #include "runtime/rt_model.h" | |||||
| #include "common/ge_inner_error_codes.h" | |||||
| #include "framework/common/debug/ge_log.h" | |||||
| namespace ge { | |||||
| namespace model_runner { | |||||
| std::weak_ptr<LabelManager> LabelManager::instance_; | |||||
| std::mutex LabelManager::instance_mutex_; | |||||
| template <class T> | |||||
| static std::string GetVectorString(const std::vector<T> &vec) { | |||||
| std::string ret; | |||||
| for (size_t i = 0; i < vec.size(); ++i) { | |||||
| if (i != 0) { | |||||
| ret.push_back(','); | |||||
| } | |||||
| ret += std::to_string(vec[i]); | |||||
| } | |||||
| return ret; | |||||
| } | |||||
| LabelGuard::~LabelGuard() { | |||||
| void *label_info = GetLabelInfo(); | |||||
| if (label_info != nullptr) { | |||||
| rtError_t rt_ret = rtFree(label_info); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "rtFree label_info failed! ret: 0x%X.", rt_ret); | |||||
| } | |||||
| } | |||||
| } | |||||
| std::shared_ptr<LabelManager> LabelManager::GetInstance() { | |||||
| std::lock_guard<std::mutex> lock(instance_mutex_); | |||||
| auto instance = instance_.lock(); | |||||
| if (instance != nullptr) { | |||||
| return instance; | |||||
| } | |||||
| instance = std::make_shared<LabelManager>(); | |||||
| instance_ = instance; | |||||
| return instance; | |||||
| } | |||||
| std::shared_ptr<LabelGuard> LabelManager::GetLabelInfo(rtModel_t model, const std::vector<uint32_t> &label_ids, | |||||
| const std::vector<void *> &all_label) { | |||||
| std::lock_guard<std::mutex> lock(model_info_mapping_mutex_); | |||||
| rtError_t rt_ret; | |||||
| auto model_iter = model_info_mapping_.find(model); | |||||
| if (model_iter == model_info_mapping_.end()) { | |||||
| model_info_mapping_.emplace(model, std::map<std::string, std::weak_ptr<LabelGuard>>()); | |||||
| model_iter = model_info_mapping_.find(model); | |||||
| } | |||||
| std::string label_id_str = GetVectorString(label_ids); | |||||
| auto &label_map = model_iter->second; | |||||
| auto label_iter = label_map.find(label_id_str); | |||||
| if (label_iter != label_map.end()) { | |||||
| auto label_guard = label_iter->second.lock(); | |||||
| if (label_guard != nullptr) { | |||||
| GELOGI("model %p find same label id %s.", model, label_id_str.c_str()); | |||||
| return label_guard; | |||||
| } | |||||
| } | |||||
| GELOGI("Alloc label id %s for model %p.", label_id_str.c_str(), model); | |||||
| void *label_info; | |||||
| std::vector<void *> label_list; | |||||
| bool status = true; | |||||
| std::transform(label_ids.begin(), label_ids.end(), std::back_inserter(label_list), | |||||
| [&all_label, &status](uint32_t idx) -> void * { | |||||
| if (idx >= all_label.size()) { | |||||
| GELOGE(PARAM_INVALID, "Invalid label id %u, all label list size %zu.", idx, all_label.size()); | |||||
| status = false; | |||||
| return nullptr; | |||||
| } | |||||
| return all_label[idx]; | |||||
| }); | |||||
| if (!status) { | |||||
| GELOGE(PARAM_INVALID, "Get label info failed."); | |||||
| return nullptr; | |||||
| } | |||||
| uint32_t label_info_size = sizeof(rtLabelDevInfo) * label_list.size(); | |||||
| rt_ret = rtMalloc(&label_info, label_info_size, RT_MEMORY_HBM); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return nullptr; | |||||
| } | |||||
| rt_ret = rtLabelListCpy(label_list.data(), label_list.size(), label_info, label_info_size); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||||
| return nullptr; | |||||
| } | |||||
| auto label_guard = std::make_shared<LabelGuard>(label_info); | |||||
| label_map.emplace(label_id_str, label_guard); | |||||
| return label_guard; | |||||
| } | |||||
| } // namespace model_runner | |||||
| } // namespace ge | |||||
| @@ -0,0 +1,54 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef GE_GE_RUNTIME_TASK_LABEL_MANAGER_H_ | |||||
| #define GE_GE_RUNTIME_TASK_LABEL_MANAGER_H_ | |||||
| #include <vector> | |||||
| #include <memory> | |||||
| #include <mutex> | |||||
| #include <map> | |||||
| #include <runtime/base.h> | |||||
| namespace ge { | |||||
| namespace model_runner { | |||||
| class LabelGuard { | |||||
| public: | |||||
| explicit LabelGuard(void *label_info) : label_info_(reinterpret_cast<uintptr_t>(label_info)) {} | |||||
| ~LabelGuard(); | |||||
| void *GetLabelInfo() { return reinterpret_cast<void *>(label_info_); } | |||||
| private: | |||||
| uintptr_t label_info_; | |||||
| }; | |||||
| class LabelManager { | |||||
| public: | |||||
| static std::shared_ptr<LabelManager> GetInstance(); | |||||
| std::shared_ptr<LabelGuard> GetLabelInfo(rtModel_t model, const std::vector<uint32_t> &label_ids, | |||||
| const std::vector<void *> &all_label); | |||||
| private: | |||||
| std::mutex model_info_mapping_mutex_; | |||||
| std::map<rtModel_t, std::map<std::string, std::weak_ptr<LabelGuard>>> model_info_mapping_; | |||||
| static std::weak_ptr<LabelManager> instance_; | |||||
| static std::mutex instance_mutex_; | |||||
| }; | |||||
| } // namespace model_runner | |||||
| } // namespace ge | |||||
| #endif // GE_GE_RUNTIME_TASK_LABEL_MANAGER_H_ | |||||
| @@ -24,14 +24,14 @@ LabelSwitchTask::LabelSwitchTask(const ModelContext &model_context, | |||||
| : TaskRepeater<LabelSwitchTaskInfo>(model_context, task_info), | : TaskRepeater<LabelSwitchTaskInfo>(model_context, task_info), | ||||
| task_info_(task_info), | task_info_(task_info), | ||||
| stream_(nullptr), | stream_(nullptr), | ||||
| all_label_resource_(), | |||||
| label_info_(nullptr) { | label_info_(nullptr) { | ||||
| if (task_info_ == nullptr) { | if (task_info_ == nullptr) { | ||||
| GELOGW("task_info_ is null!"); | GELOGW("task_info_ is null!"); | ||||
| return; | return; | ||||
| } | } | ||||
| all_label_resource_ = model_context.label_list(); | |||||
| rt_model_handle_ = model_context.rt_model_handle(); | |||||
| auto all_label_resource = model_context.label_list(); | |||||
| auto stream_list = model_context.stream_list(); | auto stream_list = model_context.stream_list(); | ||||
| uint32_t stream_id = task_info->stream_id(); | uint32_t stream_id = task_info->stream_id(); | ||||
| GELOGI("Stream list size:%zu, stream id:%u.", stream_list.size(), stream_id); | GELOGI("Stream list size:%zu, stream id:%u.", stream_list.size(), stream_id); | ||||
| @@ -40,18 +40,16 @@ LabelSwitchTask::LabelSwitchTask(const ModelContext &model_context, | |||||
| return; | return; | ||||
| } | } | ||||
| stream_ = stream_list[stream_id]; | stream_ = stream_list[stream_id]; | ||||
| } | |||||
| LabelSwitchTask::~LabelSwitchTask() { | |||||
| if (label_info_ != nullptr) { | |||||
| rtError_t rt_ret = rtFree(label_info_); | |||||
| if (rt_ret != RT_ERROR_NONE) { | |||||
| GELOGE(RT_FAILED, "rtFree fwkOpBuf failed! ret: 0x%X.", rt_ret); | |||||
| } | |||||
| label_info_ = nullptr; | |||||
| label_manager_ = LabelManager::GetInstance(); | |||||
| if (label_manager_ == nullptr) { | |||||
| GELOGW("Get label manager instance failed."); | |||||
| return; | |||||
| } | } | ||||
| label_info_ = label_manager_->GetLabelInfo(rt_model_handle_, task_info_->label_list(), all_label_resource); | |||||
| } | } | ||||
| LabelSwitchTask::~LabelSwitchTask() {} | |||||
| bool LabelSwitchTask::Distribute() { | bool LabelSwitchTask::Distribute() { | ||||
| GELOGI("LabelSwitchTask Distribute start."); | GELOGI("LabelSwitchTask Distribute start."); | ||||
| if (!CheckParamValid()) { | if (!CheckParamValid()) { | ||||
| @@ -117,8 +115,8 @@ bool LabelSwitchTask::CheckParamValid() { | |||||
| return false; | return false; | ||||
| } | } | ||||
| if (label_info_ != nullptr) { | |||||
| GELOGE(PARAM_INVALID, "label_info_ has dirty data."); | |||||
| if (label_info_ == nullptr) { | |||||
| GELOGE(PARAM_INVALID, "CopyLabelList failed, label info is null."); | |||||
| return false; | return false; | ||||
| } | } | ||||
| @@ -126,6 +124,5 @@ bool LabelSwitchTask::CheckParamValid() { | |||||
| } | } | ||||
| REGISTER_TASK(TaskInfoType::LABEL_SWITCH, LabelSwitchTask, LabelSwitchTaskInfo); | REGISTER_TASK(TaskInfoType::LABEL_SWITCH, LabelSwitchTask, LabelSwitchTaskInfo); | ||||
| } // namespace model_runner | } // namespace model_runner | ||||
| } // namespace ge | } // namespace ge | ||||
| @@ -19,6 +19,7 @@ | |||||
| #include <memory> | #include <memory> | ||||
| #include "ge_runtime/task/task.h" | #include "ge_runtime/task/task.h" | ||||
| #include "ge_runtime/task/label_manager.h" | |||||
| namespace ge { | namespace ge { | ||||
| namespace model_runner { | namespace model_runner { | ||||
| @@ -35,8 +36,9 @@ class LabelSwitchTask : public TaskRepeater<LabelSwitchTaskInfo> { | |||||
| std::shared_ptr<LabelSwitchTaskInfo> task_info_; | std::shared_ptr<LabelSwitchTaskInfo> task_info_; | ||||
| void *stream_; | void *stream_; | ||||
| std::vector<void *> all_label_resource_; | |||||
| void *label_info_; | |||||
| rtModel_t rt_model_handle_; | |||||
| std::shared_ptr<LabelGuard> label_info_; | |||||
| std::shared_ptr<LabelManager> label_manager_; | |||||
| }; | }; | ||||
| } // namespace model_runner | } // namespace model_runner | ||||
| } // namespace ge | } // namespace ge | ||||
| @@ -0,0 +1,82 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_H_ | |||||
| #include "acl_rt.h" | |||||
| #include "acl_op.h" | |||||
| #include "acl_mdl.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| // Current version is 1.0.0 | |||||
| #define ACL_MAJOR_VERSION 1 | |||||
| #define ACL_MINOR_VERSION 0 | |||||
| #define ACL_PATCH_VERSION 0 | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief acl initialize | |||||
| * | |||||
| * @par Restriction | |||||
| * The aclInit interface can be called only once in a process | |||||
| * @param configPath [IN] the config path,it can be NULL | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclInit(const char *configPath); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief acl finalize | |||||
| * | |||||
| * @par Restriction | |||||
| * Need to call aclFinalize before the process exits. | |||||
| * After calling aclFinalize,the services cannot continue to be used normally. | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclFinalize(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief query ACL interface version | |||||
| * | |||||
| * @param majorVersion[OUT] ACL interface major version | |||||
| * @param minorVersion[OUT] ACL interface minor version | |||||
| * @param patchVersion[OUT] ACL interface patch version | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetVersion(int32_t *majorVersion, int32_t *minorVersion, int32_t *patchVersion); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get recent error message | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY const char *aclGetRecentErrMsg(); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_ACL_H_ | |||||
| @@ -0,0 +1,645 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_BASE_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_BASE_H_ | |||||
| #include <stdint.h> | |||||
| #include <stddef.h> | |||||
| #include "error_codes/rt_error_codes.h" | |||||
| #include "error_codes/ge_error_codes.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| #if defined(_MSC_VER) | |||||
| #ifdef FUNC_VISIBILITY | |||||
| #define ACL_FUNC_VISIBILITY _declspec(dllexport) | |||||
| #else | |||||
| #define ACL_FUNC_VISIBILITY | |||||
| #endif | |||||
| #else | |||||
| #ifdef FUNC_VISIBILITY | |||||
| #define ACL_FUNC_VISIBILITY __attribute__((visibility("default"))) | |||||
| #else | |||||
| #define ACL_FUNC_VISIBILITY | |||||
| #endif | |||||
| #endif | |||||
| #ifdef __GNUC__ | |||||
| #define ACL_DEPRECATED __attribute__((deprecated)) | |||||
| #define ACL_DEPRECATED_MESSAGE(message) __attribute__((deprecated(message))) | |||||
| #elif defined(_MSC_VER) | |||||
| #define ACL_DEPRECATED __declspec(deprecated) | |||||
| #define ACL_DEPRECATED_MESSAGE(message) __declspec(deprecated(message)) | |||||
| #else | |||||
| #define ACL_DEPRECATED | |||||
| #define ACL_DEPRECATED_MESSAGE(message) | |||||
| #endif | |||||
| typedef void *aclrtStream; | |||||
| typedef void *aclrtEvent; | |||||
| typedef void *aclrtContext; | |||||
| typedef int aclError; | |||||
| typedef uint16_t aclFloat16; | |||||
| typedef struct aclDataBuffer aclDataBuffer; | |||||
| typedef struct aclTensorDesc aclTensorDesc; | |||||
| static const int ACL_ERROR_NONE = 0; | |||||
| static const int ACL_SUCCESS = 0; | |||||
| static const int ACL_ERROR_INVALID_PARAM = 100000; | |||||
| static const int ACL_ERROR_UNINITIALIZE = 100001; | |||||
| static const int ACL_ERROR_REPEAT_INITIALIZE = 100002; | |||||
| static const int ACL_ERROR_INVALID_FILE = 100003; | |||||
| static const int ACL_ERROR_WRITE_FILE = 100004; | |||||
| static const int ACL_ERROR_INVALID_FILE_SIZE = 100005; | |||||
| static const int ACL_ERROR_PARSE_FILE = 100006; | |||||
| static const int ACL_ERROR_FILE_MISSING_ATTR = 100007; | |||||
| static const int ACL_ERROR_FILE_ATTR_INVALID = 100008; | |||||
| static const int ACL_ERROR_INVALID_DUMP_CONFIG = 100009; | |||||
| static const int ACL_ERROR_INVALID_PROFILING_CONFIG = 100010; | |||||
| static const int ACL_ERROR_INVALID_MODEL_ID = 100011; | |||||
| static const int ACL_ERROR_DESERIALIZE_MODEL = 100012; | |||||
| static const int ACL_ERROR_PARSE_MODEL = 100013; | |||||
| static const int ACL_ERROR_READ_MODEL_FAILURE = 100014; | |||||
| static const int ACL_ERROR_MODEL_SIZE_INVALID = 100015; | |||||
| static const int ACL_ERROR_MODEL_MISSING_ATTR = 100016; | |||||
| static const int ACL_ERROR_MODEL_INPUT_NOT_MATCH = 100017; | |||||
| static const int ACL_ERROR_MODEL_OUTPUT_NOT_MATCH = 100018; | |||||
| static const int ACL_ERROR_MODEL_NOT_DYNAMIC = 100019; | |||||
| static const int ACL_ERROR_OP_TYPE_NOT_MATCH = 100020; | |||||
| static const int ACL_ERROR_OP_INPUT_NOT_MATCH = 100021; | |||||
| static const int ACL_ERROR_OP_OUTPUT_NOT_MATCH = 100022; | |||||
| static const int ACL_ERROR_OP_ATTR_NOT_MATCH = 100023; | |||||
| static const int ACL_ERROR_OP_NOT_FOUND = 100024; | |||||
| static const int ACL_ERROR_OP_LOAD_FAILED = 100025; | |||||
| static const int ACL_ERROR_UNSUPPORTED_DATA_TYPE = 100026; | |||||
| static const int ACL_ERROR_FORMAT_NOT_MATCH = 100027; | |||||
| static const int ACL_ERROR_BIN_SELECTOR_NOT_REGISTERED = 100028; | |||||
| static const int ACL_ERROR_KERNEL_NOT_FOUND = 100029; | |||||
| static const int ACL_ERROR_BIN_SELECTOR_ALREADY_REGISTERED = 100030; | |||||
| static const int ACL_ERROR_KERNEL_ALREADY_REGISTERED = 100031; | |||||
| static const int ACL_ERROR_INVALID_QUEUE_ID = 100032; | |||||
| static const int ACL_ERROR_REPEAT_SUBSCRIBE = 100033; | |||||
| static const int ACL_ERROR_STREAM_NOT_SUBSCRIBE = 100034; | |||||
| static const int ACL_ERROR_THREAD_NOT_SUBSCRIBE = 100035; | |||||
| static const int ACL_ERROR_WAIT_CALLBACK_TIMEOUT = 100036; | |||||
| static const int ACL_ERROR_REPEAT_FINALIZE = 100037; | |||||
| static const int ACL_ERROR_NOT_STATIC_AIPP = 100038; | |||||
| static const int ACL_ERROR_COMPILING_STUB_MODE = 100039; | |||||
| static const int ACL_ERROR_GROUP_NOT_SET = 100040; | |||||
| static const int ACL_ERROR_GROUP_NOT_CREATE = 100041; | |||||
| static const int ACL_ERROR_PROF_ALREADY_RUN = 100042; | |||||
| static const int ACL_ERROR_PROF_NOT_RUN = 100043; | |||||
| static const int ACL_ERROR_DUMP_ALREADY_RUN = 100044; | |||||
| static const int ACL_ERROR_DUMP_NOT_RUN = 100045; | |||||
| static const int ACL_ERROR_PROF_REPEAT_SUBSCRIBE = 148046; | |||||
| static const int ACL_ERROR_PROF_API_CONFLICT = 148047; | |||||
| static const int ACL_ERROR_INVALID_MAX_OPQUEUE_NUM_CONFIG = 148048; | |||||
| static const int ACL_ERROR_INVALID_OPP_PATH = 148049; | |||||
| static const int ACL_ERROR_OP_UNSUPPORTED_DYNAMIC = 148050; | |||||
| static const int ACL_ERROR_BAD_ALLOC = 200000; | |||||
| static const int ACL_ERROR_API_NOT_SUPPORT = 200001; | |||||
| static const int ACL_ERROR_INVALID_DEVICE = 200002; | |||||
| static const int ACL_ERROR_MEMORY_ADDRESS_UNALIGNED = 200003; | |||||
| static const int ACL_ERROR_RESOURCE_NOT_MATCH = 200004; | |||||
| static const int ACL_ERROR_INVALID_RESOURCE_HANDLE = 200005; | |||||
| static const int ACL_ERROR_FEATURE_UNSUPPORTED = 200006; | |||||
| static const int ACL_ERROR_PROF_MODULES_UNSUPPORTED = 200007; | |||||
| static const int ACL_ERROR_STORAGE_OVER_LIMIT = 300000; | |||||
| static const int ACL_ERROR_INTERNAL_ERROR = 500000; | |||||
| static const int ACL_ERROR_FAILURE = 500001; | |||||
| static const int ACL_ERROR_GE_FAILURE = 500002; | |||||
| static const int ACL_ERROR_RT_FAILURE = 500003; | |||||
| static const int ACL_ERROR_DRV_FAILURE = 500004; | |||||
| static const int ACL_ERROR_PROFILING_FAILURE = 500005; | |||||
| #define ACL_TENSOR_SHAPE_RANGE_NUM 2 | |||||
| #define ACL_UNKNOWN_RANK 0xFFFFFFFFFFFFFFFE | |||||
| typedef enum { | |||||
| ACL_DT_UNDEFINED = -1, | |||||
| ACL_FLOAT = 0, | |||||
| ACL_FLOAT16 = 1, | |||||
| ACL_INT8 = 2, | |||||
| ACL_INT32 = 3, | |||||
| ACL_UINT8 = 4, | |||||
| ACL_INT16 = 6, | |||||
| ACL_UINT16 = 7, | |||||
| ACL_UINT32 = 8, | |||||
| ACL_INT64 = 9, | |||||
| ACL_UINT64 = 10, | |||||
| ACL_DOUBLE = 11, | |||||
| ACL_BOOL = 12, | |||||
| ACL_STRING = 13, | |||||
| } aclDataType; | |||||
| typedef enum { | |||||
| ACL_FORMAT_UNDEFINED = -1, | |||||
| ACL_FORMAT_NCHW = 0, | |||||
| ACL_FORMAT_NHWC = 1, | |||||
| ACL_FORMAT_ND = 2, | |||||
| ACL_FORMAT_NC1HWC0 = 3, | |||||
| ACL_FORMAT_FRACTAL_Z = 4, | |||||
| ACL_FORMAT_NC1HWC0_C04 = 12, | |||||
| ACL_FORMAT_NDHWC = 27, | |||||
| ACL_FORMAT_FRACTAL_NZ = 29, | |||||
| ACL_FORMAT_NCDHW = 30, | |||||
| ACL_FORMAT_NDC1HWC0 = 32, | |||||
| ACL_FRACTAL_Z_3D = 33 | |||||
| } aclFormat; | |||||
| typedef enum { | |||||
| ACL_DEBUG = 0, | |||||
| ACL_INFO = 1, | |||||
| ACL_WARNING = 2, | |||||
| ACL_ERROR = 3, | |||||
| } aclLogLevel; | |||||
| typedef enum { | |||||
| ACL_MEMTYPE_DEVICE = 0, | |||||
| ACL_MEMTYPE_HOST = 1, | |||||
| } aclMemType; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Converts data of type aclFloat16 to data of type float | |||||
| * | |||||
| * @param value [IN] Data to be converted | |||||
| * | |||||
| * @retval Transformed data | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY float aclFloat16ToFloat(aclFloat16 value); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Converts data of type float to data of type aclFloat16 | |||||
| * | |||||
| * @param value [IN] Data to be converted | |||||
| * | |||||
| * @retval Transformed data | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclFloat16 aclFloatToFloat16(float value); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create data of aclDataBuffer | |||||
| * | |||||
| * @param data [IN] pointer to data | |||||
| * @li Need to be managed by the user, | |||||
| * call aclrtMalloc interface to apply for memory, | |||||
| * call aclrtFree interface to release memory | |||||
| * | |||||
| * @param size [IN] size of data in bytes | |||||
| * | |||||
| * @retval pointer to created instance. nullptr if run out of memory | |||||
| * | |||||
| * @see aclrtMalloc | aclrtFree | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclDataBuffer *aclCreateDataBuffer(void *data, size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy data of aclDataBuffer | |||||
| * | |||||
| * @par Function | |||||
| * Only the aclDataBuffer type data is destroyed here. | |||||
| * The memory of the data passed in when the aclDataDataBuffer interface | |||||
| * is called to create aclDataBuffer type data must be released by the user | |||||
| * | |||||
| * @param dataBuffer [IN] pointer to the aclDataBuffer | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclCreateDataBuffer | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclDestroyDataBuffer(const aclDataBuffer *dataBuffer); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief update new data of aclDataBuffer | |||||
| * | |||||
| * @param dataBuffer [OUT] pointer to aclDataBuffer | |||||
| * @li The old data need to be released by the user, otherwise it may occur memory leak leakage | |||||
| * call aclGetDataBufferAddr interface to get old data address | |||||
| * call aclrtFree interface to release memory | |||||
| * | |||||
| * @param data [IN] pointer to new data | |||||
| * @li Need to be managed by the user, | |||||
| * call aclrtMalloc interface to apply for memory, | |||||
| * call aclrtFree interface to release memory | |||||
| * | |||||
| * @param size [IN] size of data in bytes | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtMalloc | aclrtFree | aclGetDataBufferAddr | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclUpdateDataBuffer(aclDataBuffer *dataBuffer, void *data, size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get data address from aclDataBuffer | |||||
| * | |||||
| * @param dataBuffer [IN] pointer to the data of aclDataBuffer | |||||
| * | |||||
| * @retval data address | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void *aclGetDataBufferAddr(const aclDataBuffer *dataBuffer); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get data size of aclDataBuffer | |||||
| * | |||||
| * @param dataBuffer [IN] pointer to the data of aclDataBuffer | |||||
| * | |||||
| * @retval data size | |||||
| */ | |||||
| ACL_DEPRECATED_MESSAGE("aclGetDataBufferSize is deprecated, use aclGetDataBufferSizeV2 instead") | |||||
| ACL_FUNC_VISIBILITY uint32_t aclGetDataBufferSize(const aclDataBuffer *dataBuffer); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get data size of aclDataBuffer to replace aclGetDataBufferSize | |||||
| * | |||||
| * @param dataBuffer [IN] pointer to the data of aclDataBuffer | |||||
| * | |||||
| * @retval data size | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclGetDataBufferSizeV2(const aclDataBuffer *dataBuffer); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get size of aclDataType | |||||
| * | |||||
| * @param dataType [IN] aclDataType data the size to get | |||||
| * | |||||
| * @retval size of the aclDataType | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclDataTypeSize(aclDataType dataType); | |||||
| // interfaces of tensor desc | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create data aclTensorDesc | |||||
| * | |||||
| * @param dataType [IN] Data types described by tensor | |||||
| * @param numDims [IN] the number of dimensions of the shape | |||||
| * @param dims [IN] the size of the specified dimension | |||||
| * @param format [IN] tensor format | |||||
| * | |||||
| * @retval aclTensorDesc pointer. | |||||
| * @retval nullptr if param is invalid or run out of memory | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclTensorDesc *aclCreateTensorDesc(aclDataType dataType, | |||||
| int numDims, | |||||
| const int64_t *dims, | |||||
| aclFormat format); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy data aclTensorDesc | |||||
| * | |||||
| * @param desc [IN] pointer to the data of aclTensorDesc to destroy | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void aclDestroyTensorDesc(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set tensor shape range for aclTensorDesc | |||||
| * | |||||
| * @param desc [OUT] pointer to the data of aclTensorDesc | |||||
| * @param dimsCount [IN] the number of dimensions of the shape | |||||
| * @param dimsRange [IN] the range of dimensions of the shape | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorShapeRange(aclTensorDesc* desc, | |||||
| size_t dimsCount, | |||||
| int64_t dimsRange[][ACL_TENSOR_SHAPE_RANGE_NUM]); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get data type specified by the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval data type specified by the tensor description. | |||||
| * @retval ACL_DT_UNDEFINED if description is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclDataType aclGetTensorDescType(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get data format specified by the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval data format specified by the tensor description. | |||||
| * @retval ACL_FORMAT_UNDEFINED if description is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclFormat aclGetTensorDescFormat(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get tensor size specified by the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval data size specified by the tensor description. | |||||
| * @retval 0 if description is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclGetTensorDescSize(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get element count specified by the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval element count specified by the tensor description. | |||||
| * @retval 0 if description is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclGetTensorDescElementCount(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get number of dims specified by the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval number of dims specified by the tensor description. | |||||
| * @retval 0 if description is null | |||||
| * @retval ACL_UNKNOWN_RANK if the tensor dim is -2 | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclGetTensorDescNumDims(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the size of the specified dim in the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * @param index [IN] index of dims, start from 0. | |||||
| * | |||||
| * @retval dim specified by the tensor description and index. | |||||
| * @retval -1 if description or index is invalid | |||||
| */ | |||||
| ACL_DEPRECATED_MESSAGE("aclGetTensorDescDim is deprecated, use aclGetTensorDescDimV2 instead") | |||||
| ACL_FUNC_VISIBILITY int64_t aclGetTensorDescDim(const aclTensorDesc *desc, size_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the size of the specified dim in the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * @param index [IN] index of dims, start from 0. | |||||
| * @param dimSize [OUT] size of the specified dim. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclGetTensorDescDimV2(const aclTensorDesc *desc, size_t index, int64_t *dimSize); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the range of the specified dim in the tensor description | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * @param index [IN] index of dims, start from 0. | |||||
| * @param dimRangeNum [IN] number of dimRange. | |||||
| * @param dimRange [OUT] range of the specified dim. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclGetTensorDescDimRange(const aclTensorDesc *desc, | |||||
| size_t index, | |||||
| size_t dimRangeNum, | |||||
| int64_t *dimRange); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set tensor description name | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param name [IN] tensor description name | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void aclSetTensorDescName(aclTensorDesc *desc, const char *name); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get tensor description name | |||||
| * | |||||
| * @param desc [IN] pointer to the instance of aclTensorDesc | |||||
| * | |||||
| * @retval tensor description name. | |||||
| * @retval empty string if description is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY const char *aclGetTensorDescName(aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Convert the format in the source aclTensorDesc according to | |||||
| * the specified dstFormat to generate a new target aclTensorDesc. | |||||
| * The format in the source aclTensorDesc remains unchanged. | |||||
| * | |||||
| * @param srcDesc [IN] pointer to the source tensor desc | |||||
| * @param dstFormat [IN] destination format | |||||
| * @param dstDesc [OUT] pointer to the pointer to the destination tensor desc | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclTransTensorDescFormat(const aclTensorDesc *srcDesc, aclFormat dstFormat, | |||||
| aclTensorDesc **dstDesc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the storage format specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param format [IN] the storage format | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_DEPRECATED_MESSAGE("aclSetTensorStorageFormat is deprecated, use aclSetTensorFormat instead") | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorStorageFormat(aclTensorDesc *desc, aclFormat format); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the storage shape specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param numDims [IN] the number of dimensions of the shape | |||||
| * @param dims [IN] the size of the specified dimension | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_DEPRECATED_MESSAGE("aclSetTensorStorageShape is deprecated, use aclSetTensorShape instead") | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorStorageShape(aclTensorDesc *desc, int numDims, const int64_t *dims); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the format specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param format [IN] the storage format | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorFormat(aclTensorDesc *desc, aclFormat format); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the shape specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param numDims [IN] the number of dimensions of the shape | |||||
| * @param dims [IN] the size of the specified dimension | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorShape(aclTensorDesc *desc, int numDims, const int64_t *dims); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the original format specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param format [IN] the storage format | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorOriginFormat(aclTensorDesc *desc, aclFormat format); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the original shape specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param numDims [IN] the number of dimensions of the shape | |||||
| * @param dims [IN] the size of the specified dimension | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorOriginShape(aclTensorDesc *desc, int numDims, const int64_t *dims); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get op description info | |||||
| * | |||||
| * @param desc [IN] pointer to tensor description | |||||
| * @param index [IN] index of tensor | |||||
| * | |||||
| * @retval null for failed. | |||||
| * @retval OtherValues success. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclTensorDesc *aclGetTensorDescByIndex(aclTensorDesc *desc, size_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get address of tensor | |||||
| * | |||||
| * @param desc [IN] pointer to tensor description | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void *aclGetTensorDescAddress(const aclTensorDesc *desc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the dynamic input name specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param dynamicInputName [IN] pointer to the dynamic input name | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorDynamicInput(aclTensorDesc *desc, const char *dynamicInputName); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set const data specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param dataBuffer [IN] pointer to the const databuffer | |||||
| * @param length [IN] the length of const databuffer | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorConst(aclTensorDesc *desc, void *dataBuffer, size_t length); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set tensor memory type specified by the tensor description | |||||
| * | |||||
| * @param desc [OUT] pointer to the instance of aclTensorDesc | |||||
| * @param memType [IN] ACL_MEMTYPE_DEVICE means device, ACL_MEMTYPE_HOST means host | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetTensorPlaceMent(aclTensorDesc *desc, aclMemType memType); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief an interface for users to output APP logs | |||||
| * | |||||
| * @param logLevel [IN] the level of current log | |||||
| * @param func [IN] the function where the log is located | |||||
| * @param file [IN] the file where the log is located | |||||
| * @param line [IN] Number of source lines where the log is located | |||||
| * @param fmt [IN] the format of current log | |||||
| * @param ... [IN] the value of current log | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void aclAppLog(aclLogLevel logLevel, const char *func, const char *file, uint32_t line, | |||||
| const char *fmt, ...); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get soc name | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY const char *aclrtGetSocName(); | |||||
| #define ACL_APP_LOG(level, fmt, ...) \ | |||||
| aclAppLog(level, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__) | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_ACL_BASE_H_ | |||||
| @@ -0,0 +1,549 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_OP_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_OP_H_ | |||||
| #include "acl_base.h" | |||||
| #include "acl_rt.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| typedef struct aclopHandle aclopHandle; | |||||
| typedef struct aclopAttr aclopAttr; | |||||
| typedef struct aclopKernelDesc aclopKernelDesc; | |||||
| typedef void (*aclDataDeallocator)(void *data, size_t length); | |||||
| static const int ACL_COMPILE_FLAG_BIN_SELECTOR = 1; | |||||
| typedef enum aclEngineType { | |||||
| ACL_ENGINE_SYS, | |||||
| ACL_ENGINE_AICORE, | |||||
| ACL_ENGINE_VECTOR, | |||||
| } aclopEngineType; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set base directory that contains single op models | |||||
| * | |||||
| * @par Restriction | |||||
| * The aclopSetModelDir interface can be called only once in a process. | |||||
| * @param modelDir [IN] path of the directory | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetModelDir(const char *modelDir); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief load single op models from memory | |||||
| * | |||||
| * @par Restriction | |||||
| * The aclopLoad interface can be called more than one times in a process. | |||||
| * @param model [IN] address of single op models | |||||
| * @param modelSize [IN] size of single op models | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopLoad(const void *model, size_t modelSize); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create data of type aclopAttr | |||||
| * | |||||
| * @retval pointer to created instance. | |||||
| * @retval nullptr if run out of memory | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclopAttr *aclopCreateAttr(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy data of typ aclopAttr | |||||
| * | |||||
| * @param attr [IN] pointer to the instance of aclopAttr | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void aclopDestroyAttr(const aclopAttr *attr); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is bool | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param attrValue [IN] attribute value | |||||
| * false if attrValue is 0, true otherwise. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrBool(aclopAttr *attr, const char *attrName, uint8_t attrValue); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is int64_t | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param attrValue [IN] attribute value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrInt(aclopAttr *attr, const char *attrName, int64_t attrValue); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is float | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param attrValue [IN] attribute value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrFloat(aclopAttr *attr, const char *attrName, float attrValue); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is string | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param attrValue [IN] attribute value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrString(aclopAttr *attr, const char *attrName, const char *attrValue); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is list of bools | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param numValues [IN] number of values. false if attrValue is 0, true otherwise. | |||||
| * @param values [IN] pointer to values | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrListBool(aclopAttr *attr, const char *attrName, int numValues, | |||||
| const uint8_t *values); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is list of ints | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param numValues [IN] number of values | |||||
| * @param values [IN] pointer to values | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrListInt(aclopAttr *attr, const char *attrName, int numValues, | |||||
| const int64_t *values); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is list of floats | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param numValues [IN] number of values | |||||
| * @param values [IN] pointer to values | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrListFloat(aclopAttr *attr, const char *attrName, int numValues, | |||||
| const float *values); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is list of strings | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param numValues [IN] number of values | |||||
| * @param values [IN] pointer to values | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrListString(aclopAttr *attr, const char *attrName, int numValues, | |||||
| const char **values); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set an attribute. the type of the attribute is list of list of ints | |||||
| * | |||||
| * @param attr [OUT] pointer to the instance of aclopAttr | |||||
| * @param attrName [IN] attribute name | |||||
| * @param numLists [IN] number of lists | |||||
| * @param numValues [IN] pointer to number of values of each list | |||||
| * @param values [IN] pointer to values | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetAttrListListInt(aclopAttr *attr, | |||||
| const char *attrName, | |||||
| int numLists, | |||||
| const int *numValues, | |||||
| const int64_t *const values[]); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Load and execute the specified operator asynchronously | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The input and output organization of each operator is different, | |||||
| * and the application needs to organize the operator strictly | |||||
| * according to the operator input and output parameters when calling. | |||||
| * @li When the user calls aclopExecute, | |||||
| * the ACL finds the corresponding task according to the optype, | |||||
| * the description of the input tesnsor, | |||||
| * the description of the output tesnsor, and attr, and issues the execution. | |||||
| * | |||||
| * @param opType [IN] type of op | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param inputs [IN] pointer to array of input buffers | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param outputs [OUT] pointer to array of output buffers | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_DEPRECATED_MESSAGE("aclopExecute is deprecated, use aclopExecuteV2 instead") | |||||
| ACL_FUNC_VISIBILITY aclError aclopExecute(const char *opType, | |||||
| int numInputs, | |||||
| const aclTensorDesc *const inputDesc[], | |||||
| const aclDataBuffer *const inputs[], | |||||
| int numOutputs, | |||||
| const aclTensorDesc *const outputDesc[], | |||||
| aclDataBuffer *const outputs[], | |||||
| const aclopAttr *attr, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Load and execute the specified operator | |||||
| * The difference with aclopExecute is that aclopExecuteV2 will refresh outputDesc | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The input and output organization of each operator is different, | |||||
| * and the application needs to organize the operator strictly | |||||
| * according to the operator input and output parameters when calling. | |||||
| * @li When the user calls aclopExecuteV2, | |||||
| * the ACL finds the corresponding task according to the optype, | |||||
| * the description of the input tesnsor, | |||||
| * the description of the output tesnsor, and attr, and issues the execution. | |||||
| * | |||||
| * @param opType [IN] type of op | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param inputs [IN] pointer to array of input buffers | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN|OUT] pointer to array of output tensor descriptions | |||||
| * @param outputs [OUT] pointer to array of output buffers | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopExecuteV2(const char *opType, | |||||
| int numInputs, | |||||
| aclTensorDesc *inputDesc[], | |||||
| aclDataBuffer *inputs[], | |||||
| int numOutputs, | |||||
| aclTensorDesc *outputDesc[], | |||||
| aclDataBuffer *outputs[], | |||||
| aclopAttr *attr, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a instance of aclopHandle. | |||||
| * | |||||
| * @param opType [IN] type of op | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param opAttr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCreateHandle(const char *opType, | |||||
| int numInputs, | |||||
| const aclTensorDesc *const inputDesc[], | |||||
| int numOutputs, | |||||
| const aclTensorDesc *const outputDesc[], | |||||
| const aclopAttr *opAttr, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy aclopHandle instance | |||||
| * | |||||
| * @param handle [IN] pointer to the instance of aclopHandle | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void aclopDestroyHandle(aclopHandle *handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief execute an op with the handle. | |||||
| * can save op model matching cost compared with aclopExecute | |||||
| * | |||||
| * @param handle [IN] pointer to the instance of aclopHandle. | |||||
| * The aclopCreateHandle interface has been called | |||||
| * in advance to create aclopHandle type data. | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputs [IN] pointer to array of input buffers. | |||||
| * The aclCreateDataBuffer interface has been called | |||||
| * in advance to create aclDataBuffer type data. | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputs [OUT] pointer to array of output buffers | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclopCreateHandle | aclCreateDataBuffer | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopExecWithHandle(aclopHandle *handle, | |||||
| int numInputs, | |||||
| const aclDataBuffer *const inputs[], | |||||
| int numOutputs, | |||||
| aclDataBuffer *const outputs[], | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief cast data type | |||||
| * | |||||
| * @param srcDesc [IN] source tensor desc | |||||
| * @param srcBuffer [IN] source tensor buffer | |||||
| * @param dstDesc [IN] destination tensor desc | |||||
| * @param dstBuffer [OUT] destination tensor buffer | |||||
| * @param truncate [IN] do not truncate if value is 0, truncate otherwise | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCast(const aclTensorDesc *srcDesc, | |||||
| const aclDataBuffer *srcBuffer, | |||||
| const aclTensorDesc *dstDesc, | |||||
| aclDataBuffer *dstBuffer, | |||||
| uint8_t truncate, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for casting datatype | |||||
| * | |||||
| * @param srcDesc [IN] source tensor desc | |||||
| * @param dstDesc [IN] destination tensor desc | |||||
| * @param truncate [IN] do not truncate if value is 0, truncate otherwise | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCreateHandleForCast(aclTensorDesc *srcDesc, | |||||
| aclTensorDesc *dstDesc, | |||||
| uint8_t truncate, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create kernel | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * @param kernelId [IN] kernel id | |||||
| * @param kernelName [IN] kernel name | |||||
| * @param binData [IN] kernel bin data | |||||
| * @param binSize [IN] kernel bin size | |||||
| * @param enginetype [IN] enigne type | |||||
| * @param deallocator [IN] callback function for deallocating bin data, | |||||
| * null if bin data to be deallocated by caller | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclopCompile | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCreateKernel(const char *opType, | |||||
| const char *kernelId, | |||||
| const char *kernelName, | |||||
| void *binData, | |||||
| int binSize, | |||||
| aclopEngineType enginetype, | |||||
| aclDataDeallocator deallocator); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create kernel | |||||
| * | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param opAttr [IN] pointer to instance of aclopAttr | |||||
| * @param aclopKernelDesc [IN] pointer to instance of aclopKernelDesc | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| typedef aclError (*aclopCompileFunc)(int numInputs, | |||||
| const aclTensorDesc *const inputDesc[], | |||||
| int numOutputs, | |||||
| const aclTensorDesc *const outputDesc[], | |||||
| const aclopAttr *opAttr, | |||||
| aclopKernelDesc *aclopKernelDesc); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief register compile function | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * @param func [IN] compile function | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclopUnregisterCompileFunc | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopRegisterCompileFunc(const char *opType, aclopCompileFunc func); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief unregister compile function | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopUnregisterCompileFunc(const char *opType); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set kernel args | |||||
| * | |||||
| * @param kernelDesc [IN] pointer to instance of aclopKernelDesc | |||||
| * @param kernelId [IN] kernel id | |||||
| * @param blockDim [IN] block dim | |||||
| * @param args [IN] args | |||||
| * @param argSize [IN] size in bytes of args | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetKernelArgs(aclopKernelDesc *kernelDesc, | |||||
| const char *kernelId, | |||||
| uint32_t blockDim, | |||||
| const void *args, | |||||
| uint32_t argSize); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set workspace sizes | |||||
| * | |||||
| * @param kernelDesc [IN] pointer to instance of aclopKernelDesc | |||||
| * @param numWorkspaces [IN] number of workspaces | |||||
| * @param workspaceSizes [IN] pointer to array of sizes of workspaces | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetKernelWorkspaceSizes(aclopKernelDesc *kernelDesc, int numWorkspaces, | |||||
| size_t *workspaceSizes); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief compile op with dynamic shape | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopUpdateParams(const char *opType, | |||||
| int numInputs, | |||||
| const aclTensorDesc *const inputDesc[], | |||||
| int numOutputs, | |||||
| const aclTensorDesc *const outputDesc[], | |||||
| const aclopAttr *attr); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief inferShape the specified operator synchronously | |||||
| * | |||||
| * @param opType [IN] type of op | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param inputs [IN] pointer to array of input buffers | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [OUT] pointer to array of output tensor descriptions | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopInferShape(const char *opType, | |||||
| int numInputs, | |||||
| aclTensorDesc *inputDesc[], | |||||
| aclDataBuffer *inputs[], | |||||
| int numOutputs, | |||||
| aclTensorDesc *outputDesc[], | |||||
| aclopAttr *attr); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_ACL_OP_H_ | |||||
| @@ -0,0 +1,133 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_OP_COMPILER_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_OP_COMPILER_H_ | |||||
| #include "acl_base.h" | |||||
| #include "acl_op.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| typedef enum aclCompileType { | |||||
| ACL_COMPILE_SYS, | |||||
| ACL_COMPILE_UNREGISTERED | |||||
| } aclopCompileType; | |||||
| typedef enum { | |||||
| ACL_PRECISION_MODE, | |||||
| ACL_AICORE_NUM, | |||||
| ACL_AUTO_TUNE_MODE, | |||||
| ACL_OP_SELECT_IMPL_MODE, | |||||
| ACL_OPTYPELIST_FOR_IMPLMODE, | |||||
| ACL_OP_DEBUG_LEVEL, | |||||
| ACL_DEBUG_DIR, | |||||
| ACL_OP_COMPILER_CACHE_MODE, | |||||
| ACL_OP_COMPILER_CACHE_DIR, | |||||
| ACL_OP_PERFORMANCE_MODE | |||||
| } aclCompileOpt; | |||||
| typedef enum aclCompileFlag { | |||||
| ACL_OP_COMPILE_DEFAULT, | |||||
| ACL_OP_COMPILE_FUZZ | |||||
| } aclOpCompileFlag; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief compile op | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * @param engineType [IN] engine type | |||||
| * @param compileFlag [IN] compile flag | |||||
| * @param opPath [IN] path of op | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCompile(const char *opType, | |||||
| int numInputs, | |||||
| const aclTensorDesc *const inputDesc[], | |||||
| int numOutputs, | |||||
| const aclTensorDesc *const outputDesc[], | |||||
| const aclopAttr *attr, | |||||
| aclopEngineType engineType, | |||||
| aclopCompileType compileFlag, | |||||
| const char *opPath); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief compile and execute op | |||||
| * | |||||
| * @param opType [IN] op type | |||||
| * @param numInputs [IN] number of inputs | |||||
| * @param inputDesc [IN] pointer to array of input tensor descriptions | |||||
| * @param inputs [IN] pointer to array of input buffers | |||||
| * @param numOutputs [IN] number of outputs | |||||
| * @param outputDesc [IN] pointer to array of output tensor descriptions | |||||
| * @param outputs [IN] pointer to array of outputs buffers | |||||
| * @param attr [IN] pointer to instance of aclopAttr. | |||||
| * may pass nullptr if the op has no attribute | |||||
| * @param engineType [IN] engine type | |||||
| * @param compileFlag [IN] compile flag | |||||
| * @param opPath [IN] path of op | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopCompileAndExecute(const char *opType, | |||||
| int numInputs, const aclTensorDesc *const inputDesc[], const aclDataBuffer *const inputs[], | |||||
| int numOutputs, const aclTensorDesc *const outputDesc[], aclDataBuffer *const outputs[], | |||||
| const aclopAttr *attr, aclopEngineType engineType, aclopCompileType compileFlag, | |||||
| const char *opPath, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set compile option | |||||
| * | |||||
| * @param aclCompileOpt [IN] compile option | |||||
| * @param value [IN] pointer for the option value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclSetCompileopt(aclCompileOpt opt, const char *value); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set compile flag | |||||
| * | |||||
| * @param flag [IN] compile flag, ACL_OP_COMPILE_DEFAULT means compile with default mode | |||||
| * ACL_OP_COMPILE_FUZZ means compile with fuzz mode | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclopSetCompileFlag(aclOpCompileFlag flag); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_ACL_OP_COMPILER_H_ | |||||
| @@ -0,0 +1,329 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_PROF_H_ | |||||
| #define INC_EXTERNAL_ACL_PROF_H_ | |||||
| #include "acl_base.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| #define ACL_PROF_ACL_API 0x0001 | |||||
| #define ACL_PROF_TASK_TIME 0x0002 | |||||
| #define ACL_PROF_AICORE_METRICS 0x0004 | |||||
| #define ACL_PROF_AICPU 0x0008 | |||||
| /** | |||||
| * @deprecated please use aclprofGetOpTypeLen and aclprofGetOpTNameLen instead | |||||
| */ | |||||
| #define ACL_PROF_MAX_OP_NAME_LEN 257 | |||||
| #define ACL_PROF_MAX_OP_TYPE_LEN 65 | |||||
| typedef enum { | |||||
| ACL_AICORE_ARITHMETIC_UTILIZATION = 0, | |||||
| ACL_AICORE_PIPE_UTILIZATION = 1, | |||||
| ACL_AICORE_MEMORY_BANDWIDTH = 2, | |||||
| ACL_AICORE_L0B_AND_WIDTH = 3, | |||||
| ACL_AICORE_RESOURCE_CONFLICT_RATIO = 4, | |||||
| ACL_AICORE_NONE = 0xFF | |||||
| } aclprofAicoreMetrics; | |||||
| typedef struct aclprofConfig aclprofConfig; | |||||
| typedef struct aclprofStopConfig aclprofStopConfig; | |||||
| typedef struct aclprofAicoreEvents aclprofAicoreEvents; | |||||
| typedef struct aclprofSubscribeConfig aclprofSubscribeConfig; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief profiling initialize | |||||
| * | |||||
| * @param profilerResultPath [IN] path of profiling result | |||||
| * @param length [IN] length of profilerResultPath | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofFinalize | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofInit(const char *profilerResultPath, size_t length); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief profiling finalize | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofInit | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofFinalize(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Start profiling modules by profilerConfig | |||||
| * | |||||
| * @param profilerConfig [IN] config of profiling | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofStop | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofStart(const aclprofConfig *profilerConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create data of type aclprofConfig | |||||
| * | |||||
| * @param deviceIdList [IN] list of device id | |||||
| * @param deviceNums [IN] number of devices | |||||
| * @param aicoreMetrics [IN] type of aicore metrics | |||||
| * @param aicoreEvents [IN] pointer to aicore events, only support NULL now | |||||
| * @param dataTypeConfig [IN] config modules need profiling | |||||
| * | |||||
| * @retval the aclprofConfig pointer | |||||
| * | |||||
| * @see aclprofDestroyConfig | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclprofConfig *aclprofCreateConfig(uint32_t *deviceIdList, uint32_t deviceNums, | |||||
| aclprofAicoreMetrics aicoreMetrics, aclprofAicoreEvents *aicoreEvents, uint64_t dataTypeConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy data of type aclprofConfig | |||||
| * | |||||
| * @param profilerConfig [IN] config of profiling | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofCreateConfig | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofDestroyConfig(const aclprofConfig *profilerConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief stop profiling modules by stopProfilingConfig | |||||
| * | |||||
| * @param profilerConfig [IN] pointer to stop config of profiling | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofStart | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofStop(const aclprofConfig *profilerConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief subscribe profiling data of model | |||||
| * | |||||
| * @param modelId [IN] the model id subscribed | |||||
| * @param profSubscribeConfig [IN] pointer to config of model subscribe | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofModelUnSubscribe | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofModelSubscribe(uint32_t modelId, | |||||
| const aclprofSubscribeConfig *profSubscribeConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief unsubscribe profiling data of model | |||||
| * | |||||
| * @param modelId [IN] the model id unsubscribed | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofModelSubscribe | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofModelUnSubscribe(uint32_t modelId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create subscribe config | |||||
| * | |||||
| * @param timeInfoSwitch [IN] switch whether get time info from model | |||||
| * @param aicoreMetrics [IN] aicore metrics | |||||
| * @param fd [IN] pointer to write pipe | |||||
| * | |||||
| * @retval the aclprofSubscribeConfig pointer | |||||
| * | |||||
| * @see aclprofDestroySubscribeConfig | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclprofSubscribeConfig *aclprofCreateSubscribeConfig(int8_t timeInfoSwitch, | |||||
| aclprofAicoreMetrics aicoreMetrics, void *fd); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy subscribe config | |||||
| * | |||||
| * @param profSubscribeConfig [IN] subscribe config | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclprofCreateSubscribeConfig | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofDestroySubscribeConfig(const aclprofSubscribeConfig *profSubscribeConfig); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create subscribe config | |||||
| * | |||||
| * @param opDescSize [OUT] size of op desc | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpDescSize(size_t *opDescSize); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get op number from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param opNumber [OUT] op number of subscription data | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpNum(const void *opInfo, size_t opInfoLen, uint32_t *opNumber); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get length op type from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * @param opTypeLen [OUT] actual length of op type string | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpTypeLen(const void *opInfo, size_t opInfoLen, uint32_t index, | |||||
| size_t *opTypeLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get op type from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * @param opType [OUT] obtained op type string | |||||
| * @param opTypeLen [IN] obtained length of op type string | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpType(const void *opInfo, size_t opInfoLen, uint32_t index, | |||||
| char *opType, size_t opTypeLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get length op name from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * @param opNameLen [OUT] actual length of op name string | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpNameLen(const void *opInfo, size_t opInfoLen, uint32_t index, | |||||
| size_t *opNameLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get op type from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * @param opName [OUT] obtained op name string | |||||
| * @param opNameLen [IN] obtained length of op name string | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclprofGetOpName(const void *opInfo, size_t opInfoLen, uint32_t index, | |||||
| char *opName, size_t opNameLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get start time of specified op from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * | |||||
| * @retval start time(us) of specified op with timestamp | |||||
| * @retval 0 for failed | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint64_t aclprofGetOpStart(const void *opInfo, size_t opInfoLen, uint32_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get end time of specified op from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * | |||||
| * @retval end time(us) of specified op with timestamp | |||||
| * @retval 0 for failed | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint64_t aclprofGetOpEnd(const void *opInfo, size_t opInfoLen, uint32_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get excution time of specified op from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * @param index [IN] index of op array in opInfo | |||||
| * | |||||
| * @retval execution time(us) of specified op with timestamp | |||||
| * @retval 0 for failed | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint64_t aclprofGetOpDuration(const void *opInfo, size_t opInfoLen, uint32_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get model id from subscription data | |||||
| * | |||||
| * @param opInfo [IN] pointer to subscription data | |||||
| * @param opInfoLen [IN] memory size of subscription data | |||||
| * | |||||
| * @retval model id of subscription data | |||||
| * @retval 0 for failed | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t aclprofGetModelId(const void *opInfo, size_t opInfoLen, uint32_t index); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_PROF_H_ | |||||
| @@ -0,0 +1,976 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_RT_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_RT_H_ | |||||
| #include <stdint.h> | |||||
| #include <stddef.h> | |||||
| #include "acl_base.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| #define ACL_EVENT_TIME_LINE 0x00000008u | |||||
| typedef enum aclrtRunMode { | |||||
| ACL_DEVICE, | |||||
| ACL_HOST, | |||||
| } aclrtRunMode; | |||||
| typedef enum aclrtTsId { | |||||
| ACL_TS_ID_AICORE = 0, | |||||
| ACL_TS_ID_AIVECTOR = 1, | |||||
| ACL_TS_ID_RESERVED = 2, | |||||
| } aclrtTsId; | |||||
| typedef enum aclrtEventStatus { | |||||
| ACL_EVENT_STATUS_COMPLETE = 0, | |||||
| ACL_EVENT_STATUS_NOT_READY = 1, | |||||
| ACL_EVENT_STATUS_RESERVED = 2, | |||||
| } aclrtEventStatus; | |||||
| typedef enum aclrtCallbackBlockType { | |||||
| ACL_CALLBACK_NO_BLOCK, | |||||
| ACL_CALLBACK_BLOCK, | |||||
| } aclrtCallbackBlockType; | |||||
| typedef enum aclrtMemcpyKind { | |||||
| ACL_MEMCPY_HOST_TO_HOST, | |||||
| ACL_MEMCPY_HOST_TO_DEVICE, | |||||
| ACL_MEMCPY_DEVICE_TO_HOST, | |||||
| ACL_MEMCPY_DEVICE_TO_DEVICE, | |||||
| } aclrtMemcpyKind; | |||||
| typedef enum aclrtMemMallocPolicy { | |||||
| ACL_MEM_MALLOC_HUGE_FIRST, | |||||
| ACL_MEM_MALLOC_HUGE_ONLY, | |||||
| ACL_MEM_MALLOC_NORMAL_ONLY, | |||||
| ACL_MEM_MALLOC_HUGE_FIRST_P2P, | |||||
| ACL_MEM_MALLOC_HUGE_ONLY_P2P, | |||||
| ACL_MEM_MALLOC_NORMAL_ONLY_P2P, | |||||
| } aclrtMemMallocPolicy; | |||||
| typedef enum aclrtMemAttr { | |||||
| ACL_DDR_MEM, | |||||
| ACL_HBM_MEM, | |||||
| ACL_DDR_MEM_HUGE, | |||||
| ACL_DDR_MEM_NORMAL, | |||||
| ACL_HBM_MEM_HUGE, | |||||
| ACL_HBM_MEM_NORMAL, | |||||
| ACL_DDR_MEM_P2P_HUGE, | |||||
| ACL_DDR_MEM_P2P_NORMAL, | |||||
| ACL_HBM_MEM_P2P_HUGE, | |||||
| ACL_HBM_MEM_P2P_NORMAL, | |||||
| } aclrtMemAttr; | |||||
| typedef enum aclrtGroupAttr { | |||||
| ACL_GROUP_AICORE_INT, | |||||
| ACL_GROUP_AIV_INT, | |||||
| ACL_GROUP_AIC_INT, | |||||
| ACL_GROUP_SDMANUM_INT, | |||||
| ACL_GROUP_ASQNUM_INT, | |||||
| ACL_GROUP_GROUPID_INT | |||||
| } aclrtGroupAttr; | |||||
| typedef struct tagRtGroupInfo aclrtGroupInfo; | |||||
| typedef struct rtExceptionInfo aclrtExceptionInfo; | |||||
| typedef void (*aclrtCallback)(void *userData); | |||||
| typedef void (*aclrtExceptionInfoCallback)(aclrtExceptionInfo *exceptionInfo); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set a callback function to handle exception information | |||||
| * | |||||
| * @param callback [IN] callback function to handle exception information | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetExceptionInfoCallback(aclrtExceptionInfoCallback callback); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get task id from exception information | |||||
| * | |||||
| * @param info [IN] pointer of exception information | |||||
| * | |||||
| * @retval The task id from exception information | |||||
| * @retval 0xFFFFFFFF if info is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint32_t aclrtGetTaskIdFromExceptionInfo(const aclrtExceptionInfo *info); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get stream id from exception information | |||||
| * | |||||
| * @param info [IN] pointer of exception information | |||||
| * | |||||
| * @retval The stream id from exception information | |||||
| * @retval 0xFFFFFFFF if info is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint32_t aclrtGetStreamIdFromExceptionInfo(const aclrtExceptionInfo *info); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get thread id from exception information | |||||
| * | |||||
| * @param info [IN] pointer of exception information | |||||
| * | |||||
| * @retval The thread id of fail task | |||||
| * @retval 0xFFFFFFFF if info is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint32_t aclrtGetThreadIdFromExceptionInfo(const aclrtExceptionInfo *info); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get device id from exception information | |||||
| * | |||||
| * @param info [IN] pointer of exception information | |||||
| * | |||||
| * @retval The thread id of fail task | |||||
| * @retval 0xFFFFFFFF if info is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY uint32_t aclrtGetDeviceIdFromExceptionInfo(const aclrtExceptionInfo *info); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief The thread that handles the callback function on the Stream | |||||
| * | |||||
| * @param threadId [IN] thread ID | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSubscribeReport(uint64_t threadId, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Add a callback function to be executed on the host | |||||
| * to the task queue of the Stream | |||||
| * | |||||
| * @param fn [IN] Specify the callback function to be added | |||||
| * The function prototype of the callback function is: | |||||
| * typedef void (*aclrtCallback)(void *userData); | |||||
| * @param userData [IN] User data to be passed to the callback function | |||||
| * @param blockType [IN] callback block type | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtLaunchCallback(aclrtCallback fn, void *userData, aclrtCallbackBlockType blockType, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief After waiting for a specified time, trigger callback processing | |||||
| * | |||||
| * @par Function | |||||
| * The thread processing callback specified by | |||||
| * the aclrtSubscribeReport interface | |||||
| * | |||||
| * @param timeout [IN] timeout value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtSubscribeReport | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtProcessReport(int32_t timeout); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Cancel thread registration, | |||||
| * the callback function on the specified Stream | |||||
| * is no longer processed by the specified thread | |||||
| * | |||||
| * @param threadId [IN] thread ID | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtUnSubscribeReport(uint64_t threadId, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create context and associates it with the calling thread | |||||
| * | |||||
| * @par Function | |||||
| * The following use cases are supported: | |||||
| * @li If you don't call the aclrtCreateContext interface | |||||
| * to explicitly create the context, | |||||
| * the system will use the default context, which is implicitly created | |||||
| * when the aclrtSetDevice interface is called. | |||||
| * @li If multiple contexts are created in a process | |||||
| * (there is no limit on the number of contexts), | |||||
| * the current thread can only use one of them at the same time. | |||||
| * It is recommended to explicitly specify the context of the current thread | |||||
| * through the aclrtSetCurrentContext interface to increase. | |||||
| * the maintainability of the program. | |||||
| * | |||||
| * @param context [OUT] point to the created context | |||||
| * @param deviceId [IN] device to create context on | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtSetDevice | aclrtSetCurrentContext | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtCreateContext(aclrtContext *context, int32_t deviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy context instance | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy context created through aclrtCreateContext interface | |||||
| * | |||||
| * @param context [IN] the context to destroy | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateContext | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDestroyContext(aclrtContext context); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set the context of the thread | |||||
| * | |||||
| * @par Function | |||||
| * The following scenarios are supported: | |||||
| * @li If the aclrtCreateContext interface is called in a thread to explicitly | |||||
| * create a Context (for example: ctx1), the thread's Context can be specified | |||||
| * without calling the aclrtSetCurrentContext interface. | |||||
| * The system uses ctx1 as the context of thread1 by default. | |||||
| * @li If the aclrtCreateContext interface is not explicitly created, | |||||
| * the system uses the default context as the context of the thread. | |||||
| * At this time, the aclrtDestroyContext interface cannot be used to release | |||||
| * the default context. | |||||
| * @li If the aclrtSetCurrentContext interface is called multiple times to | |||||
| * set the thread's Context, the last one prevails. | |||||
| * | |||||
| * @par Restriction | |||||
| * @li If the cevice corresponding to the context set for the thread | |||||
| * has been reset, you cannot set the context as the context of the thread, | |||||
| * otherwise a business exception will result. | |||||
| * @li It is recommended to use the context created in a thread. | |||||
| * If the aclrtCreateContext interface is called in thread A to create a context, | |||||
| * and the context is used in thread B, | |||||
| * the user must guarantee the execution order of tasks in the same stream | |||||
| * under the same context in two threads. | |||||
| * | |||||
| * @param context [IN] the current context of the thread | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateContext | aclrtDestroyContext | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetCurrentContext(aclrtContext context); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get the context of the thread | |||||
| * | |||||
| * @par Function | |||||
| * If the user calls the aclrtSetCurrentContext interface | |||||
| * multiple times to set the context of the current thread, | |||||
| * then the last set context is obtained | |||||
| * | |||||
| * @param context [OUT] the current context of the thread | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtSetCurrentContext | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetCurrentContext(aclrtContext *context); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Specify the device to use for the operation | |||||
| * implicitly create the default context and the default stream | |||||
| * | |||||
| * @par Function | |||||
| * The following use cases are supported: | |||||
| * @li Device can be specified in the process or thread. | |||||
| * If you call the aclrtSetDevice interface multiple | |||||
| * times to specify the same device, | |||||
| * you only need to call the aclrtResetDevice interface to reset the device. | |||||
| * @li The same device can be specified for operation | |||||
| * in different processes or threads. | |||||
| * @li Device is specified in a process, | |||||
| * and multiple threads in the process can share this device to explicitly | |||||
| * create a Context (aclrtCreateContext interface). | |||||
| * @li In multi-device scenarios, you can switch to other devices | |||||
| * through the aclrtSetDevice interface in the process. | |||||
| * | |||||
| * @param deviceId [IN] the device id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtResetDevice |aclrtCreateContext | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetDevice(int32_t deviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Reset the current operating Device and free resources on the device, | |||||
| * including the default context, the default stream, | |||||
| * and all streams created under the default context, | |||||
| * and synchronizes the interface. | |||||
| * If the task under the default context or stream has not been completed, | |||||
| * the system will wait for the task to complete before releasing it. | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The Context, Stream, and Event that are explicitly created | |||||
| * on the device to be reset. Before resetting, | |||||
| * it is recommended to follow the following interface calling sequence, | |||||
| * otherwise business abnormalities may be caused. | |||||
| * @li Interface calling sequence: | |||||
| * call aclrtDestroyEvent interface to release Event or | |||||
| * call aclrtDestroyStream interface to release explicitly created Stream-> | |||||
| * call aclrtDestroyContext to release explicitly created Context-> | |||||
| * call aclrtResetDevice interface | |||||
| * | |||||
| * @param deviceId [IN] the device id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtResetDevice(int32_t deviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get target device of current thread | |||||
| * | |||||
| * @param deviceId [OUT] the device id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetDevice(int32_t *deviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get target side | |||||
| * | |||||
| * @param runMode [OUT] the run mode | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetRunMode(aclrtRunMode *runMode); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Wait for compute device to finish | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSynchronizeDevice(void); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set Scheduling TS | |||||
| * | |||||
| * @param tsId [IN] the ts id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetTsDevice(aclrtTsId tsId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get total device number. | |||||
| * | |||||
| * @param count [OUT] the device number | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetDeviceCount(uint32_t *count); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create event instance | |||||
| * | |||||
| * @param event [OUT] created event | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtCreateEvent(aclrtEvent *event); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create event instance with flag | |||||
| * | |||||
| * @param event [OUT] created event | |||||
| * @param flag [IN] event flag | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtCreateEventWithFlag(aclrtEvent *event, uint32_t flag); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy event instance | |||||
| * | |||||
| * @par Function | |||||
| * Only events created through the aclrtCreateEvent interface can be | |||||
| * destroyed, synchronous interfaces. When destroying an event, | |||||
| * the user must ensure that the tasks involved in the aclrtSynchronizeEvent | |||||
| * interface or the aclrtStreamWaitEvent interface are completed before | |||||
| * they are destroyed. | |||||
| * | |||||
| * @param event [IN] event to destroy | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateEvent | aclrtSynchronizeEvent | aclrtStreamWaitEvent | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDestroyEvent(aclrtEvent event); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Record an Event in the Stream | |||||
| * | |||||
| * @param event [IN] event to record | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtRecordEvent(aclrtEvent event, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Reset an event | |||||
| * | |||||
| * @par Function | |||||
| * Users need to make sure to wait for the tasks in the Stream | |||||
| * to complete before resetting the Event | |||||
| * | |||||
| * @param event [IN] event to reset | |||||
| * @param stream [IN] stream handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtResetEvent(aclrtEvent event, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Queries an event's status | |||||
| * | |||||
| * @param event [IN] event to query | |||||
| * @param status [OUT] event status | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtQueryEvent(aclrtEvent event, aclrtEventStatus *status); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Block Host Running, wait event to be complete | |||||
| * | |||||
| * @param event [IN] event to wait | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSynchronizeEvent(aclrtEvent event); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief computes the elapsed time between events. | |||||
| * | |||||
| * @param ms [OUT] time between start and end in ms | |||||
| * @param start [IN] starting event | |||||
| * @param end [IN] ending event | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateEvent | aclrtRecordEvent | aclrtSynchronizeStream | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtEventElapsedTime(float *ms, aclrtEvent start, aclrtEvent end); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief alloc memory on device | |||||
| * | |||||
| * @par Function | |||||
| * alloc for size linear memory on device | |||||
| * and return a pointer to allocated memory by *devPtr | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The memory requested by the aclrtMalloc interface needs to be released | |||||
| * through the aclrtFree interface. | |||||
| * @li Before calling the media data processing interface, | |||||
| * if you need to apply memory on the device to store input or output data, | |||||
| * you need to call acldvppMalloc to apply for memory. | |||||
| * | |||||
| * @param devPtr [OUT] pointer to pointer to allocated memory on device | |||||
| * @param size [IN] alloc memory size | |||||
| * @param policy [IN] memory alloc policy | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtFree | acldvppMalloc | aclrtMallocCached | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMalloc(void **devPtr, | |||||
| size_t size, | |||||
| aclrtMemMallocPolicy policy); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief allocate memory on device with cache | |||||
| * | |||||
| * @par Function | |||||
| * alloc for size linear memory on device | |||||
| * and return a pointer to allocated memory by *devPtr | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The memory requested by the aclrtMallocCached interface needs to be released | |||||
| * through the aclrtFree interface. | |||||
| * | |||||
| * @param devPtr [OUT] pointer to pointer to allocated memory on device | |||||
| * @param size [IN] alloc memory size | |||||
| * @param policy [IN] memory alloc policy | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtFree | aclrtMalloc | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMallocCached(void **devPtr, | |||||
| size_t size, | |||||
| aclrtMemMallocPolicy policy); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief flush cache data to ddr | |||||
| * | |||||
| * @param devPtr [IN] the pointer that flush data to ddr | |||||
| * @param size [IN] flush size | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemFlush(void *devPtr, size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief invalidate cache data | |||||
| * | |||||
| * @param devPtr [IN] pointer to invalidate cache data | |||||
| * @param size [IN] invalidate size | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemInvalidate(void *devPtr, size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief free device memory | |||||
| * | |||||
| * @par Function | |||||
| * can only free memory allocated through the aclrtMalloc interface | |||||
| * | |||||
| * @param devPtr [IN] Pointer to memory to be freed | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtMalloc | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtFree(void *devPtr); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief alloc memory on host | |||||
| * | |||||
| * @par Restriction | |||||
| * @li The requested memory cannot be used in the Device | |||||
| * and needs to be explicitly copied to the Device. | |||||
| * @li The memory requested by the aclrtMallocHost interface | |||||
| * needs to be released through the aclrtFreeHost interface. | |||||
| * | |||||
| * @param hostPtr [OUT] pointer to pointer to allocated memory on the host | |||||
| * @param size [IN] alloc memory size | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtFreeHost | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMallocHost(void **hostPtr, size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief free host memory | |||||
| * | |||||
| * @par Function | |||||
| * can only free memory allocated through the aclrtMallocHost interface | |||||
| * | |||||
| * @param hostPtr [IN] free memory pointer | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtMallocHost | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtFreeHost(void *hostPtr); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief synchronous memory replication between host and device | |||||
| * | |||||
| * @param dst [IN] destination address pointer | |||||
| * @param destMax [IN] Max length of the destination address memory | |||||
| * @param src [IN] source address pointer | |||||
| * @param count [IN] the length of byte to copy | |||||
| * @param kind [IN] memcpy type | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemcpy(void *dst, | |||||
| size_t destMax, | |||||
| const void *src, | |||||
| size_t count, | |||||
| aclrtMemcpyKind kind); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Initialize memory and set contents of memory to specified value | |||||
| * | |||||
| * @par Function | |||||
| * The memory to be initialized is on the Host or device side, | |||||
| * and the system determines whether | |||||
| * it is host or device according to the address | |||||
| * | |||||
| * @param devPtr [IN] Starting address of memory | |||||
| * @param maxCount [IN] Max length of destination address memory | |||||
| * @param value [IN] Set value | |||||
| * @param count [IN] The length of memory | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemset(void *devPtr, size_t maxCount, int32_t value, size_t count); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Asynchronous memory replication between Host and Device | |||||
| * | |||||
| * @par Function | |||||
| * After calling this interface, | |||||
| * be sure to call the aclrtSynchronizeStream interface to ensure that | |||||
| * the task of memory replication has been completed | |||||
| * | |||||
| * @par Restriction | |||||
| * @li For on-chip Device-to-Device memory copy, | |||||
| * both the source and destination addresses must be 64-byte aligned | |||||
| * | |||||
| * @param dst [IN] destination address pointer | |||||
| * @param destMax [IN] Max length of destination address memory | |||||
| * @param src [IN] source address pointer | |||||
| * @param count [IN] the number of byte to copy | |||||
| * @param kind [IN] memcpy type | |||||
| * @param stream [IN] asynchronized task stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtSynchronizeStream | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemcpyAsync(void *dst, | |||||
| size_t destMax, | |||||
| const void *src, | |||||
| size_t count, | |||||
| aclrtMemcpyKind kind, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Asynchronous initialize memory | |||||
| * and set contents of memory to specified value async | |||||
| * | |||||
| * @par Function | |||||
| * The memory to be initialized is on the Host or device side, | |||||
| * and the system determines whether | |||||
| * it is host or device according to the address | |||||
| * | |||||
| * @param devPtr [IN] destination address pointer | |||||
| * @param maxCount [IN] Max length of destination address memory | |||||
| * @param value [IN] set value | |||||
| * @param count [IN] the number of byte to set | |||||
| * @param stream [IN] asynchronized task stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtSynchronizeStream | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtMemsetAsync(void *devPtr, | |||||
| size_t maxCount, | |||||
| int32_t value, | |||||
| size_t count, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create stream instance | |||||
| * | |||||
| * @param stream [OUT] the created stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtCreateStream(aclrtStream *stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy stream instance | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy streams created through the aclrtCreateStream interface | |||||
| * | |||||
| * @par Restriction | |||||
| * Before calling the aclrtDestroyStream interface to destroy | |||||
| * the specified Stream, you need to call the aclrtSynchronizeStream interface | |||||
| * to ensure that the tasks in the Stream have been completed. | |||||
| * | |||||
| * @param stream [IN] the stream to destroy | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateStream | aclrtSynchronizeStream | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDestroyStream(aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief block the host until all tasks | |||||
| * in the specified stream have completed | |||||
| * | |||||
| * @param stream [IN] the stream to wait | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSynchronizeStream(aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Blocks the operation of the specified Stream until | |||||
| * the specified Event is completed. | |||||
| * Support for multiple streams waiting for the same event. | |||||
| * | |||||
| * @param stream [IN] the wait stream If using thedefault Stream, set NULL | |||||
| * @param event [IN] the event to wait | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtStreamWaitEvent(aclrtStream stream, aclrtEvent event); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set group | |||||
| * | |||||
| * @par Function | |||||
| * set the task to the corresponding group | |||||
| * | |||||
| * @param groupId [IN] group id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtGetGroupCount | aclrtGetAllGroupInfo | aclrtGetGroupInfoDetail | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetGroup(int32_t groupId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get the number of group | |||||
| * | |||||
| * @par Function | |||||
| * get the number of group. if the number of group is zero, | |||||
| * it means that group is not supported or group is not created. | |||||
| * | |||||
| * @param count [OUT] the number of group | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetGroupCount(uint32_t *count); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create group information | |||||
| * | |||||
| * @retval null for failed. | |||||
| * @retval OtherValues success. | |||||
| * | |||||
| * @see aclrtDestroyGroupInfo | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclrtGroupInfo *aclrtCreateGroupInfo(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief destroy group information | |||||
| * | |||||
| * @param groupInfo [IN] pointer to group information | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtCreateGroupInfo | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDestroyGroupInfo(aclrtGroupInfo *groupInfo); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get all group information | |||||
| * | |||||
| * @param groupInfo [OUT] pointer to group information | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtGetGroupCount | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetAllGroupInfo(aclrtGroupInfo *groupInfo); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief get detail information of group | |||||
| * | |||||
| * @param groupInfo [IN] pointer to group information | |||||
| * @param groupIndex [IN] group index value | |||||
| * @param attr [IN] group attribute | |||||
| * @param attrValue [OUT] pointer to attribute value | |||||
| * @param valueLen [IN] length of attribute value | |||||
| * @param paramRetSize [OUT] pointer to real length of attribute value | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtGetGroupCount | aclrtGetAllGroupInfo | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetGroupInfoDetail(const aclrtGroupInfo *groupInfo, | |||||
| int32_t groupIndex, | |||||
| aclrtGroupAttr attr, | |||||
| void *attrValue, | |||||
| size_t valueLen, | |||||
| size_t *paramRetSize); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief checking whether current device and peer device support the p2p feature | |||||
| * | |||||
| * @param canAccessPeer [OUT] pointer to save the checking result | |||||
| * @param deviceId [IN] current device id | |||||
| * @param peerDeviceId [IN] peer device id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtDeviceEnablePeerAccess | aclrtDeviceDisablePeerAccess | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDeviceCanAccessPeer(int32_t *canAccessPeer, int32_t deviceId, int32_t peerDeviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief enable the peer device to support the p2p feature | |||||
| * | |||||
| * @param peerDeviceId [IN] the peer device id | |||||
| * @param flags [IN] reserved field, now it must be zero | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtDeviceCanAccessPeer | aclrtDeviceDisablePeerAccess | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDeviceEnablePeerAccess(int32_t peerDeviceId, uint32_t flags); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief disable the peer device to support the p2p function | |||||
| * | |||||
| * @param peerDeviceId [IN] the peer device id | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclrtDeviceCanAccessPeer | aclrtDeviceEnablePeerAccess | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtDeviceDisablePeerAccess(int32_t peerDeviceId); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Obtain the free memory and total memory of specified attribute. | |||||
| * the specified memory include normal memory and huge memory. | |||||
| * | |||||
| * @param attr [IN] the memory attribute of specified device | |||||
| * @param free [OUT] the free memory of specified device | |||||
| * @param total [OUT] the total memory of specified device. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtGetMemInfo(aclrtMemAttr attr, size_t *free, size_t *total); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Set the timeout interval for waitting of op | |||||
| * | |||||
| * @param timeout [IN] op wait timeout | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclrtSetOpWaitTimeout(uint32_t timeout); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_ACL_RT_H_ | |||||
| @@ -0,0 +1,283 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_ACL_TDT_H_ | |||||
| #define INC_EXTERNAL_ACL_ACL_TDT_H_ | |||||
| #include "acl/acl_base.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| enum acltdtTensorType { | |||||
| ACL_TENSOR_DATA_UNDEFINED = -1, | |||||
| ACL_TENSOR_DATA_TENSOR, | |||||
| ACL_TENSOR_DATA_END_OF_SEQUENCE, | |||||
| ACL_TENSOR_DATA_ABNORMAL | |||||
| }; | |||||
| typedef struct acltdtDataItem acltdtDataItem; | |||||
| typedef struct acltdtDataset acltdtDataset; | |||||
| typedef struct acltdtChannelHandle acltdtChannelHandle; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get tensor type from item | |||||
| * | |||||
| * @param dataItem [IN] pointer to the data item | |||||
| * | |||||
| * @retval Tensor type. | |||||
| * @retval ACL_DT_UNDEFINED if dataItem is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY acltdtTensorType acltdtGetTensorTypeFromItem(const acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get data type from item | |||||
| * | |||||
| * @param dataItem [IN] pointer to the data item | |||||
| * | |||||
| * @retval Data type. | |||||
| * @retval ACL_DT_UNDEFINED if dataItem is null | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclDataType acltdtGetDataTypeFromItem(const acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get data address from item | |||||
| * | |||||
| * @param dataItem [IN] pointer to data item | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY void *acltdtGetDataAddrFromItem(const acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get data size from item | |||||
| * | |||||
| * @param dataItem [IN] pointer to data item | |||||
| * | |||||
| * @retval 0 for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t acltdtGetDataSizeFromItem(const acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get dim's number from item | |||||
| * | |||||
| * @param dataItem [IN] pointer to data item | |||||
| * | |||||
| * @retval 0 for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t acltdtGetDimNumFromItem(const acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get dims from item | |||||
| * | |||||
| * @param dataItem [IN] the struct of data item | |||||
| * @param dims [IN|OUT] pointer to the dims of dataTtem | |||||
| * @param dimNum [IN] the size of the dims | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtGetDimsFromItem(const acltdtDataItem *dataItem, int64_t *dims, size_t dimNum); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create the struct of data item | |||||
| * | |||||
| * @param tdtType [IN] Tdt tensor type | |||||
| * @param dims [IN] pointer of tdtDataItem's dims | |||||
| * @param dimNum [IN] Dim number | |||||
| * @param dataType [IN] Data type | |||||
| * @param data [IN] Data pointer | |||||
| * @param size [IN] Data size | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| * | |||||
| * @see acltdtDestroyDataItem | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY acltdtDataItem *acltdtCreateDataItem(acltdtTensorType tdtType, | |||||
| const int64_t *dims, | |||||
| size_t dimNum, | |||||
| aclDataType dataType, | |||||
| void *data, | |||||
| size_t size); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy the struct of data item | |||||
| * | |||||
| * @param dataItem [IN] pointer to the data item | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtCreateDataItem | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtDestroyDataItem(acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create the tdt dataset | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| * | |||||
| * @see acltdtDestroyDataset | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY acltdtDataset *acltdtCreateDataset(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy the tdt dataset | |||||
| * | |||||
| * @param dataset [IN] pointer to the dataset | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtCreateDataset | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtDestroyDataset(acltdtDataset *dataset); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the data item | |||||
| * | |||||
| * @param dataset [IN] pointer to the dataset | |||||
| * @param index [IN] index of the dataset | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| * | |||||
| * @see acltdtAddDataItem | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY acltdtDataItem *acltdtGetDataItem(const acltdtDataset *dataset, size_t index); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the data item | |||||
| * | |||||
| * @param dataset [OUT] pointer to the dataset | |||||
| * @param dataItem [IN] pointer to the data item | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtGetDataItem | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtAddDataItem(acltdtDataset *dataset, acltdtDataItem *dataItem); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Get the size of dataset | |||||
| * | |||||
| * @param dataset [IN] pointer to the dataset | |||||
| * | |||||
| * @retval 0 for failed | |||||
| * @retval OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY size_t acltdtGetDatasetSize(const acltdtDataset *dataset); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Stop the channel | |||||
| * | |||||
| * @param handle [IN] pointer to the channel handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtCreateChannel | acltdtDestroyChannel | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtStopChannel(acltdtChannelHandle *handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create the channel | |||||
| * | |||||
| * @param deviceId [IN] the device id | |||||
| * @param name [IN] the channel's name | |||||
| * | |||||
| * @retval null for failed | |||||
| * @retval OtherValues success | |||||
| * | |||||
| * @see acltdtStopChannel | acltdtDestroyChannel | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY acltdtChannelHandle *acltdtCreateChannel(uint32_t deviceId, const char *name); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy the channel | |||||
| * | |||||
| * @param handle [IN] pointer to the channel handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtCreateChannel | acltdtStopChannel | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtDestroyChannel(acltdtChannelHandle *handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Send tensor to device | |||||
| * | |||||
| * @param handle [IN] pointer to the channel handle | |||||
| * @param dataset [IN] pointer to the dataset | |||||
| * @param timeout [IN] to be reserved, now it must be -1 | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtReceiveTensor | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtSendTensor(const acltdtChannelHandle *handle, | |||||
| const acltdtDataset *dataset, | |||||
| int32_t timeout); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Receive tensor from device | |||||
| * | |||||
| * @param handle [IN] pointer to the channel handle | |||||
| * @param dataset [OUT] pointer to the dataset | |||||
| * @param timeout [IN] to be reserved, now it must be -1 | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see acltdtSendTensor | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError acltdtReceiveTensor(const acltdtChannelHandle *handle, | |||||
| acltdtDataset *dataset, | |||||
| int32_t timeout); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif //INC_EXTERNAL_ACL_ACL_TDT_H_ | |||||
| @@ -0,0 +1,75 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_GE_GE_ERROR_CODES_H_ | |||||
| #define INC_EXTERNAL_GE_GE_ERROR_CODES_H_ | |||||
| #if defined(_MSC_VER) | |||||
| #ifdef FUNC_VISIBILITY | |||||
| #define GE_FUNC_VISIBILITY _declspec(dllexport) | |||||
| #else | |||||
| #define GE_FUNC_VISIBILITY | |||||
| #endif | |||||
| #else | |||||
| #ifdef FUNC_VISIBILITY | |||||
| #define GE_FUNC_VISIBILITY __attribute__((visibility("default"))) | |||||
| #else | |||||
| #define GE_FUNC_VISIBILITY | |||||
| #endif | |||||
| #endif | |||||
| #include <stddef.h> | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| static const uint32_t ACL_ERROR_GE_PARAM_INVALID = 145000; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_NOT_INIT = 145001; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_MODEL_PATH_INVALID = 145002; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_MODEL_ID_INVALID = 145003; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_MODEL_DATA_SIZE_INVALID = 145006; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_MODEL_ADDR_INVALID = 145007; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID = 145008; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_LOAD_MODEL_REPEATED = 145009; | |||||
| static const uint32_t ACL_ERROR_GE_DYNAMIC_INPUT_ADDR_INVALID = 145011; | |||||
| static const uint32_t ACL_ERROR_GE_DYNAMIC_INPUT_LENGTH_INVALID = 145012; | |||||
| static const uint32_t ACL_ERROR_GE_DYNAMIC_BATCH_SIZE_INVALID = 145013; | |||||
| static const uint32_t ACL_ERROR_GE_AIPP_BATCH_EMPTY = 145014; | |||||
| static const uint32_t ACL_ERROR_GE_AIPP_NOT_EXIST = 145015; | |||||
| static const uint32_t ACL_ERROR_GE_AIPP_MODE_INVALID = 145016; | |||||
| static const uint32_t ACL_ERROR_GE_OP_TASK_TYPE_INVALID = 145017; | |||||
| static const uint32_t ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID = 145018; | |||||
| static const uint32_t ACL_ERROR_GE_PLGMGR_PATH_INVALID = 145019; | |||||
| static const uint32_t ACL_ERROR_GE_FORMAT_INVALID = 145020; | |||||
| static const uint32_t ACL_ERROR_GE_SHAPE_INVALID = 145021; | |||||
| static const uint32_t ACL_ERROR_GE_DATATYPE_INVALID = 145022; | |||||
| static const uint32_t ACL_ERROR_GE_MEMORY_ALLOCATION = 245000; | |||||
| static const uint32_t ACL_ERROR_GE_MEMORY_OPERATE_FAILED = 245001; | |||||
| static const uint32_t ACL_ERROR_GE_INTERNAL_ERROR = 545000; | |||||
| static const uint32_t ACL_ERROR_GE_LOAD_MODEL = 545001; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_LOAD_MODEL_PARTITION_FAILED = 545002; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_LOAD_WEIGHT_PARTITION_FAILED = 545003; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_LOAD_TASK_PARTITION_FAILED = 545004; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_LOAD_KERNEL_PARTITION_FAILED = 545005; | |||||
| static const uint32_t ACL_ERROR_GE_EXEC_RELEASE_MODEL_DATA = 545006; | |||||
| static const uint32_t ACL_ERROR_GE_COMMAND_HANDLE = 545007; | |||||
| static const uint32_t ACL_ERROR_GE_GET_TENSOR_INFO = 545008; | |||||
| static const uint32_t ACL_ERROR_GE_UNLOAD_MODEL = 545009; | |||||
| #ifdef __cplusplus | |||||
| } // namespace ge | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_GE_GE_ERROR_CODES_H_ | |||||
| @@ -0,0 +1,106 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| #define __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| #include <stddef.h> | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| static const int32_t ACL_RT_SUCCESS = 0; // success | |||||
| static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid | |||||
| static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id | |||||
| static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null | |||||
| static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context | |||||
| static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context | |||||
| static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model | |||||
| static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid | |||||
| static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal | |||||
| static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned | |||||
| static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed | |||||
| static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed | |||||
| static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream | |||||
| static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread | |||||
| static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set | |||||
| static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create | |||||
| static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream | |||||
| static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type | |||||
| static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle | |||||
| static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type | |||||
| static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support | |||||
| static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error | |||||
| static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error | |||||
| static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow | |||||
| static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device | |||||
| static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail | |||||
| static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission | |||||
| static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource | |||||
| static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource | |||||
| static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource | |||||
| static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource | |||||
| static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error | |||||
| static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error | |||||
| static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream | |||||
| static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream | |||||
| static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete | |||||
| static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence | |||||
| static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete | |||||
| static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error | |||||
| static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error | |||||
| static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support | |||||
| static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat | |||||
| static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed | |||||
| static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout | |||||
| static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error | |||||
| static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout | |||||
| static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception | |||||
| static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception | |||||
| static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout | |||||
| static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception | |||||
| static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error | |||||
| static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error | |||||
| static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error | |||||
| static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error | |||||
| static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering | |||||
| static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init | |||||
| static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate | |||||
| static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed | |||||
| static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed | |||||
| static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context | |||||
| static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out | |||||
| static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_TIMEOUT = 507034; // vector core timeout | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_EXCEPTION = 507035; // vector core exception | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_TRAP_EXCEPTION = 507036; // vector core trap exception | |||||
| static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | |||||
| static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | |||||
| static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| @@ -0,0 +1,431 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_OPS_ACL_CBLAS_H_ | |||||
| #define INC_EXTERNAL_ACL_OPS_ACL_CBLAS_H_ | |||||
| #include "acl/acl.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| typedef enum aclTransType { | |||||
| ACL_TRANS_N, | |||||
| ACL_TRANS_T, | |||||
| ACL_TRANS_NZ, | |||||
| ACL_TRANS_NZ_T | |||||
| } aclTransType; | |||||
| typedef enum aclComputeType { | |||||
| ACL_COMPUTE_HIGH_PRECISION, | |||||
| ACL_COMPUTE_LOW_PRECISION | |||||
| } aclComputeType; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param alpha [IN] pointer to scalar used for multiplication. | |||||
| * of same type as dataTypeC | |||||
| * @param a [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension used to store the matrix A | |||||
| * @param dataTypeA [IN] datatype of matrix A | |||||
| * @param x [IN] pointer to vector x | |||||
| * @param incx [IN] stride between consecutive elements of vector x | |||||
| * @param dataTypeX [IN] datatype of vector x | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * of same type as dataTypeC If beta == 0, | |||||
| * then y does not have to be a valid input | |||||
| * @param y [IN|OUT] pointer to vector y | |||||
| * @param incy [IN] stride between consecutive elements of vector y | |||||
| * @param dataTypeY [IN] datatype of vector y | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasGemvEx(aclTransType transA, int m, int n, | |||||
| const void *alpha, const void *a, int lda, aclDataType dataTypeA, | |||||
| const void *x, int incx, aclDataType dataTypeX, | |||||
| const void *beta, void *y, int incy, aclDataType dataTypeY, | |||||
| aclComputeType type, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param dataTypeA [IN] datatype of matrix A | |||||
| * @param dataTypeX [IN] datatype of vector x | |||||
| * @param dataTypeY [IN] datatype of vector y | |||||
| * @param type [IN] computation type | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemvEx(aclTransType transA, | |||||
| int m, | |||||
| int n, | |||||
| aclDataType dataTypeA, | |||||
| aclDataType dataTypeX, | |||||
| aclDataType dataTypeY, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param alpha [IN] pointer to scalar used for multiplication | |||||
| * @param a [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension used to store the matrix A | |||||
| * @param x [IN] pointer to vector x | |||||
| * @param incx [IN] stride between consecutive elements of vector x | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * If beta value == 0, | |||||
| * then y does not have to be a valid input | |||||
| * @param y [IN|OUT] pointer to vector y | |||||
| * @param incy [IN] stride between consecutive elements of vector y | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasHgemv(aclTransType transA, | |||||
| int m, | |||||
| int n, | |||||
| const aclFloat16 *alpha, | |||||
| const aclFloat16 *a, | |||||
| int lda, | |||||
| const aclFloat16 *x, | |||||
| int incx, | |||||
| const aclFloat16 *beta, | |||||
| aclFloat16 *y, | |||||
| int incy, | |||||
| aclComputeType type, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param type [IN] computation type | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemv(aclTransType transA, | |||||
| int m, | |||||
| int n, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param alpha [IN] pointer to scalar used for multiplication | |||||
| * @param a [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension used to store the matrix A | |||||
| * @param x [IN] pointer to vector x | |||||
| * @param incx [IN] stride between consecutive elements of vector x | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * If beta value == 0, | |||||
| * then y does not have to be a valid input | |||||
| * @param y [IN|OUT] pointer to vector y | |||||
| * @param incy [IN] stride between consecutive elements of vector y | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasS8gemv(aclTransType transA, | |||||
| int m, | |||||
| int n, | |||||
| const int32_t *alpha, | |||||
| const int8_t *a, | |||||
| int lda, | |||||
| const int8_t *x, | |||||
| int incx, | |||||
| const int32_t *beta, | |||||
| int32_t *y, | |||||
| int incy, | |||||
| aclComputeType type, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-vector multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param m [IN] number of rows of matrix A | |||||
| * @param n [IN] number of columns of matrix A | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * @param type [IN] computation type | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemv(aclTransType transA, | |||||
| int m, | |||||
| int n, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param alpha [IN] pointer to scalar used for multiplication. of same type as dataTypeC | |||||
| * @param matrixA [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension array used to store matrix A | |||||
| * @param dataTypeA [IN] datatype of matrix A | |||||
| * @param matrixB [IN] pointer to matrix B | |||||
| * @param ldb [IN] leading dimension array used to store matrix B | |||||
| * @param dataTypeB [IN] datatype of matrix B | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * of same type as dataTypeC If beta == 0, | |||||
| * then matrixC does not have to be a valid input | |||||
| * @param matrixC [IN|OUT] pointer to matrix C | |||||
| * @param ldc [IN] leading dimension array used to store matrix C | |||||
| * @param dataTypeC [IN] datatype of matrix C | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasGemmEx(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| const void *alpha, | |||||
| const void *matrixA, | |||||
| int lda, | |||||
| aclDataType dataTypeA, | |||||
| const void *matrixB, | |||||
| int ldb, | |||||
| aclDataType dataTypeB, | |||||
| const void *beta, | |||||
| void *matrixC, | |||||
| int ldc, | |||||
| aclDataType dataTypeC, | |||||
| aclComputeType type, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param dataTypeA [IN] datatype of matrix A | |||||
| * @param dataTypeB [IN] datatype of matrix B | |||||
| * @param dataTypeC [IN] datatype of matrix C | |||||
| * @param type [IN] computation type | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * @param type [IN] computation type | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForGemmEx(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| aclDataType dataTypeA, | |||||
| aclDataType dataTypeB, | |||||
| aclDataType dataTypeC, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param alpha [IN] pointer to scalar used for multiplication | |||||
| * @param matrixA [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension used to store the matrix A | |||||
| * @param matrixB [IN] pointer to matrix B | |||||
| * @param ldb [IN] leading dimension used to store the matrix B | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * If beta value == 0, | |||||
| * then matrixC does not have to be a valid input | |||||
| * @param matrixC [IN|OUT] pointer to matrix C | |||||
| * @param ldc [IN] leading dimension used to store the matrix C | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasHgemm(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| const aclFloat16 *alpha, | |||||
| const aclFloat16 *matrixA, | |||||
| int lda, | |||||
| const aclFloat16 *matrixB, | |||||
| int ldb, | |||||
| const aclFloat16 *beta, | |||||
| aclFloat16 *matrixC, | |||||
| int ldc, | |||||
| aclComputeType type, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param type [IN] computation type | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForHgemm(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief perform the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param alpha [IN] pointer to scalar used for multiplication | |||||
| * @param matrixA [IN] pointer to matrix A | |||||
| * @param lda [IN] leading dimension used to store the matrix A | |||||
| * @param matrixB [IN] pointer to matrix B | |||||
| * @param ldb [IN] leading dimension used to store the matrix B | |||||
| * @param beta [IN] pointer to scalar used for multiplication. | |||||
| * If beta value == 0, | |||||
| * then matrixC does not have to be a valid input | |||||
| * @param matrixC [IN|OUT] pointer to matrix C | |||||
| * @param ldc [IN] leading dimension used to store the matrix C | |||||
| * @param type [IN] computation type | |||||
| * @param stream [IN] stream | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasS8gemm(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| const int32_t *alpha, | |||||
| const int8_t *matrixA, | |||||
| int lda, | |||||
| const int8_t *matrixB, | |||||
| int ldb, | |||||
| const int32_t *beta, | |||||
| int32_t *matrixC, | |||||
| int ldc, | |||||
| aclComputeType type, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief create a handle for performing the matrix-matrix multiplication | |||||
| * | |||||
| * @param transA [IN] transpose type of matrix A | |||||
| * @param transB [IN] transpose type of matrix B | |||||
| * @param transC [IN] transpose type of matrix C | |||||
| * @param m [IN] number of rows of matrix A and matrix C | |||||
| * @param n [IN] number of columns of matrix B and matrix C | |||||
| * @param k [IN] number of columns of matrix A and rows of matrix B | |||||
| * @param type [IN] computation type | |||||
| * @param handle [OUT] pointer to the pointer to the handle | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclblasCreateHandleForS8gemm(aclTransType transA, | |||||
| aclTransType transB, | |||||
| aclTransType transC, | |||||
| int m, | |||||
| int n, | |||||
| int k, | |||||
| aclComputeType type, | |||||
| aclopHandle **handle); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_OPS_ACL_CBLAS_H_ | |||||
| @@ -0,0 +1,351 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef INC_EXTERNAL_ACL_OPS_ACL_RETR_H_ | |||||
| #define INC_EXTERNAL_ACL_OPS_ACL_RETR_H_ | |||||
| #include "acl/acl.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| typedef struct aclfvInitPara aclfvInitPara; | |||||
| typedef struct aclfvFeatureInfo aclfvFeatureInfo; | |||||
| typedef struct aclfvRepoRange aclfvRepoRange; | |||||
| typedef struct aclfvQueryTable aclfvQueryTable; | |||||
| typedef struct aclfvSearchInput aclfvSearchInput; | |||||
| typedef struct aclfvSearchResult aclfvSearchResult; | |||||
| // search operation type | |||||
| enum aclfvSearchType { | |||||
| SEARCH_1_N, // 1:N operation type | |||||
| SEARCH_N_M // N:M operation type | |||||
| }; | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create fv init param. | |||||
| * | |||||
| * @param fsNum [IN] The feature num | |||||
| * | |||||
| * @retval null for failed. | |||||
| * @retval OtherValues success. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvInitPara *aclfvCreateInitPara(uint64_t fsNum); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy fv init param. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy fv init param information created | |||||
| * through aclfvCreateInitPara interface. | |||||
| * | |||||
| * @param initPara [IN] fv init param. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateInitPara | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroyInitPara(aclfvInitPara *initPara); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set value for maxTopNumFor1N which in fv init param. | |||||
| * | |||||
| * @param initPara [IN|OUT] fv init param. | |||||
| * @param maxTopNumFor1N [IN] maxTopNumFor1N value for init param. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvSet1NTopNum(aclfvInitPara *initPara, uint32_t maxTopNumFor1N); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief set value for maxTopNumForNM which in fv init param. | |||||
| * | |||||
| * @param initPara [IN|OUT] fv init param. | |||||
| * @param maxTopNumForNM [IN] maxTopNumForNM value for init param. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvSetNMTopNum(aclfvInitPara *initPara, uint32_t maxTopNumForNM); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create fv feature info. | |||||
| * | |||||
| * @param id0 [IN] The first level library id0 | |||||
| * @param id1 [IN] Secondary library id1 | |||||
| * @param offset [IN] The offset of the first feature in the library | |||||
| * @param featureLen [IN] Single feature length | |||||
| * @param featureCount [IN] Single feature count | |||||
| * @param featureData [IN] Feature value list | |||||
| * @param featureDataLen [IN] Feature value list length | |||||
| * | |||||
| * @retval null for failed. | |||||
| * @retval OtherValues success. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvFeatureInfo *aclfvCreateFeatureInfo(uint32_t id0, uint32_t id1, uint32_t offset, | |||||
| uint32_t featureLen, uint32_t featureCount, uint8_t *featureData, uint32_t featureDataLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy fv feature info. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy fv feature info information created | |||||
| * through aclfvCreateFeatureInfo interface. | |||||
| * | |||||
| * @param featureInfo [IN] fv feature info. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateFeatureInfo | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroyFeatureInfo(aclfvFeatureInfo *featureInfo); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create fv repo range. | |||||
| * | |||||
| * @param id0Min [IN] id0 start value | |||||
| * @param id0Min [IN] id0 max | |||||
| * @param id1Min [IN] id0 start value | |||||
| * @param id1Max [IN] id1 max | |||||
| * | |||||
| * @retval null for failed. OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvRepoRange *aclfvCreateRepoRange(uint32_t id0Min, uint32_t id0Max, uint32_t id1Min, | |||||
| uint32_t id1Max); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy fv repo range. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy fv repo range information created | |||||
| * through aclfvCreateRepoRange interface. | |||||
| * | |||||
| * @param repoRange [IN] fv repo range. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateRepoRange | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroyRepoRange(aclfvRepoRange *repoRange); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create query table. | |||||
| * | |||||
| * @param queryCnt [IN] Number of tables, the maximum number is 6 | |||||
| * @param tableLen [IN] Single table length, table length is 32KB | |||||
| * @param tableData [IN] Feature value list | |||||
| * @param tableDataLen [IN] The length of memory requested by the featureData pointer | |||||
| * | |||||
| * @retval null for failed. OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvQueryTable *aclfvCreateQueryTable(uint32_t queryCnt, uint32_t tableLen, uint8_t *tableData, | |||||
| uint32_t tableDataLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy query table. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy query table information created | |||||
| * through aclfvCreateQueryTable interface. | |||||
| * | |||||
| * @param queryTable [IN] query table. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateQueryTable | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroyQueryTable(aclfvQueryTable *queryTable); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create search input. | |||||
| * | |||||
| * @param queryTable [IN] query table | |||||
| * @param repoRange [IN] query repo range | |||||
| * @param topk [IN] query topk | |||||
| * | |||||
| * @retval null for failed. OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvSearchInput *aclfvCreateSearchInput(aclfvQueryTable *queryTable, aclfvRepoRange *repoRange, | |||||
| uint32_t topk); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy search input. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy search input information created | |||||
| * through aclfvCreateSearchInput interface. | |||||
| * | |||||
| * @param searchInput [IN] search input. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateSearchInput | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroySearchInput(aclfvSearchInput *searchInput); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Create search result. | |||||
| * | |||||
| * @param queryCnt [IN] Retrieve the number of features | |||||
| * @param resultNum [IN] The number of search results for each feature, the number is queryCnt | |||||
| * @param resultNumDataLen [IN] resultNum memory length | |||||
| * @param id0 [IN] Level 1 library id0 | |||||
| * @param id1 [IN] Secondary library id1 | |||||
| * @param resultOffset [IN] The offset of the bottom library corresponding | |||||
| * to each feature retrieval result, total length topK * queryCnt | |||||
| * @param resultDistance [IN] Distance, total length topK * queryCnt | |||||
| * @param dataLen [IN] The memory size requested by | |||||
| * id0\id1\reslutOffset\resultDistance | |||||
| * | |||||
| * @retval null for failed. OtherValues success | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclfvSearchResult *aclfvCreateSearchResult(uint32_t queryCnt, uint32_t *resultNum, | |||||
| uint32_t resultNumDataLen, uint32_t *id0, uint32_t *id1, uint32_t *resultOffset, float *resultDistance, | |||||
| uint32_t dataLen); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief Destroy search result. | |||||
| * | |||||
| * @par Function | |||||
| * Can only destroy search result information created | |||||
| * through aclfvCreateSearchResult interface. | |||||
| * | |||||
| * @param searchResult [IN] search result. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure | |||||
| * | |||||
| * @see aclfvCreateSearchResult | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDestroySearchResult(aclfvSearchResult *searchResult); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv IP initialize. | |||||
| * | |||||
| * @param initPara [IN] fv init param. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvInit(aclfvInitPara *initPara); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief release fv resources. | |||||
| * | |||||
| * @par Function | |||||
| * Can only release fv resources created | |||||
| * through aclfvInit interface. | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| * | |||||
| * @see aclfvInit | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvRelease(); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv repo add. | |||||
| * | |||||
| * @param type [IN] repo add type | |||||
| * @param featureInfo [IN] add feature information | |||||
| * @param stream [IN] stream of task execute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvRepoAdd(aclfvSearchType type, aclfvFeatureInfo *featureInfo, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv repo del. | |||||
| * | |||||
| * @param type [IN] repo delete type | |||||
| * @param repoRange [IN] repo range information | |||||
| * @param stream [IN] stream of task execute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvRepoDel(aclfvSearchType type, aclfvRepoRange *repoRange, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv accurate del. | |||||
| * | |||||
| * @param featureInfo [IN] accurate delete feature information | |||||
| * @param stream [IN] stream of task execute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvDel(aclfvFeatureInfo *featureInfo, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv accurate modify. | |||||
| * | |||||
| * @param featureInfo [IN] accurate modify feature information | |||||
| * @param stream [IN] stream of task execute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvModify(aclfvFeatureInfo *featureInfo, aclrtStream stream); | |||||
| /** | |||||
| * @ingroup AscendCL | |||||
| * @brief fv search. | |||||
| * | |||||
| * @param type [IN] search type | |||||
| * @param searchInput [IN] search input | |||||
| * @param searchRst [OUT] search result | |||||
| * @param stream [IN] stream of task execute | |||||
| * | |||||
| * @retval ACL_SUCCESS The function is successfully executed. | |||||
| * @retval OtherValues Failure. | |||||
| */ | |||||
| ACL_FUNC_VISIBILITY aclError aclfvSearch(aclfvSearchType type, aclfvSearchInput *searchInput, | |||||
| aclfvSearchResult *searchRst, aclrtStream stream); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // INC_EXTERNAL_ACL_OPS_ACL_RETR_H_ | |||||
| @@ -0,0 +1,158 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| /** | |||||
| * @file hccl.h | |||||
| * @brief HCCL API | |||||
| */ | |||||
| #ifndef HCCL_H_ | |||||
| #define HCCL_H_ | |||||
| #include <hccl/hccl_types.h> | |||||
| #include <acl/acl.h> | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif // __cplusplus | |||||
| /** | |||||
| * @brief Initialize HCCL. | |||||
| * | |||||
| * @param clusterInfo A string identifying the cluster info file path, include file name. | |||||
| * @param rank A integer identifying the identify for the rank. | |||||
| * @param comm A pointer identifying the initialized communication resource. | |||||
| * @return HcclResult | |||||
| * @see HcclCommDestroy() | |||||
| */ | |||||
| extern HcclResult HcclCommInitClusterInfo(const char *clusterInfo, uint32_t rank, HcclComm *comm); | |||||
| /** | |||||
| * @brief Get hccl root info. | |||||
| * | |||||
| * @param rootInfo A pointer identifying the hccl root info. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclGetRootInfo(HcclRootInfo *rootInfo); | |||||
| /** | |||||
| * @brief Initialize HCCL with root info. | |||||
| * | |||||
| * @param nRanks A integer identifying the rank size of the cluster. | |||||
| * @param rootInfo A struct identifying the hccl root info. | |||||
| * @param rank A integer identifying the identify for the rank. | |||||
| * @param comm A pointer identifying the initialized communication resource. | |||||
| * @return HcclResult | |||||
| * @see HcclCommDestroy() | |||||
| */ | |||||
| extern HcclResult HcclCommInitRootInfo(uint32_t nRanks, const HcclRootInfo *rootInfo, uint32_t rank, HcclComm *comm); | |||||
| /** | |||||
| * @brief AllReduce operator. | |||||
| * | |||||
| * @param sendBuf A pointer identifying the input data address of the operator. | |||||
| * @param recvBuf A pointer identifying the output data address of the operator. | |||||
| * @param count An integer(u64) identifying the number of the output data. | |||||
| * @param dataType The data type of the operator, must be one of the following types: int8, int16, int32, float16, float32. | |||||
| * @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod. | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param stream A pointer identifying the stream information. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclAllReduce(void *sendBuf, void *recvBuf, uint64_t count, HcclDataType dataType, | |||||
| HcclReduceOp op, HcclComm comm, aclrtStream stream); | |||||
| /** | |||||
| * @brief Broadcast operator. | |||||
| * | |||||
| * @param buf A pointer identifying the data address of the operator. | |||||
| * @param count An integer(u64) identifying the number of the data. | |||||
| * @param dataType The data type of the operator, must be one of the following types: int8, int32, float16, float32. | |||||
| * @param root An integer(u32) identifying the the root rank in the operator. | |||||
| * @param comm A pointer identifying the communication resource based on | |||||
| * @param stream A pointer identifying the stream information. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclBroadcast(void *buf, uint64_t count, HcclDataType dataType, uint32_t root, HcclComm comm, | |||||
| aclrtStream stream); | |||||
| /** | |||||
| * @brief ReduceScatter operator. | |||||
| * | |||||
| * @param sendBuf A pointer identifying the input data address of the operator. | |||||
| * @param recvBuf A pointer identifying the output data address of the operator. | |||||
| * @param recvCount An integer(u64) identifying the number of the output data. | |||||
| * @param dataType The data type of the operator, must be one of the following types: int8, int32, float16, float32. | |||||
| * @param op The reduction type of the operator, must be one of the following types: sum, min, max, prod. | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param stream A pointer identifying the stream information. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclReduceScatter(void *sendBuf, void *recvBuf, uint64_t recvCount, HcclDataType dataType, | |||||
| HcclReduceOp op, HcclComm comm, aclrtStream stream); | |||||
| /** | |||||
| * @brief AllGather operator. | |||||
| * | |||||
| * @param sendBuf A pointer identifying the input data address of the operator. | |||||
| * @param recvBuf A pointer identifying the output data address of the operator. | |||||
| * @param sendCount An integer(u64) identifying the number of the input data. | |||||
| * @param dataType The data type of the operator, must be one of the following types: int8, int32, float16, float32. | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param stream A pointer identifying the stream information. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclAllGather(void *sendBuf, void *recvBuf, uint64_t sendCount, HcclDataType dataType, | |||||
| HcclComm comm, aclrtStream stream); | |||||
| /** | |||||
| * @brief Get the rank size of this comm. | |||||
| * | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param rankSize A pointer identifying the rank size. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclGetRankSize(HcclComm comm, uint32_t *rankSize); | |||||
| /** | |||||
| * @brief Get the rank id of this comm. | |||||
| * | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param rankSize A pointer identifying the rank id. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclGetRankId(HcclComm comm, uint32_t *rank); | |||||
| /** | |||||
| * @brief Barrier operator. | |||||
| * | |||||
| * @param comm A pointer identifying the communication resource based on. | |||||
| * @param stream A pointer identifying the stream information. | |||||
| * @return HcclResult | |||||
| */ | |||||
| extern HcclResult HcclBarrier(HcclComm comm, aclrtStream stream); | |||||
| /** | |||||
| * @brief Destroy HCCL comm | |||||
| * | |||||
| * @param comm A pointer identifying the communication resource targetting | |||||
| * @return HcclResult | |||||
| * @see HcclCommInitClusterInfo() | |||||
| */ | |||||
| extern HcclResult HcclCommDestroy(HcclComm comm); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif // __cplusplus | |||||
| #endif // HCCL_H_ | |||||
| @@ -0,0 +1,106 @@ | |||||
| /** | |||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| #define __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| #include <stddef.h> | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| static const int32_t ACL_RT_SUCCESS = 0; // success | |||||
| static const int32_t ACL_ERROR_RT_PARAM_INVALID = 107000; // param invalid | |||||
| static const int32_t ACL_ERROR_RT_INVALID_DEVICEID = 107001; // invalid device id | |||||
| static const int32_t ACL_ERROR_RT_CONTEXT_NULL = 107002; // current context null | |||||
| static const int32_t ACL_ERROR_RT_STREAM_CONTEXT = 107003; // stream not in current context | |||||
| static const int32_t ACL_ERROR_RT_MODEL_CONTEXT = 107004; // model not in current context | |||||
| static const int32_t ACL_ERROR_RT_STREAM_MODEL = 107005; // stream not in model | |||||
| static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_INVALID = 107006; // event timestamp invalid | |||||
| static const int32_t ACL_ERROR_RT_EVENT_TIMESTAMP_REVERSAL = 107007; // event timestamp reversal | |||||
| static const int32_t ACL_ERROR_RT_ADDR_UNALIGNED = 107008; // memory address unaligned | |||||
| static const int32_t ACL_ERROR_RT_FILE_OPEN = 107009; // open file failed | |||||
| static const int32_t ACL_ERROR_RT_FILE_WRITE = 107010; // write file failed | |||||
| static const int32_t ACL_ERROR_RT_STREAM_SUBSCRIBE = 107011; // error subscribe stream | |||||
| static const int32_t ACL_ERROR_RT_THREAD_SUBSCRIBE = 107012; // error subscribe thread | |||||
| static const int32_t ACL_ERROR_RT_GROUP_NOT_SET = 107013; // group not set | |||||
| static const int32_t ACL_ERROR_RT_GROUP_NOT_CREATE = 107014; // group not create | |||||
| static const int32_t ACL_ERROR_RT_STREAM_NO_CB_REG = 107015; // callback not register to stream | |||||
| static const int32_t ACL_ERROR_RT_INVALID_MEMORY_TYPE = 107016; // invalid memory type | |||||
| static const int32_t ACL_ERROR_RT_INVALID_HANDLE = 107017; // invalid handle | |||||
| static const int32_t ACL_ERROR_RT_INVALID_MALLOC_TYPE = 107018; // invalid malloc type | |||||
| static const int32_t ACL_ERROR_RT_FEATURE_NOT_SUPPORT = 207000; // feature not support | |||||
| static const int32_t ACL_ERROR_RT_MEMORY_ALLOCATION = 207001; // memory allocation error | |||||
| static const int32_t ACL_ERROR_RT_MEMORY_FREE = 207002; // memory free error | |||||
| static const int32_t ACL_ERROR_RT_AICORE_OVER_FLOW = 207003; // aicore over flow | |||||
| static const int32_t ACL_ERROR_RT_NO_DEVICE = 207004; // no device | |||||
| static const int32_t ACL_ERROR_RT_RESOURCE_ALLOC_FAIL = 207005; // resource alloc fail | |||||
| static const int32_t ACL_ERROR_RT_NO_PERMISSION = 207006; // no permission | |||||
| static const int32_t ACL_ERROR_RT_NO_EVENT_RESOURCE = 207007; // no event resource | |||||
| static const int32_t ACL_ERROR_RT_NO_STREAM_RESOURCE = 207008; // no stream resource | |||||
| static const int32_t ACL_ERROR_RT_NO_NOTIFY_RESOURCE = 207009; // no notify resource | |||||
| static const int32_t ACL_ERROR_RT_NO_MODEL_RESOURCE = 207010; // no model resource | |||||
| static const int32_t ACL_ERROR_RT_INTERNAL_ERROR = 507000; // runtime internal error | |||||
| static const int32_t ACL_ERROR_RT_TS_ERROR = 507001; // ts internel error | |||||
| static const int32_t ACL_ERROR_RT_STREAM_TASK_FULL = 507002; // task full in stream | |||||
| static const int32_t ACL_ERROR_RT_STREAM_TASK_EMPTY = 507003; // task empty in stream | |||||
| static const int32_t ACL_ERROR_RT_STREAM_NOT_COMPLETE = 507004; // stream not complete | |||||
| static const int32_t ACL_ERROR_RT_END_OF_SEQUENCE = 507005; // end of sequence | |||||
| static const int32_t ACL_ERROR_RT_EVENT_NOT_COMPLETE = 507006; // event not complete | |||||
| static const int32_t ACL_ERROR_RT_CONTEXT_RELEASE_ERROR = 507007; // context release error | |||||
| static const int32_t ACL_ERROR_RT_SOC_VERSION = 507008; // soc version error | |||||
| static const int32_t ACL_ERROR_RT_TASK_TYPE_NOT_SUPPORT = 507009; // task type not support | |||||
| static const int32_t ACL_ERROR_RT_LOST_HEARTBEAT = 507010; // ts lost heartbeat | |||||
| static const int32_t ACL_ERROR_RT_MODEL_EXECUTE = 507011; // model execute failed | |||||
| static const int32_t ACL_ERROR_RT_REPORT_TIMEOUT = 507012; // report timeout | |||||
| static const int32_t ACL_ERROR_RT_SYS_DMA = 507013; // sys dma error | |||||
| static const int32_t ACL_ERROR_RT_AICORE_TIMEOUT = 507014; // aicore timeout | |||||
| static const int32_t ACL_ERROR_RT_AICORE_EXCEPTION = 507015; // aicore exception | |||||
| static const int32_t ACL_ERROR_RT_AICORE_TRAP_EXCEPTION = 507016; // aicore trap exception | |||||
| static const int32_t ACL_ERROR_RT_AICPU_TIMEOUT = 507017; // aicpu timeout | |||||
| static const int32_t ACL_ERROR_RT_AICPU_EXCEPTION = 507018; // aicpu exception | |||||
| static const int32_t ACL_ERROR_RT_AICPU_DATADUMP_RSP_ERR = 507019; // aicpu datadump response error | |||||
| static const int32_t ACL_ERROR_RT_AICPU_MODEL_RSP_ERR = 507020; // aicpu model operate response error | |||||
| static const int32_t ACL_ERROR_RT_PROFILING_ERROR = 507021; // profiling error | |||||
| static const int32_t ACL_ERROR_RT_IPC_ERROR = 507022; // ipc error | |||||
| static const int32_t ACL_ERROR_RT_MODEL_ABORT_NORMAL = 507023; // model abort normal | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_UNREGISTERING = 507024; // kernel unregistering | |||||
| static const int32_t ACL_ERROR_RT_RINGBUFFER_NOT_INIT = 507025; // ringbuffer not init | |||||
| static const int32_t ACL_ERROR_RT_RINGBUFFER_NO_DATA = 507026; // ringbuffer no data | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_LOOKUP = 507027; // kernel lookup error | |||||
| static const int32_t ACL_ERROR_RT_KERNEL_DUPLICATE = 507028; // kernel register duplicate | |||||
| static const int32_t ACL_ERROR_RT_DEBUG_REGISTER_FAIL = 507029; // debug register failed | |||||
| static const int32_t ACL_ERROR_RT_DEBUG_UNREGISTER_FAIL = 507030; // debug unregister failed | |||||
| static const int32_t ACL_ERROR_RT_LABEL_CONTEXT = 507031; // label not in current context | |||||
| static const int32_t ACL_ERROR_RT_PROGRAM_USE_OUT = 507032; // program register num use out | |||||
| static const int32_t ACL_ERROR_RT_DEV_SETUP_ERROR = 507033; // device setup error | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_TIMEOUT = 507034; // vector core timeout | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_EXCEPTION = 507035; // vector core exception | |||||
| static const int32_t ACL_ERROR_RT_VECTOR_CORE_TRAP_EXCEPTION = 507036; // vector core trap exception | |||||
| static const int32_t ACL_ERROR_RT_DRV_INTERNAL_ERROR = 507899; // drv internal error | |||||
| static const int32_t ACL_ERROR_RT_AICPU_INTERNAL_ERROR = 507900; // aicpu internal error | |||||
| static const int32_t ACL_ERROR_RT_SOCKET_CLOSE = 507901; // hdc disconnect | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // __INC_EXTERNEL_RT_ERROR_CODES_H__ | |||||
| @@ -271,13 +271,14 @@ class FusionEndTaskInfo : public TaskInfo { | |||||
| class HcclTaskInfo : public TaskInfo { | class HcclTaskInfo : public TaskInfo { | ||||
| public: | public: | ||||
| HcclTaskInfo(const std::string &op_name, uint32_t stream_id, const std::string hccl_type, void *input_data_addr, | HcclTaskInfo(const std::string &op_name, uint32_t stream_id, const std::string hccl_type, void *input_data_addr, | ||||
| void *output_data_addr, int64_t workspace_size, int64_t hccl_stream_num, | |||||
| void *output_data_addr, void *workspace_addr, int64_t workspace_size, int64_t hccl_stream_num, | |||||
| const std::vector<uint8_t> &private_def, void *ops_kernel_store, int32_t count, int64_t root_id, | const std::vector<uint8_t> &private_def, void *ops_kernel_store, int32_t count, int64_t root_id, | ||||
| int64_t op_type, int64_t data_type, const std::string &group, bool dump_flag) | int64_t op_type, int64_t data_type, const std::string &group, bool dump_flag) | ||||
| : TaskInfo(op_name, stream_id, TaskInfoType::HCCL, dump_flag), | : TaskInfo(op_name, stream_id, TaskInfoType::HCCL, dump_flag), | ||||
| hccl_type_(hccl_type), | hccl_type_(hccl_type), | ||||
| input_data_addr_(input_data_addr), | input_data_addr_(input_data_addr), | ||||
| output_data_addr_(output_data_addr), | output_data_addr_(output_data_addr), | ||||
| workspace_addr_(workspace_addr), | |||||
| workspace_size_(workspace_size), | workspace_size_(workspace_size), | ||||
| hccl_stream_num_(hccl_stream_num), | hccl_stream_num_(hccl_stream_num), | ||||
| private_def_(private_def), | private_def_(private_def), | ||||
| @@ -292,6 +293,7 @@ class HcclTaskInfo : public TaskInfo { | |||||
| const std::string &hccl_type() const { return hccl_type_; } | const std::string &hccl_type() const { return hccl_type_; } | ||||
| void *input_data_addr() const { return input_data_addr_; } | void *input_data_addr() const { return input_data_addr_; } | ||||
| void *output_data_addr() const { return output_data_addr_; } | void *output_data_addr() const { return output_data_addr_; } | ||||
| void *workspace_addr() const { return workspace_addr_; } | |||||
| int64_t workspace_size() const { return workspace_size_; } | int64_t workspace_size() const { return workspace_size_; } | ||||
| int64_t hccl_stream_num() const { return hccl_stream_num_; } | int64_t hccl_stream_num() const { return hccl_stream_num_; } | ||||
| const std::vector<uint8_t> &private_def() const { return private_def_; } | const std::vector<uint8_t> &private_def() const { return private_def_; } | ||||
| @@ -306,6 +308,7 @@ class HcclTaskInfo : public TaskInfo { | |||||
| std::string hccl_type_; | std::string hccl_type_; | ||||
| void *input_data_addr_; | void *input_data_addr_; | ||||
| void *output_data_addr_; | void *output_data_addr_; | ||||
| void *workspace_addr_; | |||||
| int64_t workspace_size_; | int64_t workspace_size_; | ||||
| int64_t hccl_stream_num_; | int64_t hccl_stream_num_; | ||||
| std::vector<uint8_t> private_def_; | std::vector<uint8_t> private_def_; | ||||
| @@ -1 +1 @@ | |||||
| Subproject commit b27915cd37919430a61953f8998b7acce4a60177 | |||||
| Subproject commit 00c0c12eede6c7bce93a1eda5f0bb437ae80a7ec | |||||
| @@ -56,6 +56,7 @@ | |||||
| #include <dirent.h> | #include <dirent.h> | ||||
| #include <getopt.h> | #include <getopt.h> | ||||
| #include <libgen.h> | #include <libgen.h> | ||||
| #include <malloc.h> | |||||
| #include <linux/types.h> | #include <linux/types.h> | ||||
| #include <linux/hdreg.h> | #include <linux/hdreg.h> | ||||
| @@ -550,6 +550,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||||
| MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | ||||
| MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | ||||
| MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | ||||
| MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||||
| MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||||
| MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||||
| #define MMPA_DLL_API | #define MMPA_DLL_API | ||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| @@ -557,6 +557,10 @@ MMPA_FUNC_VISIBILITY mmFileHandle mmShmOpen(const CHAR *name, INT32 oflag, mmMod | |||||
| MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | MMPA_FUNC_VISIBILITY INT32 mmShmUnlink(const CHAR *name); | ||||
| MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | MMPA_FUNC_VISIBILITY VOID *mmMmap(mmFd_t fd, mmSize_t size, mmOfft_t offset, mmFd_t *extra, INT32 prot, INT32 flags); | ||||
| MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | MMPA_FUNC_VISIBILITY INT32 mmMunMap(VOID *data, mmSize_t size, mmFd_t *extra); | ||||
| MMPA_FUNC_VISIBILITY mmSize mmGetPageSize(); | |||||
| MMPA_FUNC_VISIBILITY VOID *mmAlignMalloc(mmSize mallocSize, mmSize alignSize); | |||||
| MMPA_FUNC_VISIBILITY VOID mmAlignFree(VOID *addr); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| #if __cplusplus | #if __cplusplus | ||||
| } | } | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -65,6 +65,8 @@ in aipp config file, framework will auto add one input node to graph at last. \n | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with the TensorFlow operator AippData. | *Compatible with the TensorFlow operator AippData. | ||||
| *@par Restrictions: | |||||
| *Warning: This operator can be integrated only by configuring INSERT_OP_FILE of aclgrphBuildModel. Please do not use it directly. | |||||
| */ | */ | ||||
| REG_OP(AippData) | REG_OP(AippData) | ||||
| .INPUT(data, TensorType::ALL()) | .INPUT(data, TensorType::ALL()) | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -39,6 +39,7 @@ | |||||
| #include "image_ops.h" | #include "image_ops.h" | ||||
| #include "internal_ops.h" | #include "internal_ops.h" | ||||
| #include "linalg_ops.h" | #include "linalg_ops.h" | ||||
| #include "list_ops.h" | |||||
| #include "logging_ops.h" | #include "logging_ops.h" | ||||
| #include "lookup_ops.h" | #include "lookup_ops.h" | ||||
| #include "math_ops.h" | #include "math_ops.h" | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1153,6 +1153,102 @@ REG_OP(EditDistance) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT})) | .OUTPUT(output, TensorType({DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(EditDistance) | .OP_END_FACTORY_REG(EditDistance) | ||||
| /** | |||||
| * @brief sort_v2. | |||||
| * @par Inputs: | |||||
| * @li x: An ND tensor of type float16. | |||||
| * @par Attributes: | |||||
| * @li axis: An optional int. The dimension to sort along. This value defaults to -1. | |||||
| * @li descending: An optional bool. Controls the sorting order (ascending or descending). This value defaults to False. | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor of type float16. | |||||
| * @attention Constraints: | |||||
| * @li Axis should select the last dim. | |||||
| * @li When the sorting data is less than 150K, it is recommended to use this tbe ops, | |||||
| and the descending performance is better than the ascending. | |||||
| * @li The upper limit of data on Ascend910 is 2000K. | |||||
| */ | |||||
| REG_OP(SortV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(axis, Int, -1) | |||||
| .ATTR(descending, Bool, false) | |||||
| .OP_END_FACTORY_REG(SortV2) | |||||
| /** | |||||
| * @brief Expand the input tensor to a compatible shape. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32, int32, int8 ,uint8. \n | |||||
| * @li shape: A Tensor to specify the shape that the input tensor expanded to. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x", and the shape specified by input and attr shape \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator Expand. | |||||
| */ | |||||
| REG_OP(Expand) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .INPUT(shape, TensorType({DT_INT16, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .OP_END_FACTORY_REG(Expand) | |||||
| /** | |||||
| *@Returns a tensor containing the indices of all non-zero elements of input. \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be one of the following types: float16, float32, int32, int64. | |||||
| *@par Attributes: | |||||
| * transpose: the output tensor will be transposed if true. \n | |||||
| *@par Outputs: | |||||
| * y: A Tensor. Has the same type as "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the PyTorch operator NonZero. | |||||
| */ | |||||
| REG_OP(NonZero) | |||||
| .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16, DT_INT8, DT_UINT8, DT_INT16, \ | |||||
| DT_UINT16, DT_INT32, DT_UINT32, DT_INT64, DT_UINT64, DT_BOOL})) | |||||
| .OUTPUT(y, TensorType({DT_INT64})) | |||||
| .ATTR(transpose, Bool, false) | |||||
| .OP_END_FACTORY_REG(NonZero) | |||||
| /** | |||||
| * @brief Expand the input tensor to a compatible shape. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32, int32, int8 ,uint8. \n | |||||
| * @par Attributes: | |||||
| * @li shape: A required listInt to specify the shape that the input tensor expanded to. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x", and the shape specified by input and attr shape \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator Expand. | |||||
| */ | |||||
| REG_OP(ExpandD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .REQUIRED_ATTR(shape, ListInt) | |||||
| .OP_END_FACTORY_REG(ExpandD) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_ARRAY_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_ARRAY_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -0,0 +1,58 @@ | |||||
| /** | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| /*! | |||||
| * \file avg_pool_1d_ops.h | |||||
| * \brief | |||||
| */ | |||||
| #ifndef OPS_BUILT_IN_OP_PROTO_INC_AVGPOOL1DOPS_H_ | |||||
| #define OPS_BUILT_IN_OP_PROTO_INC_AVGPOOL1DOPS_H_ | |||||
| #include "graph/operator_reg.h" | |||||
| namespace ge { | |||||
| /** | |||||
| *@brief Generate an auxiliary matrix . \n | |||||
| *@par Inputs: | |||||
| * @li x: A tensor. Must be one of the following types:uint8, int8,int16, int32, | |||||
| int64, float16, float, double.The format must be NHWC NCHW NC1HWC0. | |||||
| *@par Attributes: | |||||
| *@li ksize: Kernel size. Input type is int. | |||||
| *@li strides: Input type is int. | |||||
| *@li pads: Input type is listInt . | |||||
| *@li ceil_mode: Bool, default value is false. | |||||
| *@li count_include_pad: Bool, default value is false. \n | |||||
| *@par Outputs: | |||||
| *y_tensor: A tensor with the same types as "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the TensorFlow operator Unbatch. | |||||
| */ | |||||
| REG_OP(AvgPool1DAvgMatrix) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT8, | |||||
| DT_INT32, DT_INT64, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT8, | |||||
| DT_INT32, DT_INT64, DT_DOUBLE})) | |||||
| .REQUIRED_ATTR(ksize, Int) | |||||
| .REQUIRED_ATTR(strides, Int) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(count_include_pad, Bool, false) | |||||
| .OP_END_FACTORY_REG(AvgPool1DAvgMatrix) | |||||
| } | |||||
| #endif | |||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -64,10 +64,10 @@ the same types as "x_tensors" . It's a dynamic output. \n | |||||
| REG_OP(Batch) | REG_OP(Batch) | ||||
| .DYNAMIC_INPUT(x_tensors, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, \ | .DYNAMIC_INPUT(x_tensors, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, \ | ||||
| DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE})) | DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE})) | ||||
| .OUTPUT(y_index, TensorType({ DT_INT64 })) | |||||
| .OUTPUT(y_id, TensorType({ DT_INT64 })) | |||||
| .DYNAMIC_OUTPUT(y_tensors, TensorType({DT_INT8, DT_UINT8, DT_INT16, \ | .DYNAMIC_OUTPUT(y_tensors, TensorType({DT_INT8, DT_UINT8, DT_INT16, \ | ||||
| DT_UINT16, DT_INT32, DT_INT64, DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_BOOL})) | DT_UINT16, DT_INT32, DT_INT64, DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_BOOL})) | ||||
| .OUTPUT(y_index, TensorType({ DT_INT64 })) | |||||
| .OUTPUT(y_id, TensorType({ DT_INT64 })) | |||||
| .REQUIRED_ATTR(num_batch_threads, Int) | .REQUIRED_ATTR(num_batch_threads, Int) | ||||
| .REQUIRED_ATTR(max_batch_size, Int) | .REQUIRED_ATTR(max_batch_size, Int) | ||||
| .ATTR(max_enqueued_batches, Int, 10) | .ATTR(max_enqueued_batches, Int, 10) | ||||
| @@ -107,11 +107,13 @@ across multiple sessions . \n | |||||
| REG_OP(Unbatch) | REG_OP(Unbatch) | ||||
| .INPUT(x_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | .INPUT(x_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | ||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE})) | |||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE, DT_FLOAT16, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(index, TensorType({DT_INT64})) | .INPUT(index, TensorType({DT_INT64})) | ||||
| .INPUT(id, TensorType({DT_INT64})) | .INPUT(id, TensorType({DT_INT64})) | ||||
| .OUTPUT(y_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | .OUTPUT(y_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | ||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE})) | |||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE, DT_FLOAT16, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .REQUIRED_ATTR(timeout_micros, Int) | .REQUIRED_ATTR(timeout_micros, Int) | ||||
| .ATTR(container, String, "") | .ATTR(container, String, "") | ||||
| .ATTR(shared_name, String, "") | .ATTR(shared_name, String, "") | ||||
| @@ -146,13 +148,16 @@ across multiple sessions . \n | |||||
| REG_OP(UnbatchGrad) | REG_OP(UnbatchGrad) | ||||
| .INPUT(x_input, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | .INPUT(x_input, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | ||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE})) | |||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE, DT_FLOAT16, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(index, TensorType({DT_INT64})) | .INPUT(index, TensorType({DT_INT64})) | ||||
| .INPUT(grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | .INPUT(grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | ||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE})) | |||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE, DT_FLOAT16, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(id, TensorType({DT_INT64})) | .INPUT(id, TensorType({DT_INT64})) | ||||
| .OUTPUT(y_grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | .OUTPUT(y_grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \ | ||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE})) | |||||
| DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE, DT_FLOAT16, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(container, String, "") | .ATTR(container, String, "") | ||||
| .ATTR(shared_name, String, "") | .ATTR(shared_name, String, "") | ||||
| .OP_END_FACTORY_REG(UnbatchGrad) | .OP_END_FACTORY_REG(UnbatchGrad) | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -387,12 +387,12 @@ REG_OP(ControlTrigger) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li x: One dimensional tensore of type int32, specifying queried shape, max size is 8. | |||||
| *@li data_seq: One dimensional tensore of type int32, specifying the mapped table is queried. | |||||
| *@li level_index: One dimensional tensore of type int32, specifying secondary index. \n | |||||
| *@li x: One dimensional tensor of type int32, specifying queried shape, max size is 128. | |||||
| *@li data_seq: One dimensional tensor of type int32, specifying the mapped table is queried. | |||||
| *@li level_index: One dimensional tensor of type int32, specifying secondary index. \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *@li y: A Tensor with shape [batch, 8], of type int32, specifying index of shape in the map. | |||||
| *@li y: A Tensor with shape [8], of type int32, specifying index of shape in the map. | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| @@ -0,0 +1,52 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| /*! | |||||
| * \file correlation.h | |||||
| * \brief | |||||
| */ | |||||
| #ifndef GE_OP_CORRELATION_OPS_H | |||||
| #define GE_OP_CORRELATION_OPS_H | |||||
| #include "graph/operator_reg.h" | |||||
| namespace ge { | |||||
| /** | |||||
| *@brief Computes a 2D Correlation given 4D "x" and "filter" tensors. | |||||
| * | |||||
| *@par Inputs: | |||||
| * @li filter: A 4D tensor of filters. | |||||
| * @li x: A 4D tensor of input images, batch number must equal to batch | |||||
| * number of "filter", and channel must equal to channel of "filter". | |||||
| * | |||||
| *@par Attributes: | |||||
| * @li groups: set correlation mode, must be 1 or channel. | |||||
| * | |||||
| *@par Outputs: | |||||
| *y: A Tensor. Has the same type as "x". | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with caffe correlation custom operator. | |||||
| */ | |||||
| REG_OP(Correlation) | |||||
| .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_INT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32})) | |||||
| .ATTR(groups, Int, 1) | |||||
| .OP_END_FACTORY_REG(Correlation) | |||||
| } // namespace ge | |||||
| #endif // GE_OP_NN_CALCULATION_OPS_H | |||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -137,6 +137,87 @@ REG_OP(CTCBeamSearchDecoder) | |||||
| .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | ||||
| .OP_END_FACTORY_REG(CTCBeamSearchDecoder) | .OP_END_FACTORY_REG(CTCBeamSearchDecoder) | ||||
| /** | |||||
| *@brief The Connectionist Temporal Classification loss. | |||||
| *@par Inputs: | |||||
| *@li log_probs: Tensor of size (T, N, C), where T =input length, N =batch size, | |||||
| and C = number of classes (including blank). | |||||
| It represent the logarithmized probabilities of the outputs. | |||||
| *@li targets: Tensor of size (N, S), where S= max target length. | |||||
| It represent the target sequences. | |||||
| *@li input_lengths: Tuple or tensor of size (N). It represent the lengths of the inputs. | |||||
| *@li target_lengths: Tuple or tensor of size (N). It represent lengths of the targets. | |||||
| *@par Outputs: | |||||
| *@li neg_log_likelihood: A loss value which is differentiable with respect to each input node. | |||||
| *@li log_alpha: The probability of possible trace of input to target. | |||||
| *@par Attributes: | |||||
| *@li blank : Blank label. Default 0. | |||||
| *@li reduction: Specifies the reduction to apply to the output. Default: 'mean'. | |||||
| *@li zero_infinity : Whether to zero infinite losses and the associated gradients. | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with Pytorch CTCLoss operator. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(CTCLossV2) | |||||
| .INPUT(log_probs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(targets, TensorType({DT_INT32, DT_INT64})) | |||||
| .INPUT(input_lengths, TensorType({DT_INT32, DT_INT64})) | |||||
| .INPUT(target_lengths, TensorType({DT_INT32, DT_INT64})) | |||||
| .OUTPUT(neg_log_likelihood, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(log_alpha, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(blank, Int, 0) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .ATTR(zero_infinity, Bool, false) | |||||
| .OP_END_FACTORY_REG(CTCLossV2) | |||||
| /** | |||||
| *@brief The Connectionist Temporal Classification loss grad. | |||||
| *@par Inputs: | |||||
| *@li grad_out: Gradient renewal coefficient. Tensor of size (N), where N = batch size. | |||||
| *@li log_probs: Tensor of size (T, N, C), where T =input length, N =batch size, | |||||
| and C = number of classes (including blank). | |||||
| It represent the logarithmized probabilities of the outputs. | |||||
| *@li targets: Tensor of size (N, S), where S= max target length. | |||||
| It represent the target sequences. | |||||
| *@li input_lengths: Tuple or tensor of size (N). It represent the lengths of the inputs. | |||||
| *@li target_lengths: Tuple or tensor of size (N). It represent lengths of the targets. | |||||
| *@li neg_log_likelihood: A loss value which is differentiable with respect to each input node. | |||||
| *@li log_alpha: The probability of possible trace of input to target. | |||||
| *@par Outputs: | |||||
| *@li grad: Tensor of size (T, N, C), The grad of Connectionist Temporal Classification loss. | |||||
| *@par Attributes: | |||||
| *@li blank : Blank label. Default 0. | |||||
| *@li reduction: Specifies the reduction to apply to the output. Default: 'mean'. | |||||
| *@li zero_infinity : Whether to zero infinite losses and the associated gradients. | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with Pytorch CTCLoss operator. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(CTCLossV2Grad) | |||||
| .INPUT(grad_out, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(log_probs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(targets, TensorType({DT_INT32, DT_INT64})) | |||||
| .INPUT(input_lengths, TensorType({DT_INT32, DT_INT64})) | |||||
| .INPUT(target_lengths, TensorType({DT_INT32, DT_INT64})) | |||||
| .INPUT(neg_log_likelihood, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(log_alpha, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(grad, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(blank, Int, 0) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .ATTR(zero_infinity, Bool, false) | |||||
| .OP_END_FACTORY_REG(CTCLossV2Grad) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_CTC_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_CTC_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -908,7 +908,7 @@ REG_OP(TensorArray) | |||||
| .OUTPUT(handle, TensorType({DT_RESOURCE})) | .OUTPUT(handle, TensorType({DT_RESOURCE})) | ||||
| .OUTPUT(flow, TensorType({DT_FLOAT})) | .OUTPUT(flow, TensorType({DT_FLOAT})) | ||||
| .REQUIRED_ATTR(dtype, Type) | .REQUIRED_ATTR(dtype, Type) | ||||
| .ATTR(element_shape, ListInt, ge::UNKNOWN_SHAPE) | |||||
| .ATTR(element_shape, ListInt, ge::UNKNOWN_RANK) | |||||
| .ATTR(dynamic_size, Bool, false) | .ATTR(dynamic_size, Bool, false) | ||||
| .ATTR(clear_after_read, Bool, true) | .ATTR(clear_after_read, Bool, true) | ||||
| .ATTR(identical_element_shapes, Bool, false) | .ATTR(identical_element_shapes, Bool, false) | ||||
| @@ -963,7 +963,7 @@ REG_OP(TensorArrayConcat) | |||||
| DT_QUINT8, DT_QINT32})) | DT_QUINT8, DT_QINT32})) | ||||
| .OUTPUT(lengths, TensorType({DT_INT64})) | .OUTPUT(lengths, TensorType({DT_INT64})) | ||||
| .REQUIRED_ATTR(dtype, Type) | .REQUIRED_ATTR(dtype, Type) | ||||
| .ATTR(element_shape_except0, ListInt, ge::UNKNOWN_SHAPE) | |||||
| .ATTR(element_shape_except0, ListInt, ge::UNKNOWN_RANK) | |||||
| .OP_END_FACTORY_REG(TensorArrayConcat) | .OP_END_FACTORY_REG(TensorArrayConcat) | ||||
| /** | /** | ||||
| @@ -999,7 +999,7 @@ REG_OP(TensorArrayGather) | |||||
| DT_STRING, DT_COMPLEX64, DT_COMPLEX128, DT_QINT8, | DT_STRING, DT_COMPLEX64, DT_COMPLEX128, DT_QINT8, | ||||
| DT_QUINT8, DT_QINT32})) | DT_QUINT8, DT_QINT32})) | ||||
| .REQUIRED_ATTR(dtype, Type) | .REQUIRED_ATTR(dtype, Type) | ||||
| .ATTR(element_shape, ListInt, ge::UNKNOWN_SHAPE) | |||||
| .ATTR(element_shape, ListInt, ge::UNKNOWN_RANK) | |||||
| .OP_END_FACTORY_REG(TensorArrayGather) | .OP_END_FACTORY_REG(TensorArrayGather) | ||||
| /** | /** | ||||
| @@ -1430,6 +1430,24 @@ REG_OP(OrderedMapClear) | |||||
| .ATTR(shared_name, String, "") | .ATTR(shared_name, String, "") | ||||
| .OP_END_FACTORY_REG(OrderedMapClear) | .OP_END_FACTORY_REG(OrderedMapClear) | ||||
| /** | |||||
| *@brief FakeQueue, support tf api FixedLengthRecordReader. \n | |||||
| *@par Inputs: | |||||
| *Including: | |||||
| * @li resource: A Tensor of type DT_RESOURCE. | |||||
| *@par Outputs: | |||||
| *handle: A Tensor of type DT_STRING ref. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the TensorFlow operator FakeQueue. | |||||
| */ | |||||
| REG_OP(FakeQueue) | |||||
| .INPUT(resource, TensorType({DT_RESOURCE})) | |||||
| .OUTPUT(handle, TensorType({DT_STRING})) | |||||
| .OP_END_FACTORY_REG(FakeQueue) | |||||
| /** | /** | ||||
| *@brief Returns the number of incomplete elements in the underlying container. \n | *@brief Returns the number of incomplete elements in the underlying container. \n | ||||
| @@ -2258,6 +2276,7 @@ REG_OP(LruCache) | |||||
| .ATTR(shared_name, String, "LruCache") | .ATTR(shared_name, String, "LruCache") | ||||
| .ATTR(cache_size, Int, 100000) | .ATTR(cache_size, Int, 100000) | ||||
| .ATTR(load_factor, Float, 1) | .ATTR(load_factor, Float, 1) | ||||
| .REQUIRED_ATTR(dtype, Type) | |||||
| .OP_END_FACTORY_REG(LruCache) | .OP_END_FACTORY_REG(LruCache) | ||||
| /** | /** | ||||
| @@ -2277,9 +2296,9 @@ REG_OP(CacheAdd) | |||||
| .INPUT(cache, TensorType({DT_RESOURCE})) | .INPUT(cache, TensorType({DT_RESOURCE})) | ||||
| .INPUT(ids, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | .INPUT(ids, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | ||||
| .OUTPUT(swap_in_id, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | .OUTPUT(swap_in_id, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | ||||
| .OUTPUT(swap_in_idx, TensorType({DT_INT64})) | |||||
| .OUTPUT(swap_in_idx, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | |||||
| .OUTPUT(swap_out_id, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | .OUTPUT(swap_out_id, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | ||||
| .OUTPUT(swap_out_idx, TensorType({DT_INT64})) | |||||
| .OUTPUT(swap_out_idx, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | |||||
| .OP_END_FACTORY_REG(CacheAdd) | .OP_END_FACTORY_REG(CacheAdd) | ||||
| /** | /** | ||||
| @@ -2295,9 +2314,47 @@ REG_OP(CacheAdd) | |||||
| REG_OP(CacheRemoteIndexToLocal) | REG_OP(CacheRemoteIndexToLocal) | ||||
| .INPUT(cache, TensorType({DT_RESOURCE})) | .INPUT(cache, TensorType({DT_RESOURCE})) | ||||
| .INPUT(ids, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | .INPUT(ids, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | ||||
| .OUTPUT(local_idx, TensorType({DT_INT64})) | |||||
| .OUTPUT(local_idx, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | |||||
| .OP_END_FACTORY_REG(CacheRemoteIndexToLocal) | .OP_END_FACTORY_REG(CacheRemoteIndexToLocal) | ||||
| /** | |||||
| *@brief CacheAllToLocalIndex, get id in cache | |||||
| *@par Inputs: | |||||
| *cache: resource data | |||||
| *local_idx: id in cache. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(CacheAllIndexToLocal) | |||||
| .INPUT(cache, TensorType({DT_RESOURCE})) | |||||
| .OUTPUT(local_idx, TensorType({DT_INT64, DT_INT32, DT_UINT64, DT_UINT32})) | |||||
| .REQUIRED_ATTR(dtype, Type) | |||||
| .OP_END_FACTORY_REG(CacheAllIndexToLocal) | |||||
| /** | |||||
| *@brief DynamicGetNext, dynamic get next data | |||||
| *@par Inputs: | |||||
| *x: the iterator, all types are available | |||||
| *@par Outputs: | |||||
| *y: the date in iterator, all types are available | |||||
| *@par Attributes: | |||||
| *output_types: types of all outputs | |||||
| *output_shapes: shapes of all outputs | |||||
| *_dynamic_graph_execute_mode: dynamic graph execution mode, | |||||
| value is one of lazy_recompile and dynamic_execute | |||||
| *_getnext_inputs_shape_range: shape ranges of outputs, | |||||
| it works where _dynamic_graph_execute_mode is dynamic_execute | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DynamicGetNext) | |||||
| .INPUT(x, TensorType::ALL()) | |||||
| .DYNAMIC_OUTPUT(y, TensorType::ALL()) | |||||
| .ATTR(output_types, ListType, {}) | |||||
| .ATTR(output_shapes, ListListInt, {{}, {}}) | |||||
| .ATTR(_dynamic_graph_execute_mode, String, "lazy_recompile") | |||||
| .ATTR(_getnext_inputs_shape_range, String, "") | |||||
| .OP_END_FACTORY_REG(DynamicGetNext) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_DATA_FLOW_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_DATA_FLOW_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -28,10 +28,13 @@ namespace ge { | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Dynamic inputs, including: | *Dynamic inputs, including: | ||||
| * @li x: A list of Tensor objects, each with same shape and type. The supported types are: | |||||
| *x: A list of Tensor objects, each with same shape and type. The supported types are: | |||||
| * float16, float32, double, int32, uint8, int16, int8, complex64, int64, | * float16, float32, double, int32, uint8, int16, int8, complex64, int64, | ||||
| * qint8, quint8, qint32, uint16, complex128, uint32, uint64. It's a dynamic input. \n | * qint8, quint8, qint32, uint16, complex128, uint32, uint64. It's a dynamic input. \n | ||||
| *@par Attributes: | |||||
| *N: An required attribute of type int32, means nums of inputs. \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same shape and type as the elements of "x". \n | *y: A Tensor. Has the same shape and type as the elements of "x". \n | ||||
| @@ -122,7 +125,8 @@ REG_OP(MinimumGrad) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *One input: | *One input: | ||||
| *x:A Tensor. Must be one of the following types: bool, float16, float, int8, int32, uint32, uint8, | *x:A Tensor. Must be one of the following types: bool, float16, float, int8, int32, uint32, uint8, | ||||
| int64, uint64, int16, uint16, double, complex64, complex128, qint8, quint8, qint16, quint16, qint32. \n | |||||
| int64, uint64, int16, uint16, double, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
| For float32 type, the actual calculation on the chip is based on float16. \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *dst_type: An required attribute of type int32, specifying the dst data type. \n | *dst_type: An required attribute of type int32, specifying the dst data type. \n | ||||
| @@ -142,6 +146,8 @@ REG_OP(Cast) | |||||
| /** | /** | ||||
| *@brief Returns the truth value of (x1 >= x2) element-wise. \n | *@brief Returns the truth value of (x1 >= x2) element-wise. \n | ||||
| *when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
| *aicore accuracy is not guaranteed \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Two inputs, including: | *Two inputs, including: | ||||
| @@ -163,6 +169,8 @@ REG_OP(GreaterEqual) | |||||
| /** | /** | ||||
| *@brief Returns the truth value of (x1 < x2) element-wise. \n | *@brief Returns the truth value of (x1 < x2) element-wise. \n | ||||
| *when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
| *aicore accuracy is not guaranteed \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Two inputs, including: | *Two inputs, including: | ||||
| @@ -322,8 +330,8 @@ REG_OP(Sub) | |||||
| *@brief computes the absolute value of a tensor. \n | *@brief computes the absolute value of a tensor. \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *One inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32, double, int32, int64. \n | |||||
| *One input, including: \n | |||||
| *x: A Tensor. Must be one of the following types: float16, float32, double, int32, int64. \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x". \n | *y: A Tensor. Has the same type as "x". \n | ||||
| @@ -563,6 +571,8 @@ REG_OP(InvGrad) | |||||
| /** | /** | ||||
| *@brief: Returns the truth value of (x <= y) element-wise. \n | *@brief: Returns the truth value of (x <= y) element-wise. \n | ||||
| *when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
| *aicore accuracy is not guaranteed \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Two inputs, including: | * Two inputs, including: | ||||
| @@ -611,6 +621,15 @@ REG_OP(Log1p) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x1". | *y: A Tensor. Has the same type as "x1". | ||||
| *@attention Constraints: | |||||
| *@li x2: The input data does not support 0 | |||||
| *@li When NUM exceeds 2048 , the accuracy of operator cannot guarantee the | |||||
| *requirement of double thousandths in the mini form | |||||
| *@li Due to different architectures, the calculation results of this operator | |||||
| *on NPU and CPU may be inconsistent | |||||
| *@li If shape is expressed as (D1,D2... ,Dn), then D1*D2... *DN<=1000000,n<=8 | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with the TensorFlow operator Mod. | *Compatible with the TensorFlow operator Mod. | ||||
| */ | */ | ||||
| @@ -1020,7 +1039,7 @@ REG_OP(BesselI1e) | |||||
| * y = log_base(shift + scale * x), with "base" > 0. \n | * y = log_base(shift + scale * x), with "base" > 0. \n | ||||
| * @par Inputs: | * @par Inputs: | ||||
| * @li x: A Tensor of type complex64, complex128, float16, float32 or double. \n | |||||
| * x: A Tensor of type complex64, complex128, float16, float32 or double. \n | |||||
| * @par Attributes: | * @par Attributes: | ||||
| * @li base: An optional float32, specifying the base "e". Defaults to "-1.0" | * @li base: An optional float32, specifying the base "e". Defaults to "-1.0" | ||||
| @@ -1065,7 +1084,7 @@ REG_OP(Log) | |||||
| * uint8, int8, uint16, int16, int32, int64, complex64, complex128. \n | * uint8, int8, uint16, int16, int32, int64, complex64, complex128. \n | ||||
| * @attention Constraints: | * @attention Constraints: | ||||
| * @li "x1" and "x2" have incompatible shapes or types. \n | |||||
| * "x1" and "x2" have incompatible shapes or types. \n | |||||
| * @par Third-party framework compatibility | * @par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator Multiply. | * Compatible with the TensorFlow operator Multiply. | ||||
| @@ -1451,6 +1470,8 @@ REG_OP(ReciprocalGrad) | |||||
| /** | /** | ||||
| *@brief Returns the truth value of (x1 > x2) element-wise. \n | *@brief Returns the truth value of (x1 > x2) element-wise. \n | ||||
| *when input is int32 and (x2 - x1) > 2**31 or < -2**31 | |||||
| *aicore accuracy is not guaranteed \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *@li x1: A Tensor of type float16, float32, double, int64, int32, int16, int8, | *@li x1: A Tensor of type float16, float32, double, int64, int32, int16, int8, | ||||
| @@ -2042,6 +2063,15 @@ REG_OP(FloorDiv) | |||||
| * | * | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: Result remainder. | *y: Result remainder. | ||||
| *@attention Constraints: | |||||
| *@li x2: The input data does not support 0 | |||||
| *@li When NUM exceeds 2048 , the accuracy of operator cannot guarantee the | |||||
| *requirement of double thousandths in the mini form | |||||
| *@li Due to different architectures, the calculation results of this operator | |||||
| *on NPU and CPU may be inconsistent | |||||
| *@li If shape is expressed as (D1,D2... ,Dn), then D1*D2... *DN<=1000000,n<=8 | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator FloorMod. | * Compatible with the TensorFlow operator FloorMod. | ||||
| */ | */ | ||||
| @@ -2168,6 +2198,14 @@ REG_OP(Tan) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x1". \n | *y: A Tensor. Has the same type as "x1". \n | ||||
| *@attention Constraints: | |||||
| *@li x2: The input data does not support 0 | |||||
| *@li When NUM exceeds 2048 , the accuracy of operator cannot guarantee the | |||||
| *requirement of double thousandths in the mini form | |||||
| *@li Due to different architectures, the calculation results of this operator | |||||
| *on NPU and CPU may be inconsistent | |||||
| *@li If shape is expressed as (D1,D2... ,Dn), then D1*D2... *DN<=1000000,n<=8 | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *@li Compatible with the TensorFlow operator TruncateMod. | *@li Compatible with the TensorFlow operator TruncateMod. | ||||
| */ | */ | ||||
| @@ -2424,6 +2462,25 @@ REG_OP(Eltwise) | |||||
| .ATTR(coeff, ListFloat, {}) | .ATTR(coeff, ListFloat, {}) | ||||
| .OP_END_FACTORY_REG(Eltwise) | .OP_END_FACTORY_REG(Eltwise) | ||||
| /** | |||||
| *@brief Computes the inverse error function of each element of input. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type and shape of input_x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Erfinv. \n | |||||
| */ | |||||
| REG_OP(Erfinv) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(Erfinv) | |||||
| /** | /** | ||||
| *@brief Computes element-wise population count. \n | *@brief Computes element-wise population count. \n | ||||
| @@ -2829,9 +2886,9 @@ REG_OP(AdamApplyOneAssign) | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | ||||
| */ | */ | ||||
| REG_OP(LambApplyOptimizerAssign) | REG_OP(LambApplyOptimizerAssign) | ||||
| .INPUT(input0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(inputv, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(inputm, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| @@ -2842,6 +2899,8 @@ REG_OP(LambApplyOptimizerAssign) | |||||
| .INPUT(do_use_weight, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(do_use_weight, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(weight_decay_rate, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(weight_decay_rate, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | .OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .OUTPUT(inputv, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(inputm, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(LambApplyOptimizerAssign) | .OP_END_FACTORY_REG(LambApplyOptimizerAssign) | ||||
| /** | /** | ||||
| @@ -2873,7 +2932,8 @@ REG_OP(LambApplyWeightAssign) | |||||
| .INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| .INPUT(input4, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(input_param, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(input_param, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(LambApplyWeightAssign) | .OP_END_FACTORY_REG(LambApplyWeightAssign) | ||||
| /** | /** | ||||
| @@ -3183,9 +3243,11 @@ REG_OP(Fills) | |||||
| *@brief Add tensor with scale. \n | *@brief Add tensor with scale. \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *Five inputs, including: | |||||
| * @li x1: A Tensor. Must be one of the following types:int32,int16, float16, float32. | |||||
| * @li x2: A scale. Must be float. \n | |||||
| *One input, including: \n | |||||
| *x: A Tensor. Must be one of the following types:int32,int16, float16, float32. \n | |||||
| *@par Attributes: | |||||
| *value: A scale. Must be float. \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *@li y: A Tensor. Has the same type and shape as "x1". \n | *@li y: A Tensor. Has the same type and shape as "x1". \n | ||||
| @@ -3329,8 +3391,441 @@ REG_OP(TensorRedirect) | |||||
| .OUTPUT(output_x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8, | .OUTPUT(output_x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8, | ||||
| DT_INT64, DT_INT16, DT_UINT16, DT_UINT64, DT_UINT32})) | DT_INT64, DT_INT16, DT_UINT16, DT_UINT64, DT_UINT32})) | ||||
| .OP_END_FACTORY_REG(TensorRedirect) | .OP_END_FACTORY_REG(TensorRedirect) | ||||
| } // namespace ge | |||||
| /** | |||||
| * @brief Performs the element-wise division of tensor x2 by tensor x3, | |||||
| * multiply the result by the scalar value and add it to tensor x1 | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li input_data: A mutable input Tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li x1: A mutable input Tensor of the same type as x1. | |||||
| * @li x2: A mutable input Tensor of the same type as x1. | |||||
| * @li value: A mutable input Tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| * @par Outputs: | |||||
| * @li y: A mutable Tensor. Has the same type as "x1". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Addcdiv. | |||||
| */ | |||||
| REG_OP(Addcdiv) | |||||
| .INPUT(input_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(value, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(Addcdiv) | |||||
| /** | |||||
| * @brief Performs the element-wise multiplication of tensor x2 by tensor x3, | |||||
| * multiply the result by the scalar value and add it to tensor input_data | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li input_data: A mutable input Tensor. Must be one of the following types: | |||||
| * float16, float32, int8, int32, uint8. | |||||
| * @li x1: A mutable input Tensor of the same type as x1. | |||||
| * @li x2: A mutable input Tensor of the same type as x1. | |||||
| * @li value: A tensor which includes only one element of the same type as x1. \n | |||||
| * @par Outputs: | |||||
| * @li y: A mutable output Tensor. Has the same type as "x1". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Addcmul. | |||||
| */ | |||||
| REG_OP(Addcmul) | |||||
| .INPUT(input_data, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8 })) | |||||
| .INPUT(x1, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8 })) | |||||
| .INPUT(x2, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8 })) | |||||
| .INPUT(value, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8 })) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT16, DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8 })) | |||||
| .OP_END_FACTORY_REG(Addcmul) | |||||
| /** | |||||
| * @brief Computes the result of x2 * alpha + x1. | |||||
| * @par Inputs: | |||||
| * @li x1: An ND tensor of type float16, float32, int32. | |||||
| * @li x2: An ND tensor of type float16, float32, int32. | |||||
| * @li alpha: A scalar tensor of type float16, float32. \n | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor tensor with the same shape and type as "x1". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Axpy. | |||||
| */ | |||||
| REG_OP(AxpyV2) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(alpha, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OP_END_FACTORY_REG(AxpyV2) | |||||
| /** | |||||
| * @brief Computes the result of x1 - x2. | |||||
| * @par Inputs: | |||||
| * @li x1: An ND tensor of type float16, float, int32. | |||||
| * @li x2: An ND tensor of type float16, float, int32. \n | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor tensor with the same type as "x1". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Sub. | |||||
| */ | |||||
| REG_OP(PtSub) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OP_END_FACTORY_REG(PtSub) | |||||
| /** | |||||
| * @brief Add the partial values of two tensors in format NC1HWC0. | |||||
| * @par Inputs: | |||||
| * @li x1: A Tensor in 5HD, and must be one of the following types: float16, | |||||
| * float32. \n | |||||
| * @li x2: A Tensor of the same type as "x1", and the same shape as "x1", | |||||
| * except for the C1 value. \n | |||||
| * @par Attributes: | |||||
| * @li x1_c1_offset: A required int. Offset value of C1 in "x1". \n | |||||
| * @li x2_c1_offset: A required int. Offset value of C1 in "x2". \n | |||||
| * @li c1_len: A required int. C1 len of "y". The value must be less than | |||||
| * the difference between C1 and offset in "x1" and "x2". \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor of the same type as "x1", and the same shape as "x1", | |||||
| * except for the C1 value. Record the result after adding. \n | |||||
| */ | |||||
| REG_OP(StrideAdd) | |||||
| .INPUT(x1, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(x2, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .REQUIRED_ATTR(x1_c1_offset, Int) | |||||
| .REQUIRED_ATTR(x2_c1_offset, Int) | |||||
| .REQUIRED_ATTR(c1_len, Int) | |||||
| .OP_END_FACTORY_REG(StrideAdd) | |||||
| /** | |||||
| * @brief Compare two tensors are totally equal or not, only output a bool value" | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li input_x: A Tensor. the first tensor. \n | |||||
| * @li input_y: A Tensor. the second tensor. \n | |||||
| * @par Outputs: | |||||
| * @li output_z: A Tensor. Bool type, compare result of the two inputs. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch equal operator. \n | |||||
| */ | |||||
| REG_OP(TensorEqual) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .INPUT(input_y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .OUTPUT(output_z, TensorType({DT_BOOL})) | |||||
| .OP_END_FACTORY_REG(TensorEqual) | |||||
| /** | |||||
| * @brief Element-wise min of each of the input tensors (with Numpy-style broadcasting support). | |||||
| * All inputs and outputs must have the same data type. This operator supports multidirectional | |||||
| * (i.e., Numpy-style) broadcasting | |||||
| * | |||||
| * @par inputs | |||||
| * one input including: | |||||
| * @li x: dynamic input A Tensor. Must be one of the following types: float32, float16, double, int32, int64 | |||||
| * | |||||
| * @par output | |||||
| * one output including: | |||||
| * @li y:A Tensor of the same type as x | |||||
| * | |||||
| */ | |||||
| REG_OP(MaxN) | |||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_FLOAT64, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_FLOAT64, DT_INT32, DT_INT64})) | |||||
| .OP_END_FACTORY_REG(MaxN) | |||||
| /** | |||||
| * @brief Calculates x * maske * value. | |||||
| * | |||||
| * @par Inputs: | |||||
| * @li x: An tensor of type float16 or float32, specifying the input to the data layer. | |||||
| * @li mask: An tensor of type int8 or float16 or float32, be same shape with x. \n | |||||
| * | |||||
| * @par Attributes: | |||||
| * value: A optional float. \n | |||||
| * | |||||
| * @par Outputs: | |||||
| * y: The output tensor of type float16 or float32. | |||||
| @ li y:A Tensor of the same type and shape as x | |||||
| * | |||||
| */ | |||||
| REG_OP(MaskedScale) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32})) | |||||
| .INPUT(mask, TensorType({DT_INT8, DT_FLOAT16, DT_FLOAT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32})) | |||||
| .REQUIRED_ATTR(value, Float) | |||||
| .OP_END_FACTORY_REG(MaskedScale) | |||||
| /** | |||||
| * @brief Calculate the lerp function. \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li start: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li end: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li weight: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor with the same type and shape of input_x's. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Lerp. \n | |||||
| */ | |||||
| REG_OP(Lerp) | |||||
| .INPUT(start, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(end, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(weight, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(Lerp) | |||||
| /** | |||||
| *@brief Returns the num value of abs(x1-x2) > atol+rtol*abs(x2) element-wise. \n | |||||
| * | |||||
| *@par Inputs: | |||||
| *@li x1: A tensor. Must be one of the following types: float32, int32, uint8, int8, float16 | |||||
| *@li x2: A tensor of the same type as "x1". | |||||
| * | |||||
| *@par Attributes: | |||||
| * atol: Defaults to "1e-05". | |||||
| * rtol: Defaults to "1e-03". | |||||
| * | |||||
| *@par Outputs: | |||||
| * num: A tensor of type float32. | |||||
| * | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| * | |||||
| */ | |||||
| REG_OP(DataCompare) | |||||
| .INPUT(x1, TensorType({ DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT32 })) | |||||
| .INPUT(x2, TensorType({ DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT32 })) | |||||
| .OUTPUT(num, TensorType({DT_FLOAT})) | |||||
| .ATTR(atol, Float, 1e-5) | |||||
| .ATTR(rtol, Float, 1e-3) | |||||
| .OP_END_FACTORY_REG(DataCompare) | |||||
| /** | |||||
| *@brief Hardmax(element in input, axis) = 1 if the element is the first maximum value along the specified axis, 0 | |||||
| *otherwise The input does not need to explicitly be a 2D vector.The "axis" attribute indicates the dimension along | |||||
| *which Hardmax will be performed.The output tensor has the same shape and contains the Hardmax values of the | |||||
| *corresponding input. | |||||
| * | |||||
| *@par inputs | |||||
| *one input including: | |||||
| *@li x: input A Tensor.Must be one of the following types:float32,float16 | |||||
| * | |||||
| *@par Attributes: | |||||
| *@li axis:A required int attribute that decides which dimension will be used to cal the hard_max | |||||
| * | |||||
| *@par output: | |||||
| *one output including: | |||||
| *@li y:A Tensor of the same type as x | |||||
| * | |||||
| */ | |||||
| REG_OP(HardMax) | |||||
| .INPUT(x, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(axis, Int, -1) | |||||
| .OP_END_FACTORY_REG(HardMax) | |||||
| /** | |||||
| * @brief Computes the dot product (inner product) of two tensors. This function does not broadcast. | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li input_x: A Tensor. the first tensor must be 1d. \n | |||||
| * @li input_y: A Tensor. the second tensor must be 1d. \n | |||||
| * @par Outputs: | |||||
| * @li output: A Tensor. Result of the two inputs, must be 1d. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch dot operator. \n | |||||
| */ | |||||
| REG_OP(Dot) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT, DT_FLOAT16, DT_UINT8, DT_INT8, DT_INT32})) | |||||
| .INPUT(input_y, TensorType({DT_FLOAT, DT_FLOAT16, DT_UINT8, DT_INT8, DT_INT32})) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT, DT_FLOAT16, DT_UINT8, DT_INT8, DT_INT32})) | |||||
| .OP_END_FACTORY_REG(Dot) | |||||
| /** | |||||
| *@brief Returns a new tensor with boolean elements representing \n | |||||
| *if each element of input is “close” to the corresponding element of other \n | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li x1: A tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| * @li x2: A tensor with the same type and shape of x1's. \n | |||||
| *@par Attributes: | |||||
| *@li rtol: An optional float.Defaults to 1e-05. \n | |||||
| *@li atol: An optional float.Defaults to 1e-08. \n | |||||
| *@li equal_nan: An optional bool.Defaults to false. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor bool with the same shape of x1's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator isclose. \n | |||||
| */ | |||||
| REG_OP(IsClose) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_BOOL})) | |||||
| .ATTR(rtol, Float, 1e-05) | |||||
| .ATTR(atol, Float, 1e-08) | |||||
| .ATTR(equal_nan, Bool, false) | |||||
| .OP_END_FACTORY_REG(IsClose) | |||||
| /** | |||||
| * @brief Returns the reverse tensor of the ArgMax operator of a tensor. \n | |||||
| * @par Inputs: | |||||
| * three input, including: | |||||
| * var: A Tensor of type float16, float32, int32 or int8. \n | |||||
| * indices: A Tensor of type int32. \n | |||||
| * updates: A Tensor of type float16, float32, int32 or int8. \n | |||||
| * @par Attributes: | |||||
| * @li dimension: An integer of type int, specifying the axis information of the index with the maximum value.\n | |||||
| * @par Outputs: | |||||
| * y: A Tensor of type float16, float32, int32 or int8. \n | |||||
| * | |||||
| *@attention Constraints: | |||||
| *@li indices: only support int32,and shape same to "updates" | |||||
| *@li The value range of "dimension" is [-dims, dims - 1]. "dims" is the dimension length of "x". | |||||
| *@li y:A Tensor, the type and shape is same to "var" \n | |||||
| *@par Third-party framework compatibility | |||||
| * not support all scene like pytorch operator scatter | |||||
| * exp: | |||||
| * var.shape=[2,3,4,5], dim=2, the shape of indices and updates should be [2,3,5] | |||||
| * not support the shape of indices and updates is [2,3,2,5] like pytorch operator scatter. \n | |||||
| */ | |||||
| REG_OP(ArgMaxGrad) | |||||
| .INPUT(var, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .REQUIRED_ATTR(dimension, Int) | |||||
| .OP_END_FACTORY_REG(ArgMaxGrad) | |||||
| /** | |||||
| * @brief Returns the reverse tensor of the ArgMax operator of a tensor. \n | |||||
| * @par Inputs: | |||||
| * three input, including: | |||||
| * var: A Tensor of type float16, float32, int32 or int8. \n | |||||
| * indices: A Tensor of type int32. \n | |||||
| * updates: A Tensor of type float16, float32, int32 or int8. \n | |||||
| * assist: A Tensor of int32,also a assist matrix and it's shape must match the shape of var \n | |||||
| * @par Attributes: | |||||
| * @li dimension: An integer of type int, specifying the axis information of the index with the maximum value.\n | |||||
| * @par Outputs: | |||||
| * y: A Tensor of type float16, float32, int32 or int8. \n | |||||
| *@attention Constraints: | |||||
| *@li indices: only support int32,and shape same to "updates" | |||||
| *@li The value range of "dimension" is [-dims, dims - 1]. "dims" is the dimension length of "x". | |||||
| *@li y:A Tensor, the type and shape is same to "var" \n | |||||
| *@par Third-party framework compatibility | |||||
| * not support all scene like pytorch operator scatter | |||||
| * exp: | |||||
| * var.shape=[2,3,4,5], dim=2, the shape of indices and updates should be [2,3,5] | |||||
| * not support the shape of indices and updates is [2,3,2,5] like pytorch operator scatter. \n | |||||
| */ | |||||
| REG_OP(ArgMaxGradD) | |||||
| .INPUT(var, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .INPUT(assist, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .REQUIRED_ATTR(dimension, Int) | |||||
| .OP_END_FACTORY_REG(ArgMaxGradD) | |||||
| /** | |||||
| *@brief Calculates the reversed outputs of the function "AddMatMatElements" | |||||
| * c = c * beta + alpha * a * b | |||||
| *@par Inputs: | |||||
| *Three inputs, including: | |||||
| * @li c: A mutable Tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li a: A mutable Tensor of the same type as "c". | |||||
| * @li b: A mutable Tensor of the same type as "c". | |||||
| * @li beta: A mutable scalar of the same type as "c". | |||||
| * @li alpha: A mutable scalar of the same type as "c". \n | |||||
| *@par Outputs: | |||||
| * @li c: A mutable Tensor. Has the same type as "c". \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator AddMatMatElements. | |||||
| */ | |||||
| REG_OP(AddMatMatElements) | |||||
| .INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(a, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(b, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(c, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(AddMatMatElements) | |||||
| /** | |||||
| *@brief Returns cosine similarity between x1 and x2,computed along dim. \n | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li input_x1: A tensor. Must be the following types: | |||||
| * float32. \n | |||||
| *@par Inputs: | |||||
| *@li input_x2: A tensor. Must of the following types: | |||||
| * float32. \n | |||||
| *@par Outputs: | |||||
| *@li output_y: A Tensor with the same type of input_x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator CosineSimilarity. \n | |||||
| */ | |||||
| REG_OP(CosineSimilarity) | |||||
| .INPUT(input_x1, TensorType({DT_FLOAT})) /* "First operand." */ | |||||
| .INPUT(input_x2, TensorType({DT_FLOAT})) /* "Second operand." */ | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT})) /* "Result, has same element type as two inputs" */ | |||||
| .ATTR(dim, Int, 1) | |||||
| .ATTR(eps, Float, 1e-8) | |||||
| .OP_END_FACTORY_REG(CosineSimilarity) | |||||
| } // namespace ge | |||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_ELEWISE_CALCULATION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_ELEWISE_CALCULATION_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -0,0 +1,49 @@ | |||||
| /** | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| /*! | |||||
| * \file globalavgpool.h | |||||
| * \brief | |||||
| */ | |||||
| #ifndef OPS_BUILT_IN_OP_PROTO_INC_GLOBALAVERAGEPOOL_H_ | |||||
| #define OPS_BUILT_IN_OP_PROTO_INC_GLOBALAVERAGEPOOL_H_ | |||||
| #include "graph/operator_reg.h" | |||||
| namespace ge { | |||||
| /** | |||||
| *@brief GlobalAveragePool consumes an input tensor X and applies average pooling across the values in the same channel. | |||||
| This is equivalent to AveragePool with kernel size equal to the spatial dimension of input tensor \n | |||||
| *@par Inputs: | |||||
| *@li x: Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), | |||||
| where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. | |||||
| For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. | |||||
| *@par Outputs: | |||||
| *y: Output data tensor from pooling across the input tensor. The output tensor has the same rank as the input. | |||||
| The first two dimensions of output shape are the same as the input (N x C), while the other dimensions are all 1 | |||||
| *@par Restrictions: | |||||
| *Warning: This operator can be integrated only by configuring INSERT_OP_FILE of aclgrphBuildModel. Please do not use it directly. | |||||
| */ | |||||
| REG_OP(GlobalAveragePool) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OP_END_FACTORY_REG(GlobalAveragePool) | |||||
| } // namespace ge | |||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_GLOBALAVGPOOL_H_ | |||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -45,8 +45,6 @@ REG_OP(HcomAllGather) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16, DT_INT64, DT_UINT64})) | .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16, DT_INT64, DT_UINT64})) | ||||
| .REQUIRED_ATTR(rank_size, Int) | .REQUIRED_ATTR(rank_size, Int) | ||||
| .REQUIRED_ATTR(group, String) | .REQUIRED_ATTR(group, String) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomAllGather) | .OP_END_FACTORY_REG(HcomAllGather) | ||||
| /** | /** | ||||
| @@ -77,8 +75,6 @@ REG_OP(HcomAllReduce) | |||||
| .REQUIRED_ATTR(group, String) | .REQUIRED_ATTR(group, String) | ||||
| .ATTR(fusion, Int, 1) | .ATTR(fusion, Int, 1) | ||||
| .ATTR(fusion_id, Int, -1) | .ATTR(fusion_id, Int, -1) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomAllReduce) | .OP_END_FACTORY_REG(HcomAllReduce) | ||||
| /** | /** | ||||
| @@ -91,7 +87,7 @@ REG_OP(HcomAllReduce) | |||||
| input of this rank will be broadcast to other ranks. | input of this rank will be broadcast to other ranks. | ||||
| * @li fusion: A required integer identifying if the op need to fusion,the | * @li fusion: A required integer identifying if the op need to fusion,the | ||||
| default value is none fusion | default value is none fusion | ||||
| * @li fusion: A required integer identifying the fusion id if para fusion | |||||
| * @li fusion_id: A required integer identifying the fusion id if para fusion | |||||
| is set. | is set. | ||||
| * @li group: A required string identifying the group name of ranks | * @li group: A required string identifying the group name of ranks | ||||
| participating in the op. | participating in the op. | ||||
| @@ -109,10 +105,39 @@ REG_OP(HcomBroadcast) | |||||
| .REQUIRED_ATTR(group, String) | .REQUIRED_ATTR(group, String) | ||||
| .ATTR(fusion, Int, 0) | .ATTR(fusion, Int, 0) | ||||
| .ATTR(fusion_id, Int, -1) | .ATTR(fusion_id, Int, -1) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomBroadcast) | .OP_END_FACTORY_REG(HcomBroadcast) | ||||
| /** | |||||
| * @brief preforms reduction from others rank to rootrank | |||||
| * @par Inputs: | |||||
| * @li root_rank: A required integer identifying the root rank in the op | |||||
| the reduction result will be on this root rank | |||||
| * x: A tensor. Must be one of the following types: int8, int16, int32, float16, | |||||
| float32. | |||||
| * @par Attributes: | |||||
| * @li reduction: A required string identifying the reduction operation to | |||||
| perform.The supported operation are: "sum", "max", "min", "prod". | |||||
| * @li group: A required string identifying the group name of ranks | |||||
| participating in the op. | |||||
| * @li fusion: An optional integer identifying the fusion flag of the op. | |||||
| 0: no fusion; 1 (default): fusion; 2: fusion the ops by fusion id. | |||||
| * @li fusion_id: An optional integer identifying the fusion id of the op. | |||||
| * The HcomReduce ops with the same fusion id will be fused. | |||||
| * @par Outputs: | |||||
| * y: A Tensor. Has the same type as "x". | |||||
| * @attention Constraints: | |||||
| *"group" is limited to 128 characters. Use "hccl_world_group" | |||||
| as the name of a world group. | |||||
| */ | |||||
| REG_OP(HcomReduce) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_INT16, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(root_rank, Int) | |||||
| .REQUIRED_ATTR(reduction, String) | |||||
| .REQUIRED_ATTR(group, String) | |||||
| .ATTR(fusion, Int, 0) | |||||
| .ATTR(fusion_id, Int, -1) | |||||
| .OP_END_FACTORY_REG(HcomReduce) | |||||
| /** | /** | ||||
| * @brief Performs reduction across all input tensors, scattering in equal | * @brief Performs reduction across all input tensors, scattering in equal | ||||
| blocks among ranks, each rank getting a chunk of data based on its rank | blocks among ranks, each rank getting a chunk of data based on its rank | ||||
| @@ -139,8 +164,6 @@ REG_OP(HcomReduceScatter) | |||||
| .REQUIRED_ATTR(reduction, String) | .REQUIRED_ATTR(reduction, String) | ||||
| .REQUIRED_ATTR(group, String) | .REQUIRED_ATTR(group, String) | ||||
| .REQUIRED_ATTR(rank_size, Int) | .REQUIRED_ATTR(rank_size, Int) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomReduceScatter) | .OP_END_FACTORY_REG(HcomReduceScatter) | ||||
| /** | /** | ||||
| @@ -167,8 +190,6 @@ REG_OP(HcomSend) | |||||
| .REQUIRED_ATTR(group, String) | .REQUIRED_ATTR(group, String) | ||||
| .REQUIRED_ATTR(sr_tag, Int) | .REQUIRED_ATTR(sr_tag, Int) | ||||
| .REQUIRED_ATTR(dest_rank, Int) | .REQUIRED_ATTR(dest_rank, Int) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomSend) | .OP_END_FACTORY_REG(HcomSend) | ||||
| /** | /** | ||||
| @@ -202,8 +223,6 @@ REG_OP(HcomReceive) | |||||
| .REQUIRED_ATTR(src_rank, Int) | .REQUIRED_ATTR(src_rank, Int) | ||||
| .REQUIRED_ATTR(shape, ListInt) | .REQUIRED_ATTR(shape, ListInt) | ||||
| .REQUIRED_ATTR(dtype, Type) | .REQUIRED_ATTR(dtype, Type) | ||||
| .ATTR(alpha, Float, 1.0) | |||||
| .ATTR(beta, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(HcomReceive) | .OP_END_FACTORY_REG(HcomReceive) | ||||
| /** | /** | ||||
| @@ -219,6 +238,15 @@ REG_OP(HcomRemoteRead) | |||||
| .REQUIRED_ATTR(dtype, Type) | .REQUIRED_ATTR(dtype, Type) | ||||
| .OP_END_FACTORY_REG(HcomRemoteRead) | .OP_END_FACTORY_REG(HcomRemoteRead) | ||||
| /** | |||||
| * @brief Performs Remote Ref Read of input tensors | |||||
| * @par Inputs: | |||||
| * remote: A tensor. describing the remote memory address to read: u64 remoteId, u64 addrRemote, u64 length | |||||
| * cache_var: The local base address | |||||
| * local_offset: Skip step length | |||||
| * @par Outputs: | |||||
| * cache_var: The local base address | |||||
| */ | |||||
| REG_OP(HcomRemoteRefRead) | REG_OP(HcomRemoteRefRead) | ||||
| .INPUT(remote, TensorType({DT_UINT64})) | .INPUT(remote, TensorType({DT_UINT64})) | ||||
| .INPUT(cache_var, TensorType({DT_UINT64})) | .INPUT(cache_var, TensorType({DT_UINT64})) | ||||
| @@ -239,6 +267,13 @@ REG_OP(HcomRemoteWrite) | |||||
| .INPUT(local, TensorType::ALL()) | .INPUT(local, TensorType::ALL()) | ||||
| .OP_END_FACTORY_REG(HcomRemoteWrite) | .OP_END_FACTORY_REG(HcomRemoteWrite) | ||||
| /** | |||||
| * @brief Performs Remote Write of input tensors | |||||
| * @par Inputs: | |||||
| * remote: A tensor. describing the remote memory address to write: u64 remoteId, u64 addrRemote, u64 length | |||||
| * @par Inputs: | |||||
| * local: A Tensor. whose value is length / size_of(Type) | |||||
| */ | |||||
| REG_OP(HcomRemoteScatterWrite) | REG_OP(HcomRemoteScatterWrite) | ||||
| .INPUT(remote, TensorType({DT_INT64, DT_UINT64})) | .INPUT(remote, TensorType({DT_INT64, DT_UINT64})) | ||||
| .INPUT(local, TensorType::ALL()) | .INPUT(local, TensorType::ALL()) | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -24,6 +24,22 @@ | |||||
| #include "graph/operator_reg.h" | #include "graph/operator_reg.h" | ||||
| namespace ge { | namespace ge { | ||||
| /** | |||||
| *@brief Decode the frame(s) of a GIF-encoded image to a uint8 tensor . \n | |||||
| *@par Inputs: | |||||
| *@li contents:A Tensor of type string. 0-D. The GIF-encoded image. \n | |||||
| *@par Outputs: | |||||
| *image:A Tensor of type uint8. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with tensorflow DecodeGif operator. | |||||
| */ | |||||
| REG_OP(DecodeGif) | |||||
| .INPUT(contents, TensorType({DT_STRING})) | |||||
| .OUTPUT(image, TensorType({DT_UINT8})) | |||||
| .OP_END_FACTORY_REG(DecodeGif) | |||||
| /** | /** | ||||
| *@brief Adjust the hue of one or more images . \n | *@brief Adjust the hue of one or more images . \n | ||||
| @@ -31,11 +47,12 @@ namespace ge { | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images is a tensor of at least 3 dimensions. The last dimension is | *Input images is a tensor of at least 3 dimensions. The last dimension is | ||||
| interpretted as channels, and must be three. Inputs include: | interpretted as channels, and must be three. Inputs include: | ||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. | |||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. The format | |||||
| must be NHWC. | |||||
| *@li delta:A Tensor of type float. A float delta to add to the hue . \n | *@li delta:A Tensor of type float. A float delta to add to the hue . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor of type float . \n | |||||
| *y:A Tensor of type float. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images is a tensor of at least 3 dimensions. The last dimension is | *Input images is a tensor of at least 3 dimensions. The last dimension is | ||||
| @@ -57,11 +74,12 @@ REG_OP(AdjustHue) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images is a tensor of at least 3 dimensions. The last dimension is | *Input images is a tensor of at least 3 dimensions. The last dimension is | ||||
| interpretted as channels, and must be three. Inputs include: | interpretted as channels, and must be three. Inputs include: | ||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. | |||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. The format | |||||
| must be NHWC. | |||||
| *@li scale:A Tensor of type float. A float scale to add to the saturation . \n | *@li scale:A Tensor of type float. A float scale to add to the saturation . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor of type float . \n | |||||
| *y:A Tensor of type float. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images is a tensor of at least 3 dimensions. The last dimension is | *Input images is a tensor of at least 3 dimensions. The last dimension is | ||||
| @@ -83,11 +101,12 @@ REG_OP(AdjustSaturation) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images is a tensor of at least 3 dimensions. The last 3 dimensions are | *Input images is a tensor of at least 3 dimensions. The last 3 dimensions are | ||||
| interpreted as '[height, width, channels]'. Inputs include: | interpreted as '[height, width, channels]'. Inputs include: | ||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. | |||||
| *@li images:A Tensor of type float. Images to adjust. At least 3-D. The format | |||||
| must be NHWC. | |||||
| *@li scale:A Tensor of type float. A float multiplier for adjusting contrast . \n | *@li scale:A Tensor of type float. A float multiplier for adjusting contrast . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor of type float . \n | |||||
| *y:A Tensor of type float. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images is a tensor of at least 3 dimensions. The last dimension is | *Input images is a tensor of at least 3 dimensions. The last dimension is | ||||
| @@ -112,7 +131,7 @@ nearest neighbor sampling to a common output size specified by crop_size . \n | |||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li images:A Tensor. Must be one of the following types:uint8, uint16, int8, | *@li images:A Tensor. Must be one of the following types:uint8, uint16, int8, | ||||
| int16, int32, int64, float16, float, double. A 4-D tensor of shape | int16, int32, int64, float16, float, double. A 4-D tensor of shape | ||||
| [batch, image_height, image_width, depth]. | |||||
| [batch, image_height, image_width, depth]. The format must be NHWC. | |||||
| *@li boxes: A Tensor of type float. A 2-D tensor of shape [num_boxes, 4]. | *@li boxes: A Tensor of type float. A 2-D tensor of shape [num_boxes, 4]. | ||||
| *@li box_index: A Tensor of type int32. A 1-D tensor of shape [num_boxes] with | *@li box_index: A Tensor of type int32. A 1-D tensor of shape [num_boxes] with | ||||
| int32 values in [0, batch). | int32 values in [0, batch). | ||||
| @@ -127,7 +146,7 @@ extrapolation, when applicable. | |||||
| NearestNeighbor . \n | NearestNeighbor . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor of type float . \n | |||||
| *y:A Tensor of type float. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images must be a 4-D tensor . \n | *Input images must be a 4-D tensor . \n | ||||
| @@ -193,7 +212,9 @@ boxes tensor . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images and grads must be a 4-D tensor. Inputs include: | *Input images and grads must be a 4-D tensor. Inputs include: | ||||
| *@li grads: A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]. | *@li grads: A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]. | ||||
| The format must be NHWC. | |||||
| *@li images: A 4-D tensor of shape [batch, image_height, image_width, depth]. | *@li images: A 4-D tensor of shape [batch, image_height, image_width, depth]. | ||||
| The format must be NHWC. | |||||
| Both image_height and image_width need to be positive. | Both image_height and image_width need to be positive. | ||||
| *@li boxes: A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor | *@li boxes: A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor | ||||
| specifies the coordinates of a box in the box_ind[i] image and is specified in | specifies the coordinates of a box in the box_ind[i] image and is specified in | ||||
| @@ -233,6 +254,7 @@ images tensor . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input grads must be a 4-D tensor. Inputs include: | *Input grads must be a 4-D tensor. Inputs include: | ||||
| *@li grads: A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]. | *@li grads: A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]. | ||||
| The format must be NHWC. | |||||
| *@li boxes: A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor | *@li boxes: A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor | ||||
| specifies the coordinates of a box in the box_ind[i] image and is specified | specifies the coordinates of a box in the box_ind[i] image and is specified | ||||
| in normalized coordinates [y1, x1, y2, x2]. | in normalized coordinates [y1, x1, y2, x2]. | ||||
| @@ -248,7 +270,8 @@ method: A string specifying the interpolation method. Only 'bilinear' is | |||||
| supported for now . \n | supported for now . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A 4-D tensor of shape [batch, image_height, image_width, depth] . \n | |||||
| *y:A 4-D tensor of shape [batch, image_height, image_width, depth]. The format | |||||
| must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input grads must be a 4-D tensor . \n | *Input grads must be a 4-D tensor . \n | ||||
| @@ -273,6 +296,7 @@ REG_OP(CropAndResizeGradImage) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input x must be a 4-D tensor. Inputs include: | *Input x must be a 4-D tensor. Inputs include: | ||||
| *@li x: A 4-D float tensor of shape [batch_size, height, width, channels]. | *@li x: A 4-D float tensor of shape [batch_size, height, width, channels]. | ||||
| The format must be NHWC. | |||||
| *@li size: A 1-D tensor of 2 elements containing the size of the glimpses to | *@li size: A 1-D tensor of 2 elements containing the size of the glimpses to | ||||
| extract. The glimpse height must be specified first, following by the glimpse | extract. The glimpse height must be specified first, following by the glimpse | ||||
| width. | width. | ||||
| @@ -293,7 +317,7 @@ uniform_noise . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A tensor representing the glimpses [batch_size, glimpse_height, | *y:A tensor representing the glimpses [batch_size, glimpse_height, | ||||
| glimpse_width, channels] . \n | |||||
| glimpse_width, channels]. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input x must be a 4-D tensor . \n | *Input x must be a 4-D tensor . \n | ||||
| @@ -340,7 +364,8 @@ REG_OP(HSVToRGB) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li images: 4-D with shape [batch, height, width, channels]. | |||||
| *@li images: 4-D with shape [batch, height, width, channels]. The format must | |||||
| be NHWC. | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | ||||
| size for the images. | size for the images. | ||||
| *@li min: A Tensor of type float. | *@li min: A Tensor of type float. | ||||
| @@ -354,6 +379,7 @@ the values at the corner pixels. Defaults to false. | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *@li resized_images: 4-D with shape [batch, new_height, new_width, channels]. | *@li resized_images: 4-D with shape [batch, new_height, new_width, channels]. | ||||
| The format must be NHWC. | |||||
| *@li y_min: A Tensor of type float. | *@li y_min: A Tensor of type float. | ||||
| *@li y_max: A Tensor of type float . \n | *@li y_max: A Tensor of type float . \n | ||||
| @@ -381,7 +407,8 @@ REG_OP(QuantizedResizeBilinear) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li images: 4-D with shape [batch, height, width, channels]. | |||||
| *@li images: 4-D with shape [batch, height, width, channels]. The format must | |||||
| be NHWC. | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. | *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. | ||||
| The new size for the images . \n | The new size for the images . \n | ||||
| @@ -391,7 +418,8 @@ output tensors are aligned, preserving the values at the corner pixels. | |||||
| Defaults to false . \n | Defaults to false . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: 4-D with shape [batch, new_height, new_width, channels] . \n | |||||
| *y: 4-D with shape [batch, new_height, new_width, channels]. The format must | |||||
| be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images can be of different types but output images are always float . \n | *Input images can be of different types but output images are always float . \n | ||||
| @@ -414,10 +442,10 @@ REG_OP(ResizeArea) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input grads must be a 4-D tensor. Inputs include: | *Input grads must be a 4-D tensor. Inputs include: | ||||
| *@li grads: A Tensor of type float. 4-D with shape [batch, height, width, | *@li grads: A Tensor of type float. 4-D with shape [batch, height, width, | ||||
| channels]. | |||||
| channels]. The format must be NHWC. | |||||
| *@li original_image: A Tensor. Must be one of the following types: float, | *@li original_image: A Tensor. Must be one of the following types: float, | ||||
| double. 4-D with shape [batch, orig_height, orig_width, channels], The image | double. 4-D with shape [batch, orig_height, orig_width, channels], The image | ||||
| tensor that was resized . \n | |||||
| tensor that was resized. The format must be NHWC. \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li align_corners: An optional bool. Defaults to False. If true, the centers | *@li align_corners: An optional bool. Defaults to False. If true, the centers | ||||
| @@ -426,10 +454,10 @@ false. | |||||
| *@li half_pixel_centers: An optional bool. Defaults to False . \n | *@li half_pixel_centers: An optional bool. Defaults to False . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as original_image . \n | |||||
| *y: A Tensor. Has the same type as original_image. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images can be of different types but output images are always float . \n | |||||
| *Input images can be of different types but output images are always float . | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with tensorflow ResizeBicubicGrad operator. | *Compatible with tensorflow ResizeBicubicGrad operator. | ||||
| @@ -448,7 +476,8 @@ REG_OP(ResizeBicubicGrad) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li images: 4-D with shape [batch, height, width, channels]. | |||||
| *@li images: 4-D with shape [batch, height, width, channels]. The format | |||||
| must be NHWC. | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | ||||
| size for the images . \n | size for the images . \n | ||||
| @@ -459,10 +488,11 @@ Defaults to false. | |||||
| *@li half_pixel_centers: An optional bool. Defaults to False . \n | *@li half_pixel_centers: An optional bool. Defaults to False . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: 4-D with shape [batch, new_height, new_width, channels] . \n | |||||
| *y: 4-D with shape [batch, new_height, new_width, channels]. The format | |||||
| must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images can be of different types but output images are always float . \n | |||||
| *Input images can be of different types but output images are always float . | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with tensorflow ResizeBicubic operator. | *Compatible with tensorflow ResizeBicubic operator. | ||||
| @@ -483,7 +513,7 @@ REG_OP(ResizeBicubic) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input grads must be a 4-D tensor. Inputs include: | *Input grads must be a 4-D tensor. Inputs include: | ||||
| *@li grads: A Tensor. Must be one of the following types: uint8, int8, int32, | *@li grads: A Tensor. Must be one of the following types: uint8, int8, int32, | ||||
| float16, float, double. 4-D with shape [batch, height, width, channels]. | |||||
| float16, float, double. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: orig_height, orig_width. | *@li size: A 1-D int32 Tensor of 2 elements: orig_height, orig_width. | ||||
| The original input size . \n | The original input size . \n | ||||
| @@ -550,9 +580,8 @@ REG_OP(ResizeNearestNeighborV2GradD) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input grads must be a 4-D tensor. Inputs include: | *Input grads must be a 4-D tensor. Inputs include: | ||||
| *@li grads: A Tensor of type float32. 4-D with shape [batch, height, width, | |||||
| channels]. | |||||
| *@li original_image: A Tensor. 4-D with shape [batch, orig_height, orig_width, | |||||
| *@li grads: A Tensor of type float32. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li original_image: A Tensor. 4-D shape. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| channels], The image tensor that was resized . \n | channels], The image tensor that was resized . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -583,7 +612,7 @@ REG_OP(ResizeBilinearV2Grad) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li x: 4-D with shape [batch, height, width, channels]. | |||||
| *@li x: 4-D tensor. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The new | ||||
| size for the images . \n | size for the images . \n | ||||
| @@ -639,6 +668,62 @@ REG_OP(RGBToHSV) | |||||
| /** | /** | ||||
| *@brief Generate a single randomly distorted bounding box for an image . \n | *@brief Generate a single randomly distorted bounding box for an image . \n | ||||
| *@par Inputs: | |||||
| *Input images must be a 4-D tensor. Inputs include: | |||||
| *@li image_size: 1-D, containing [height, width, channels]. | |||||
| *@li bounding_boxes: 3-D with shape [batch, N, 4] describing the N bounding | |||||
| boxes associated with the image. \n | |||||
| *@par Attributes: | |||||
| *@li seed: If either seed or seed2 are set to non-zero, the random number | |||||
| generator is seeded by the given seed. Otherwise, it is seeded by a random seed. | |||||
| *@li seed2: A second seed to avoid seed collision. | |||||
| *@li min_object_covered: The cropped area of the image must contain at least | |||||
| this fraction of any bounding box supplied. The value of this parameter should | |||||
| be non-negative. In the case of 0, the cropped area does not need to overlap | |||||
| any of the bounding boxes supplied . | |||||
| *@li aspect_ratio_range: The cropped area of the image must have an aspect | |||||
| ratio = width / height within this range. | |||||
| *@li max_attempts: Number of attempts at generating a cropped region of the | |||||
| image of the specified constraints. After max_attempts failures, return the | |||||
| entire image. | |||||
| *@li use_image_if_no_bounding_boxes: Controls behavior if no bounding boxes | |||||
| supplied. If true, assume an implicit bounding box covering the whole input. | |||||
| If false, raise an error . \n | |||||
| *@par Outputs: | |||||
| *@li begin: 1-D, containing [offset_height, offset_width, 0]. | |||||
| *@li size: 1-D, containing [target_height, target_width, -1]. | |||||
| *@li bboxes: 3-D with shape [1, 1, 4] containing the distorted bounding box . \n | |||||
| *@attention Constraints: | |||||
| *Input images can be of different types but output images are always float . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with tensorflow SampleDistortedBoundingBox operator. | |||||
| */ | |||||
| REG_OP(SampleDistortedBoundingBox) | |||||
| .INPUT(image_size, TensorType({ DT_UINT8, DT_INT8, DT_INT16, \ | |||||
| DT_INT32, DT_INT64 })) | |||||
| .INPUT(bounding_boxes, TensorType({ DT_FLOAT })) | |||||
| .OUTPUT(begin, TensorType({ DT_UINT8, DT_INT8, DT_INT16, \ | |||||
| DT_INT32, DT_INT64 })) | |||||
| .OUTPUT(size, TensorType({ DT_UINT8, DT_INT8, DT_INT16, \ | |||||
| DT_INT32, DT_INT64 })) | |||||
| .OUTPUT(bboxes, TensorType({ DT_FLOAT })) | |||||
| .ATTR(seed, Int, 0) | |||||
| .ATTR(seed2, Int, 0) | |||||
| .ATTR(min_object_covered, Float, 0.1f) | |||||
| .ATTR(aspect_ratio_range, ListFloat, { 0.75f, 1.33f }) | |||||
| .ATTR(area_range, ListFloat, { 0.05f, 1.0f }) | |||||
| .ATTR(max_attempts, Int, 100) | |||||
| .ATTR(use_image_if_no_bounding_boxes, Bool, false) | |||||
| .OP_END_FACTORY_REG(SampleDistortedBoundingBox) | |||||
| /** | |||||
| *@brief Generate a single randomly distorted bounding box for an image . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li image_size: 1-D, containing [height, width, channels]. | *@li image_size: 1-D, containing [height, width, channels]. | ||||
| @@ -697,7 +782,7 @@ REG_OP(SampleDistortedBoundingBoxExt2) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input x must be a 4-D tensor. Inputs include: | *Input x must be a 4-D tensor. Inputs include: | ||||
| *@li x: 4-D with shape [batch, height, width, channels]. | |||||
| *@li x: 4-D tensor. Must set the format, supported format list ["NCHW, NHWC"]. | |||||
| *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. | *@li size: A 1-D int32 Tensor of 2 elements: new_height, new_width. | ||||
| The new size for the images . \n | The new size for the images . \n | ||||
| @@ -729,12 +814,12 @@ REG_OP(ResizeNearestNeighborV2) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Input images must be a 4-D tensor. Inputs include: | *Input images must be a 4-D tensor. Inputs include: | ||||
| *@li images: A Tensor. Must be one of the following types: float. 4-D with | *@li images: A Tensor. Must be one of the following types: float. 4-D with | ||||
| shape [batch, height, width, depth]. A batch of images. | |||||
| shape [batch, height, width, depth]. A batch of images. The format must be NHWC. | |||||
| *@li boxes: A Tensor of type float32. 3-D with shape [batch, | *@li boxes: A Tensor of type float32. 3-D with shape [batch, | ||||
| num_bounding_boxes, 4] containing bounding boxes . \n | num_bounding_boxes, 4] containing bounding boxes . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *A Tensor. Has the same type as images . \n | |||||
| *A Tensor. Has the same type as images. The format must be NHWC. \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *Input images must be a 4-D tensor . \n | *Input images must be a 4-D tensor . \n | ||||
| @@ -1002,6 +1087,88 @@ REG_OP(EncodePng) | |||||
| .ATTR(compression, Int, -1) | .ATTR(compression, Int, -1) | ||||
| .OP_END_FACTORY_REG(EncodePng) | .OP_END_FACTORY_REG(EncodePng) | ||||
| /** | |||||
| *@brief PNG-decode an image. | |||||
| *@par Inputs: | |||||
| *contents: 0-D. PNG-decoded image . | |||||
| *@par Attributes: | |||||
| *channels: graph channels \n | |||||
| *dtype: type of image | |||||
| *@par Outputs: | |||||
| *image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] | |||||
| where channels is: 1: for grayscale; 2: for grayscale + alpha; 3: for RGB; | |||||
| 4: for RGBA . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with tensorflow DecodePng operator. | |||||
| */ | |||||
| REG_OP(DecodePng) | |||||
| .INPUT(contents, TensorType({DT_STRING})) | |||||
| .OUTPUT(image, TensorType({DT_UINT8, DT_UINT16})) | |||||
| .ATTR(dtype, Type, DT_UINT8) | |||||
| .ATTR(channels, Int, 0) | |||||
| .OP_END_FACTORY_REG(DecodePng) | |||||
| /** | |||||
| *@brief Bmp-decode an image. \n | |||||
| *@par Inputs: | |||||
| *@li contents: A Tensor of type string. 0-D. The BMP-encoded image. \n | |||||
| *@par Attributes: | |||||
| *@li channels: Decode the desired number of color channels of the image. \n | |||||
| *@par Outputs: | |||||
| *image: A Tensor dtype of uint8. | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with tensorflow DecodeBmp operator. | |||||
| */ | |||||
| REG_OP(DecodeBmp) | |||||
| .INPUT(contents, TensorType({DT_STRING})) | |||||
| .OUTPUT(image, TensorType({DT_UINT8})) | |||||
| .ATTR(channels, Int, 0) | |||||
| .OP_END_FACTORY_REG(DecodeBmp) | |||||
| /** | |||||
| *@brief Function parse image from string to int. \n | |||||
| *@par Inputs: | |||||
| *@li contents: A Tensor of type string. 0-D. The JPEG-encoded image. \n | |||||
| *@li crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. \n | |||||
| *@par Attributes: | |||||
| *@li channels: An optional int. Defaults to 0. Number of color channels for the | |||||
| *decoded image. | |||||
| *@li ratio: An optional int. Defaults to 1. Downscaling ratio. | |||||
| *@li fancy_upscaling: An optional bool. Defaults to True. If true use a slower | |||||
| *but nicer upscaling of the chroma planes | |||||
| *@li try_recover_truncated: An optional bool. Defaults to False. If true try to | |||||
| *recover an image from truncated input. | |||||
| *@li acceptable_fraction: An optional float. Defaults to 1. The minimum required | |||||
| fraction of lines before a truncated input is accepted. | |||||
| *@li dct_method: An optional string. Defaults to "". string specifying a hint | |||||
| *about the algorithm used for decompression. \n | |||||
| *@par Outputs: | |||||
| *image: A Tensor dtype of uint8. | |||||
| */ | |||||
| REG_OP(DecodeAndCropJpeg) | |||||
| .INPUT(contents, TensorType({DT_STRING})) | |||||
| .INPUT(crop_window, TensorType({DT_INT32})) | |||||
| .OUTPUT(image, TensorType({DT_UINT8})) | |||||
| .ATTR(channels, Int, 0) | |||||
| .ATTR(ratio, Int, 1) | |||||
| .ATTR(fancy_upscaling, Bool, true) | |||||
| .ATTR(try_recover_truncated, Bool, false) | |||||
| .ATTR(acceptable_fraction, Float, 1.0) | |||||
| .ATTR(dct_method, String, "") | |||||
| .OP_END_FACTORY_REG(DecodeAndCropJpeg) | |||||
| /** | /** | ||||
| *@brief Resizes "images" to "size" using bilinear interpolation . \n | *@brief Resizes "images" to "size" using bilinear interpolation . \n | ||||
| @@ -1316,6 +1483,55 @@ REG_OP(CombinedNonMaxSuppression) | |||||
| .ATTR(clip_boxes, Bool, true) | .ATTR(clip_boxes, Bool, true) | ||||
| .OP_END_FACTORY_REG(CombinedNonMaxSuppression) | .OP_END_FACTORY_REG(CombinedNonMaxSuppression) | ||||
| /** | |||||
| *@brief Resizes "images" with "offset" using bilinear interpolation. \n | |||||
| *@par Inputs: | |||||
| *@li img: input image, A 4-D tensor of shape `[n, h, w, c]`. | |||||
| *@li warp_offset: the resize offset A 4-D float tensor of shape `[n, h, w, 2]`, 2 means (x, y) for offset point. | |||||
| *@par Outputs: | |||||
| *warp_img: A Tensor after resize. \n | |||||
| */ | |||||
| REG_OP(IMGWarp) | |||||
| .INPUT(img, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT32})) | |||||
| .INPUT(warp_offset, TensorType({DT_FLOAT32})) | |||||
| .OUTPUT(warp_img, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT32})) | |||||
| .OP_END_FACTORY_REG(IMGWarp) | |||||
| /** | |||||
| *@brief Resizes "images" with "offset" using bilinear interpolation. \n | |||||
| *@par Inputs: | |||||
| *@li img: input image, A 4-D tensor of shape `[n, h, w, c]`. | |||||
| *@li map_offset: the resize offset A 4-D float tensor of shape `[n, h, w, 2]`, 2 means (x, y) for resize point. | |||||
| *@par Outputs: | |||||
| *map_img: A Tensor after resize. \n | |||||
| */ | |||||
| REG_OP(Remap) | |||||
| .INPUT(img, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT32})) | |||||
| .INPUT(map_offset, TensorType({DT_FLOAT32})) | |||||
| .OUTPUT(map_img, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT32})) | |||||
| .OP_END_FACTORY_REG(Remap) | |||||
| /** | |||||
| *@brief Resizes "images" with "offset" using bilinear interpolation. \n | |||||
| *@par Inputs: | |||||
| *@li img: input image, A 5-D tensor of shape `[n, 4, c, h, w]`, | |||||
| and 4 mean input[(h_top, w_left), (h_top, w_right), (h_bottom, w_left), (h_bottom, w_right)]. | |||||
| *@li warp_index: the resize offset A 4-D float tensor of shape `[n, 2, h, w]`, 2 means (x, y) for resize point. | |||||
| *@par Outputs: | |||||
| *remap_img: A Tensor after ResizeBilinear, A 4-D tensor of shape `[n, c, h, w]`. \n | |||||
| */ | |||||
| REG_OP(IMGWarpResize) | |||||
| .INPUT(img, TensorType({DT_FLOAT32})) | |||||
| .INPUT(warp_index, TensorType({DT_FLOAT32})) | |||||
| .OUTPUT(warp_img, TensorType({DT_FLOAT32})) | |||||
| .OP_END_FACTORY_REG(IMGWarpResize) | |||||
| /** | /** | ||||
| *@brief Function spatial transformer . \n | *@brief Function spatial transformer . \n | ||||
| @@ -1342,6 +1558,383 @@ REG_OP(SpatialTransformerD) | |||||
| .ATTR(use_default_theta, ListBool, {}) | .ATTR(use_default_theta, ListBool, {}) | ||||
| .OP_END_FACTORY_REG(SpatialTransformerD) | .OP_END_FACTORY_REG(SpatialTransformerD) | ||||
| } // namespace ge | |||||
| /** | |||||
| * @brief Resize the input tensor. \n | |||||
| currently, only support resize image tensor using nearest neighbor and linear interpolation. | |||||
| * @par Inputs: | |||||
| * Input x must be a 4-D tensor. Inputs include: \n | |||||
| * @li x: A Tensor. Must be one of the following types: uint8, int8, int16, \n | |||||
| int32, int64, float16, float, double. 4-D with shape [batch, height, width, channels] \n | |||||
| or shape [batch, channels, height, width]. | |||||
| * @li roi: A 1-D float Tensor. only takes effect when attr coordinate_transformation_mode \n | |||||
| is "tf_crop_and_resize" | |||||
| * @li scales: A 1-D float Tensor, the scale array along each dimension, Only one of \n | |||||
| 'scales' and 'sizes' can be specified. | |||||
| * @li sizes: A 1-D int64 Tensor, The size of the output tensor. nly one of \n | |||||
| 'scales' and 'sizes' can be specified. If 'size' is specified, then set scales \n | |||||
| to empty data (zero shape) in this operator's input list. | |||||
| * @par Attributes: | |||||
| * @li coordinate_transformation_mode: String. Defaults to half_pixel. how to transform \n | |||||
| the coordinate in the resized tensor to the coordinate in the original tensor. \n | |||||
| other optional: pytorch_half_pixel, align_corners, asymmetric, tf_half_pixel_for_nn, \n | |||||
| tf_crop_and_resize. | |||||
| * @li cubic_coeff_a: Float. Defaults to -0.75, only used in cubic interpolation. \n | |||||
| other optional: -0.5 | |||||
| * @li exclude_outside: Int. Defaults to 0, If set to 1, the weight of sampling \n | |||||
| locations outside the tensor will be set to 0 and the weight will be renormalized \n | |||||
| so that their sum is 1.0. | |||||
| * @li extrapolation_value: Float. Defaults to 0.0f. When coordinate_transformation_mode \n | |||||
| is "tf_crop_and_resize" and x_original is outside the range [0, length_original - 1], \n | |||||
| this value is used as the corresponding output value. | |||||
| * @li mode: String. Defaults to nearest. Three interpolation modes: nearest (default), \n | |||||
| linear and cubic. | |||||
| * @li nearest_mode: String. Defaults to round_prefer_floor. Four modes: round_prefer_floor, \n | |||||
| round_prefer_ceil, floor, ceil. Only used by nearest interpolation. | |||||
| * @par Outputs: | |||||
| * y: A Tensor. Has the same type as x. | |||||
| * @attention Constraints: \n | |||||
| * Input x must be a 4-D tensor. | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with tensorflow ResizeNearestNeighborV2 operator. | |||||
| */ | |||||
| REG_OP(Resize) | |||||
| .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, | |||||
| DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(roi, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(scales, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(sizes, TensorType({DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, | |||||
| DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(coordinate_transformation_mode, String, "half_pixel") | |||||
| .ATTR(cubic_coeff_a, Float, -0.75) | |||||
| .ATTR(exclude_outside, Int, 0) | |||||
| .ATTR(extrapolation_value, Float, 0) | |||||
| .ATTR(mode, String, "nearest") | |||||
| .ATTR(nearest_mode, String, "round_prefer_floor") | |||||
| .OP_END_FACTORY_REG(Resize) | |||||
| /** | |||||
| *@brief Function parse image from string to int. \n | |||||
| *@par Inputs: | |||||
| *@li contents: A Tensor of type string. 0-D. The JPEG-encoded image. \n | |||||
| *@par Attributes: | |||||
| *@li channels: An optional int. Defaults to 0. Number of color channels for the decoded image. | |||||
| *@li ratio: An optional int. Defaults to 1. Downscaling ratio. | |||||
| *@li fancy_upscaling: An optional bool. Defaults to True. If true use a slower but nicer upscaling of the chroma planes | |||||
| *@li try_recover_truncated: An optional bool. Defaults to False. If true try to recover an image from truncated input. | |||||
| *@li acceptable_fraction: An optional float. Defaults to 1. The minimum required fraction of lines before a truncated input is accepted. | |||||
| *@li dct_method: An optional string. Defaults to "". string specifying a hint about the algorithm used for decompression. \n | |||||
| *@par Outputs: | |||||
| *image: A Tensor dtype of uint8. | |||||
| */ | |||||
| REG_OP(DecodeJpeg) | |||||
| .INPUT(contents, TensorType({DT_STRING})) | |||||
| .OUTPUT(image, TensorType({DT_UINT8})) | |||||
| .ATTR(channels, Int, 0) | |||||
| .ATTR(ratio, Int, 1) | |||||
| .ATTR(fancy_upscaling, Bool, true) | |||||
| .ATTR(try_recover_truncated, Bool, false) | |||||
| .ATTR(acceptable_fraction, Float, 1.0) | |||||
| .ATTR(dct_method, String, "") | |||||
| .OP_END_FACTORY_REG(DecodeJpeg) | |||||
| /** | |||||
| *@brief Image warping using per-pixel flow vectors. \n | |||||
| *@par Inputs: | |||||
| *@li image: 4-D Tensor with shape `[batch, height, width, channels]`. | |||||
| *@li flow: 4-D Tensor with shape `[batch, height, width, 2]`. \n | |||||
| *@par Outputs: | |||||
| *y: Returns 4-D with the same shape and dtype as `image`. \n | |||||
| */ | |||||
| REG_OP(DenseImageWarp) | |||||
| .INPUT(image, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(flow, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(DenseImageWarp) | |||||
| /** | |||||
| *@brief Calculate the resize_d function. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| *@li sizes: An optional listInt. \n | |||||
| *@li scales: An optional listFloat. | |||||
| Defaults to none. \n | |||||
| *@li roi: An optional listInt. | |||||
| Defaults to none. \n | |||||
| *@li coordinate_transformation_mode: An optional String. | |||||
| Defaults to "half_pixel". \n | |||||
| *@li cubic_coeff_a: An optional float. | |||||
| Defaults to -0.75. \n | |||||
| *@li exclude_outside: An optional int. | |||||
| Defaults to 0. \n | |||||
| *@li extrapolation_value: An optional float. | |||||
| Defaults to 0.0. \n | |||||
| *@li mode: An optional String. | |||||
| Defaults to "nearest". \n | |||||
| *@li nearest_mode: An optional String. | |||||
| Defaults to "round_prefer_floor". \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type of x's, | |||||
| shape depends on x and sizes. \n | |||||
| */ | |||||
| REG_OP(ResizeD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(sizes, ListInt) | |||||
| .ATTR(scales, ListFloat, {}) | |||||
| .ATTR(roi, ListInt, {}) | |||||
| .ATTR(coordinate_transformation_mode, String, "half_pixel") | |||||
| .ATTR(cubic_coeff_a, Float, -0.75) | |||||
| .ATTR(exclude_outside, Int, 0) | |||||
| .ATTR(extrapolation_value, Float, 0.0) | |||||
| .ATTR(mode, String, "nearest") | |||||
| .ATTR(nearest_mode, String, "round_prefer_floor") | |||||
| .OP_END_FACTORY_REG(ResizeD) | |||||
| /** | |||||
| *@brief Calculate the resize_grad_d function. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li grads: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| *@li original_size: An optional listInt. \n | |||||
| *@li roi: An optional listInt. | |||||
| Defaults to none. \n | |||||
| *@li scales: An optional listFloat. | |||||
| Defaults to none. \n | |||||
| *@li coordinate_transformation_mode: An optional String. | |||||
| Defaults to "half_pixel". \n | |||||
| *@li cubic_coeff_a: An optional float. | |||||
| Defaults to -0.75. \n | |||||
| *@li exclude_outside: An optional int. | |||||
| Defaults to 0. \n | |||||
| *@li extrapolation_value: An optional float. | |||||
| Defaults to 0.0. \n | |||||
| *@li mode: An optional String. | |||||
| Defaults to "nearest". \n | |||||
| *@li nearest_mode: An optional String. | |||||
| Defaults to "round_prefer_floor". \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type of x's, | |||||
| shape depends on x and sizes. \n | |||||
| */ | |||||
| REG_OP(ResizeGradD) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(original_size, ListInt) | |||||
| .ATTR(roi, ListInt, {}) | |||||
| .ATTR(scales, ListFloat, {}) | |||||
| .ATTR(coordinate_transformation_mode, String, "half_pixel") | |||||
| .ATTR(cubic_coeff_a, Float, -0.75) | |||||
| .ATTR(exclude_outside, Int, 0) | |||||
| .ATTR(extrapolation_value, Float, 0.0) | |||||
| .ATTR(mode, String, "nearest") | |||||
| .ATTR(nearest_mode, String, "round_prefer_floor") | |||||
| .OP_END_FACTORY_REG(ResizeGradD) | |||||
| /** | |||||
| *@brief Computes the gradients of DenseImageWarp with respect to image and flow. \n | |||||
| *@par Inputs: | |||||
| *@li grad: gradients with respect to DenseImageWarp output. | |||||
| *@li image: 4-D Tensor with shape `[batch, height, width, channels]`. | |||||
| *@li flow: 4-D Tensor with shape `[batch, height, width, 2]`. \n | |||||
| *@par Outputs: | |||||
| *grad_image: Returns 4-D with the same shape and dtype as `image`. | |||||
| *grad_flow: Returns 4-D with the same shape and dtype as `flow`. \n | |||||
| */ | |||||
| REG_OP(DenseImageWarpGrad) | |||||
| .INPUT(grad, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(image, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(flow, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(grad_image, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(grad_flow, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(DenseImageWarpGrad) | |||||
| /** | |||||
| *@brief This operation samples input X by using interpolation based on flow field grid, | |||||
| which is usually gennerated by affine_grid. The grid of shape [N, H, W, 2] is the concatenation of | |||||
| (x, y) coordinates with shape [N, H, W] each, where x is indexing the 4th dimension (in width dimension) of | |||||
| input data x and y is indexng the 3rd dimention (in height dimension), finally results is | |||||
| the interpolation value of 4 nearest corner points. The output tensor shape will be [N, C, H, W]. | |||||
| *@par Inputs: | |||||
| *@li x: 4-D Tensor with shape `[batch, channels, height, width]`. | |||||
| *@li grid: flow field grid, 4-D Tensor with shape `[batch, height, width, 2]`. | |||||
| *@par Attributes: | |||||
| *@li interpolation_mode: An optional string specifying the interpolation method. Only 'bilinear' is | |||||
| supported for now . | |||||
| *@li padding_mode: An optional string specifying the pad method. Only 'zeros' is supported for now . | |||||
| *@li align_corners: An optional bool. If "true", the centers of the corner | |||||
| pixels of the input and output tensors are aligned. Defaults to "false" . | |||||
| *@par Outputs: | |||||
| *y: Returns 4-D Tensor with the same dtype as `X`. | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with pytorch GridSampler2D operator. | |||||
| *@par Restrictions: | |||||
| *Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(GridSampler2D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(grid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(interpolation_mode, String, "bilinear") | |||||
| .ATTR(padding_mode, String, "zeros") | |||||
| .ATTR(align_corners, Bool, false) | |||||
| .OP_END_FACTORY_REG(GridSampler2D) | |||||
| /** | |||||
| *@brief This operation unnormalize input Grid, which is usually gennerated by affine_grid. | |||||
| *@par Inputs: | |||||
| *@li grid: flow field grid, 4-D Tensor with shape `[batch, height, width, 2]`. | |||||
| *@li assist: Assist matrix, a 4-D tensor of type float16. | |||||
| *@par Attributes: | |||||
| *@li align_corners: An optional bool. If "true", the centers of the corner | |||||
| pixels of the input and output tensors are aligned. Defaults to "false" . | |||||
| *@par Outputs: | |||||
| *diff: Returns 4-D Tensor with the same shape and dtype as `grid`. | |||||
| *position: Returns 4-D Tensor with the same shape as `grid`. | |||||
| */ | |||||
| REG_OP(GridUnnormal) | |||||
| .INPUT(grid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(assist, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(diff, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(position, TensorType({DT_INT32})) | |||||
| .ATTR(align_corners, Bool, false) | |||||
| .OP_END_FACTORY_REG(GridUnnormal) | |||||
| /** | |||||
| *@brief This operation unfold input X based on unnormalized grid, which is gennerated by GridUnnormal. | |||||
| *@par Inputs: | |||||
| *@li x: 4-D Tensor with shape `[batch, channels, height, width]`. | |||||
| *@li position: 4-D Tensor with shape `[batch, output_height, output_width, 2]`. | |||||
| *@par Attributes: | |||||
| *@li padding_mode: An optional string specifying the pad method. Only 'zeros' is supported for now . | |||||
| *@par Outputs: | |||||
| *y: Returns 4-D Tensor with the same dtype as `x`. | |||||
| */ | |||||
| REG_OP(ImageUnfold) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(position, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(padding_mode, String, "zeros") | |||||
| .OP_END_FACTORY_REG(ImageUnfold) | |||||
| /** | |||||
| *@brief This operation select images to warp_images according to offsets. | |||||
| *@par Inputs: | |||||
| *@li images: 4-D Tensor with shape `[batch, height, width, 3]`. | |||||
| *@li offsets: 4-D Tensor with shape `[batch, 4, new_height, new_width]`. | |||||
| *@par Outputs: | |||||
| *warp_images: Returns 5-D Tensor with shape | |||||
| `[batch, 4, new_height, new_width, 3]` and the same dtype as `images`. | |||||
| */ | |||||
| REG_OP(IMGWarpOffsets) | |||||
| .INPUT(images, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(offsets, TensorType({DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(warp_images, TensorType({DT_UINT8, DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(IMGWarpOffsets) | |||||
| /** | |||||
| *@brief This operation samples 3d input x by using interpolation based on flow field grid, | |||||
| which is usually gennerated by affine_grid. | |||||
| *@par Inputs: | |||||
| *@li x: 5-D Tensor with shape `[batch, channels, depth, height, width]`. | |||||
| *@li grid: flow field grid, 5-D Tensor with shape `[batch, depth, height, width, 2]`. | |||||
| *@par Attributes: | |||||
| *@li interpolation_mode: An optional string specifying the interpolation method. | |||||
| *@li padding_mode: An optional string specifying the pad method. | |||||
| *@li align_corners: An optional bool. If "true", the centers of the corner | |||||
| pixels of the input and output tensors are aligned. Defaults to "false" . | |||||
| *@par Outputs: | |||||
| *y: Returns 5-D Tensor with the same dtype as `x`. | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with pytorch GridSampler3D operator. | |||||
| *@par Restrictions: | |||||
| *Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(GridSampler3D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(grid, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(interpolation_mode, String, "bilinear") | |||||
| .ATTR(padding_mode, String, "zeros") | |||||
| .ATTR(align_corners, Bool, false) | |||||
| .OP_END_FACTORY_REG(GridSampler3D) | |||||
| /** | |||||
| *@brief Computes the gradients of GridSampler3D. | |||||
| *@par Inputs: | |||||
| *@li grad: 5-D Tensor with shape `[batch, channels, depth, height, width]`. | |||||
| *@li x: 5-D Tensor with shape `[batch, channels, depth, height, width]`. | |||||
| *@li grid: flow field grid, 5-D Tensor with shape `[batch, depth, height, width, 2]`. | |||||
| *@par Attributes: | |||||
| *@li interpolation_mode: An optional string specifying the interpolation method. | |||||
| *@li padding_mode: An optional string specifying the pad method. | |||||
| *@li align_corners: An optional bool. If "true", the centers of the corner | |||||
| pixels of the input and output tensors are aligned. Defaults to "false" . | |||||
| *@par Outputs: | |||||
| *dx: Returns 5-D Tensor with the same dtype and shape as `x`. | |||||
| *dgrid: Returns 5-D Tensor with the same dtype and shape as `grid`. | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with pytorch GridSampler3DGrad operator. | |||||
| *@par Restrictions: | |||||
| *Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(GridSampler3DGrad) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(grid, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(dgrid, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(interpolation_mode, String, "bilinear") | |||||
| .ATTR(padding_mode, String, "zeros") | |||||
| .ATTR(align_corners, Bool, false) | |||||
| .OP_END_FACTORY_REG(GridSampler3DGrad) | |||||
| } // namespace ge | |||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_IMAGE_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_IMAGE_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -61,8 +61,8 @@ REG_OP(CholeskyGrad) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input x has to be symmetric and positive definite.Inputs include: | *The input x has to be symmetric and positive definite.Inputs include: | ||||
| *x:A Tensor. Must be one of the following types: double, float32. Shape | |||||
| is [..., M, M] . \n | |||||
| *x:A Tensor. Must be one of the following types: double, float32, float16, | |||||
| complex64, complex128. Shape is [..., M, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor. Has the same type as x . \n | *y:A Tensor. Has the same type as x . \n | ||||
| @@ -76,10 +76,31 @@ form square matrices. | |||||
| */ | */ | ||||
| REG_OP(Cholesky) | REG_OP(Cholesky) | ||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, \ | |||||
| DT_FLOAT16, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, \ | |||||
| DT_FLOAT16, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(Cholesky) | .OP_END_FACTORY_REG(Cholesky) | ||||
| /** | |||||
| *@brief Computes the outer product of two 1D vectors . \n | |||||
| *@par Inputs: | |||||
| *The input x1 and x2 has to be a 1D vector.Inputs include: | |||||
| *@li x1:A Tensor. Must be one of the following types: float16, float32. | |||||
| Shape is [N] . \n | |||||
| *@li x2:A Tensor. Must have the same type as x. Shape is [M] . \n | |||||
| *@par Outputs: | |||||
| *y:A Tensor. Has the same type as x . \n | |||||
| */ | |||||
| REG_OP(Ger) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(Ger) | |||||
| /** | /** | ||||
| *@brief Computes the sign and the log of the absolute value of the determinant | *@brief Computes the sign and the log of the absolute value of the determinant | ||||
| of one or more square matrices . \n | of one or more square matrices . \n | ||||
| @@ -87,8 +108,8 @@ of one or more square matrices . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | ||||
| form square matrices. Inputs include: | form square matrices. Inputs include: | ||||
| *x:A Tensor. Must be one of the following types: double, float32. Shape is | |||||
| [..., M, M] . \n | |||||
| *x:A Tensor. Must be one of the following types: double, float32, | |||||
| complex64, complex128. Shape is [..., M, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *@li y:A Tensor. Has the same type as x. | *@li y:A Tensor. Has the same type as x. | ||||
| @@ -103,9 +124,9 @@ form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(LogMatrixDeterminant) | REG_OP(LogMatrixDeterminant) | ||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(sign, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(sign, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(LogMatrixDeterminant) | .OP_END_FACTORY_REG(LogMatrixDeterminant) | ||||
| /** | /** | ||||
| @@ -114,8 +135,8 @@ REG_OP(LogMatrixDeterminant) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | ||||
| form square matrices. Inputs include: | form square matrices. Inputs include: | ||||
| *x:A Tensor. Must be one of the following types: double, float32. Shape is | |||||
| [..., M, M] . \n | |||||
| *x:A Tensor. Must be one of the following types: double, float32, complex64, | |||||
| complex128. Shape is [..., M, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A Tensor. Has the same type as x . \n | *y:A Tensor. Has the same type as x . \n | ||||
| @@ -129,8 +150,8 @@ form square matrices. | |||||
| */ | */ | ||||
| REG_OP(MatrixDeterminant) | REG_OP(MatrixDeterminant) | ||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(MatrixDeterminant) | .OP_END_FACTORY_REG(MatrixDeterminant) | ||||
| /** | /** | ||||
| @@ -140,8 +161,7 @@ their adjoints (conjugate transposes) . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input x is a tensor of shape [..., M, M] whose inner-most 2 dimensions | *The input x is a tensor of shape [..., M, M] whose inner-most 2 dimensions | ||||
| form square matrices. Inputs include: | form square matrices. Inputs include: | ||||
| *x:A Tensor. Must be one of the following types: double, float. Shape is | |||||
| [..., M, M] . \n | |||||
| *x:A Tensor of input. Shape is [..., M, M] . \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *adjoint:An optional bool. Defaults to False.Boolean indicating whether to | *adjoint:An optional bool. Defaults to False.Boolean indicating whether to | ||||
| @@ -159,8 +179,8 @@ form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(MatrixInverse) | REG_OP(MatrixInverse) | ||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(adjoint, Bool, false) | .ATTR(adjoint, Bool, false) | ||||
| .OP_END_FACTORY_REG(MatrixInverse) | .OP_END_FACTORY_REG(MatrixInverse) | ||||
| @@ -169,8 +189,7 @@ REG_OP(MatrixInverse) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input rhs must have the same type as matrix. Inputs include: | *The input rhs must have the same type as matrix. Inputs include: | ||||
| *@li matrix:A Tensor. Must be one of the following types: double, float. | |||||
| Shape is [..., M, M]. | |||||
| *@li matrix:A Tensor of input. Shape is [..., M, M]. | |||||
| *@li rhs:A Tensor. Must have the same type as matrix. Shape is [..., M, K] . \n | *@li rhs:A Tensor. Must have the same type as matrix. Shape is [..., M, K] . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -189,9 +208,9 @@ dimensions form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(MatrixSolve) | REG_OP(MatrixSolve) | ||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(adjoint, Bool, false) | .ATTR(adjoint, Bool, false) | ||||
| .OP_END_FACTORY_REG(MatrixSolve) | .OP_END_FACTORY_REG(MatrixSolve) | ||||
| @@ -221,8 +240,8 @@ dimensions form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(MatrixSolveLs) | REG_OP(MatrixSolveLs) | ||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(l2, TensorType({DT_DOUBLE})) | .INPUT(l2, TensorType({DT_DOUBLE})) | ||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | ||||
| .ATTR(fast, Bool, true) | .ATTR(fast, Bool, true) | ||||
| @@ -234,8 +253,7 @@ matrices by backsubstitution . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input rhs must have the same type as matrix. Inputs include: | *The input rhs must have the same type as matrix. Inputs include: | ||||
| *@li matrix: A Tensor. Must be one of the following types: double, float. | |||||
| Shape is [..., M, M]. | |||||
| *@li matrix: A Tensor. Shape is [..., M, M]. | |||||
| *@li rhs:A Tensor. Must have the same type as matrix. Shape is [..., M, K] . \n | *@li rhs:A Tensor. Must have the same type as matrix. Shape is [..., M, K] . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -256,9 +274,9 @@ dimensions form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(MatrixTriangularSolve) | REG_OP(MatrixTriangularSolve) | ||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(lower, Bool, true) | .ATTR(lower, Bool, true) | ||||
| .ATTR(adjoint, Bool, false) | .ATTR(adjoint, Bool, false) | ||||
| .OP_END_FACTORY_REG(MatrixTriangularSolve) | .OP_END_FACTORY_REG(MatrixTriangularSolve) | ||||
| @@ -268,8 +286,7 @@ REG_OP(MatrixTriangularSolve) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *The input shape of x must be [..., M, N]. Inputs include: | *The input shape of x must be [..., M, N]. Inputs include: | ||||
| *x:A Tensor whose shape is [..., M, N]. Must be one of the following types: | |||||
| double, float . \n | |||||
| *x:A Tensor whose shape is [..., M, N]. \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *full_matrices: An optional bool. Defaults to False. If true, compute | *full_matrices: An optional bool. Defaults to False. If true, compute | ||||
| @@ -289,9 +306,12 @@ dimensions form matrices of size [M, N]. \n | |||||
| */ | */ | ||||
| REG_OP(Qr) | REG_OP(Qr) | ||||
| .INPUT(x, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE })) | |||||
| .OUTPUT(q, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE })) | |||||
| .OUTPUT(r, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE })) | |||||
| .INPUT(x, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .OUTPUT(q, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .OUTPUT(r, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ | |||||
| DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .ATTR(full_matrices, Bool, false) | .ATTR(full_matrices, Bool, false) | ||||
| .OP_END_FACTORY_REG(Qr) | .OP_END_FACTORY_REG(Qr) | ||||
| @@ -320,12 +340,40 @@ form square matrices. \n | |||||
| */ | */ | ||||
| REG_OP(SelfAdjointEig) | REG_OP(SelfAdjointEig) | ||||
| .INPUT(x, TensorType({ DT_DOUBLE, DT_FLOAT })) | |||||
| .OUTPUT(eigen_value, TensorType({ DT_DOUBLE, DT_FLOAT })) | |||||
| .OUTPUT(eigen_vector, TensorType({ DT_DOUBLE, DT_FLOAT })) | |||||
| .INPUT(x, TensorType({ DT_DOUBLE, DT_FLOAT, DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .OUTPUT(eigen_value, TensorType({ DT_DOUBLE, DT_FLOAT, DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .OUTPUT(eigen_vector, TensorType({ DT_DOUBLE, DT_FLOAT, DT_COMPLEX64, DT_COMPLEX128 })) | |||||
| .ATTR(compute_v, Bool, true) | .ATTR(compute_v, Bool, true) | ||||
| .OP_END_FACTORY_REG(SelfAdjointEig) | .OP_END_FACTORY_REG(SelfAdjointEig) | ||||
| /** | |||||
| *@brief Computes the sign and the log of the absolute value of the determinant | |||||
| of one or more square matrices . \n | |||||
| *@par Inputs: | |||||
| *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||||
| form square matrices. Inputs include: | |||||
| *x:A Tensor. Must be one of the following types: double, float32, float16 | |||||
| Shape is [..., M, M] . \n | |||||
| *@par Outputs: | |||||
| *@li y:A Tensor. Has the same type as x. | |||||
| *@li sign:A Tensor. Has the same type as x . \n | |||||
| *@attention Constraints: | |||||
| *The input x is a tensor of shape [N, M, M] whose inner-most 2 dimensions | |||||
| form square matrices. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with tensorflow LogMatrixDeterminant operator. | |||||
| */ | |||||
| REG_OP(Slogdet) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(sign, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||||
| .OP_END_FACTORY_REG(Slogdet) | |||||
| /** | /** | ||||
| *@brief Computes the singular value decompositions of one or more matrices . \n | *@brief Computes the singular value decompositions of one or more matrices . \n | ||||
| @@ -384,8 +432,8 @@ of the rows encoded as a list of indices in `0..M-1`. Shape is `[..., M]` . \n | |||||
| */ | */ | ||||
| REG_OP(Lu) | REG_OP(Lu) | ||||
| .INPUT(input, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(lu, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(input, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(lu, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(p, TensorType({DT_INT32, DT_INT64})) | .OUTPUT(p, TensorType({DT_INT32, DT_INT64})) | ||||
| .REQUIRED_ATTR(output_idx_type, Type) | .REQUIRED_ATTR(output_idx_type, Type) | ||||
| .OP_END_FACTORY_REG(Lu) | .OP_END_FACTORY_REG(Lu) | ||||
| @@ -404,8 +452,8 @@ y: Shape is `[..., M, M]` . \n | |||||
| */ | */ | ||||
| REG_OP(MatrixSquareRoot) | REG_OP(MatrixSquareRoot) | ||||
| .INPUT(input, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(input, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(MatrixSquareRoot) | .OP_END_FACTORY_REG(MatrixSquareRoot) | ||||
| /** | /** | ||||
| @@ -424,9 +472,9 @@ y: Tensor of shape `[..., M, K]` containing the solutions \n | |||||
| */ | */ | ||||
| REG_OP(TridiagonalSolve) | REG_OP(TridiagonalSolve) | ||||
| .INPUT(diagonals, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(diagonals, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(partial_pivoting, Bool, true) | .ATTR(partial_pivoting, Bool, true) | ||||
| .OP_END_FACTORY_REG(TridiagonalSolve) | .OP_END_FACTORY_REG(TridiagonalSolve) | ||||
| @@ -0,0 +1,504 @@ | |||||
| /** | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| /*! | |||||
| * \file list_ops.h | |||||
| * \brief | |||||
| */ | |||||
| #ifndef OPS_BUILT_IN_OP_PROTO_INC_LIST_OPS_H_ | |||||
| #define OPS_BUILT_IN_OP_PROTO_INC_LIST_OPS_H_ | |||||
| #include <algorithm> | |||||
| #include "graph/operator_reg.h" | |||||
| #include "graph/operator.h" | |||||
| namespace ge { | |||||
| /** | |||||
| *@brief Creates and returns an empty tensor list. \n | |||||
| *@par Inputs: | |||||
| *@li element_shape: A shape compatible with that of elements in the list. | |||||
| *@li max_num_elements: The maximum number of elements. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li handle: An empty tensor list . \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow EmptyTensorList operator. | |||||
| */ | |||||
| REG_OP(EmptyTensorList) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(max_num_elements, TensorType({DT_INT32})) | |||||
| .OUTPUT(handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(EmptyTensorList) | |||||
| /** | |||||
| *@brief Returns a list which has the passed-in `Tensor` as last element | |||||
| and the other elements of the given list in `input_handle`. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The old list. | |||||
| *@li tensor: The tensor to put on the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle:A list with the elements of old list followed by tensor. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListPushBack operator. | |||||
| */ | |||||
| REG_OP(TensorListPushBack) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL,DT_RESOURCE, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListPushBack) | |||||
| /** | |||||
| *@brief The last element of the input list as well as a | |||||
| list with all but that element. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. | |||||
| *@li element_shape: A shape compatible with that of elements in the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle:A list with the elements of the old list followed by tensor. | |||||
| *@li tensor:The withdrawn last element of the list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListPopBack operator. | |||||
| */ | |||||
| REG_OP(TensorListPopBack) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .OUTPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL,DT_RESOURCE, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListPopBack) | |||||
| /** | |||||
| *@brief The number of tensors in the input tensor list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. \n | |||||
| *@par Outputs: | |||||
| *@li length:The number of tensors in the list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListLength operator. | |||||
| */ | |||||
| REG_OP(TensorListLength) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .OUTPUT(length, TensorType({DT_INT32})) | |||||
| .OP_END_FACTORY_REG(TensorListLength) | |||||
| /** | |||||
| *@brief The shape of elements in the input tensor list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. \n | |||||
| *@par Attributes: | |||||
| *@li shape_type: The type of shape in the list. \n | |||||
| *@par Outputs: | |||||
| *@li element_shape:A shape compatible with that of elements in the list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListElementShape operator. | |||||
| */ | |||||
| REG_OP(TensorListElementShape) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .OUTPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .ATTR(shape_type, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListElementShape) | |||||
| /** | |||||
| *@brief List of the given size with empty elements. \n | |||||
| *@par Inputs: | |||||
| *@li element_shape: A shape compatible with that of elements in the list. | |||||
| *@li num_elements: The number of elements to reserve. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. | |||||
| *@li shape_type: The type of shape in the list. \n | |||||
| *@par Outputs: | |||||
| *@li handle: An output tensor list . \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListReserve operator. | |||||
| */ | |||||
| REG_OP(TensorListReserve) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(num_elements, TensorType({DT_INT32})) | |||||
| .OUTPUT(handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .ATTR(shape_type, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListReserve) | |||||
| /** | |||||
| *@brief Get input tensor list elements of index position. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. | |||||
| *@li index: A tensor of position. | |||||
| *@li element_shape: A shape compatible with that of elements in the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li item: An output tensor value of index position . \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListGetItem operator. | |||||
| */ | |||||
| REG_OP(TensorListGetItem) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(index, TensorType({DT_INT32})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32})) | |||||
| .OUTPUT(item, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListGetItem) | |||||
| /** | |||||
| *@brief Sets the index-th position of the list to contain the given tensor. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. | |||||
| *@li index: The position in the list to which the tensor will be assigned. | |||||
| *@li item: The element to be assigned to that position. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: An output tensor list . \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListSetItem operator. | |||||
| */ | |||||
| REG_OP(TensorListSetItem) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(index, TensorType({DT_INT32})) | |||||
| .INPUT(item, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL,DT_RESOURCE, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListSetItem) | |||||
| /** | |||||
| *@brief Push tensor to list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handles: The input tensor lists. | |||||
| *@li tensor: The tensor push into tensor list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handles: The output tensor lists. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListPushBackBatch operator. | |||||
| */ | |||||
| REG_OP(TensorListPushBackBatch) | |||||
| .INPUT(input_handles, TensorType({DT_VARIANT})) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(output_handles, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListPushBackBatch) | |||||
| /** | |||||
| *@brief Stacks all tensors in the list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input tensor list. | |||||
| *@li element_shape: A shape compatible with that of elements in the tensor. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. | |||||
| *@li num_elements: The number of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li tensor: The tensor of list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListStack operator. | |||||
| */ | |||||
| REG_OP(TensorListStack) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32})) | |||||
| .OUTPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .ATTR(num_elements, Int, -1) | |||||
| .OP_END_FACTORY_REG(TensorListStack) | |||||
| /** | |||||
| *@brief Concats all tensors in the list along the 0th dimension. | |||||
| Requires that all tensors have the same shape except the first dimension. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input list. | |||||
| *@li element_shape: The shape of the uninitialized elements in the list. | |||||
| If the first dimension is not -1, it is assumed that all list elements have | |||||
| the same leading dim. | |||||
| *@li leading_dims: The list of leading dims of uninitialized list elements. Used if | |||||
| the leading dim of input_handle.element_shape or the element_shape input arg | |||||
| is not already set. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li tensor: The concated result. | |||||
| *@li lengths: Output tensor containing sizes of the 0th dimension of tensors | |||||
| in the list, used for computing the gradient. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListConcatV2 operator. | |||||
| */ | |||||
| REG_OP(TensorListConcatV2) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(leading_dims, TensorType({DT_INT64})) | |||||
| .OUTPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(lengths, TensorType({DT_INT64})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListConcatV2) | |||||
| /** | |||||
| *@brief Splits a tensor into a list. \n | |||||
| *@par Inputs: | |||||
| *@li tensor: The input tensor. | |||||
| *@li element_shape: A shape compatible with that of elements in the tensor. | |||||
| *@li lengths: Vector of sizes of the 0th dimension of tensors in the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: The list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListSplit operator. | |||||
| */ | |||||
| REG_OP(TensorListSplit) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(lengths, TensorType({DT_INT64})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListSplit) | |||||
| /** | |||||
| *@brief Creates a TensorList which, when stacked, has the value of `tensor`. \n | |||||
| *@par Inputs: | |||||
| *@li tensor: The input tensor. | |||||
| *@li element_shape: The shape of elements in the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: An output tensor list . \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListFromTensor operator. | |||||
| */ | |||||
| REG_OP(TensorListFromTensor) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListFromTensor) | |||||
| /** | |||||
| *@brief Resizes the list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input tensor list. | |||||
| *@li size: size of the output list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: The output tensor list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListResize operator. | |||||
| */ | |||||
| REG_OP(TensorListResize) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(size, TensorType({DT_INT32})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .OP_END_FACTORY_REG(TensorListResize) | |||||
| /** | |||||
| *@brief Creates a Tensor by indexing into the TensorList. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input tensor list. | |||||
| *@li indices: The indices used to index into the list. | |||||
| *@li element_shape: The shape of elements in the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li values: The tensor. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListGather operator. | |||||
| */ | |||||
| REG_OP(TensorListGather) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32})) | |||||
| .OUTPUT(values, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListGather) | |||||
| /** | |||||
| *@brief Creates a TensorList by indexing into a Tensor. \n | |||||
| *@par Inputs: | |||||
| *@li tensor: The input tensor. | |||||
| *@li indices: The indices used to index into the list. | |||||
| *@li element_shape: The shape of the elements in the list (can be less specified than | |||||
| the shape of the tensor). | |||||
| *@li num_elements: The size of the output list. Must be large enough to accommodate | |||||
| the largest index in indices. If -1, the list is just large enough to include | |||||
| the largest index in indices. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: The TensorList. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListScatterV2 operator. | |||||
| */ | |||||
| REG_OP(TensorListScatterV2) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(element_shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(num_elements, TensorType({DT_INT32})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListScatterV2) | |||||
| /** | |||||
| *@brief Scatters tensor at indices in an input list. \n | |||||
| *@par Inputs: | |||||
| *@li input_handle: The input tensor list. | |||||
| *@li tensor: The input tensor. | |||||
| *@li indices: The indices used to index into the list. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output_handle: The TensorList. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListScatterIntoExistingList operator. | |||||
| */ | |||||
| REG_OP(TensorListScatterIntoExistingList) | |||||
| .INPUT(input_handle, TensorType({DT_VARIANT})) | |||||
| .INPUT(tensor, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT8, | |||||
| DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_QINT8,DT_QUINT8, | |||||
| DT_QINT16,DT_QUINT16,DT_QINT32,DT_BOOL, | |||||
| DT_STRING,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .OUTPUT(output_handle, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListScatterIntoExistingList) | |||||
| /** | |||||
| *@brief Concat two tensor lists to a new tensor list. \n | |||||
| *@par Inputs: | |||||
| *@li input_a: The input tensor list A. | |||||
| *@li input_b: The input tensor list B. \n | |||||
| *@par Attributes: | |||||
| *@li element_dtype: The type of elements in the list. \n | |||||
| *@par Outputs: | |||||
| *@li output: The output list. \n | |||||
| *@par Third-party framework compatibility. | |||||
| *Compatible with tensorflow TensorListConcatLists operator. | |||||
| */ | |||||
| REG_OP(TensorListConcatLists) | |||||
| .INPUT(input_a, TensorType({DT_VARIANT})) | |||||
| .INPUT(input_b, TensorType({DT_VARIANT})) | |||||
| .OUTPUT(output, TensorType({DT_VARIANT})) | |||||
| .ATTR(element_dtype, Type, DT_INT32) | |||||
| .OP_END_FACTORY_REG(TensorListConcatLists) | |||||
| } // namespace ge | |||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_LIST_OPS_H_ | |||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -222,6 +222,24 @@ REG_OP(Bucketize) | |||||
| .REQUIRED_ATTR(boundaries, ListFloat) | .REQUIRED_ATTR(boundaries, ListFloat) | ||||
| .OP_END_FACTORY_REG(Bucketize) | .OP_END_FACTORY_REG(Bucketize) | ||||
| /** | |||||
| *@brief Returns a new tensor with the truncated integer values of the elements of input. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: float16, float32, int8, uint8, int32. \n | |||||
| *@par Outputs: | |||||
| *y: A tensor with the same type and shape of input_x \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Trunc. \n | |||||
| */ | |||||
| REG_OP(Trunc) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16,DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT16,DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8})) | |||||
| .OP_END_FACTORY_REG(Trunc) | |||||
| /** | /** | ||||
| *@brief Computes the sum along sparse segments of a tensor . \n | *@brief Computes the sum along sparse segments of a tensor . \n | ||||
| @@ -365,6 +383,27 @@ REG_OP(GetNext) | |||||
| .ATTR(channel_name, String, "") | .ATTR(channel_name, String, "") | ||||
| .OP_END_FACTORY_REG(GetNext) | .OP_END_FACTORY_REG(GetNext) | ||||
| /** | |||||
| *@brief Get dynamic dims after GetNext. \n | |||||
| *@par Inputs: | |||||
| *input: A nested structure of Tensor objects, from GetNext's output. \n | |||||
| *@par Attributes: | |||||
| *@li shape_info: GE shape_info for each inputs, -1 means unknow dim. | |||||
| *@li N: Inputs number. \n | |||||
| *@par Outputs: | |||||
| *dims: GE unknow dims, a vector of int64. \n | |||||
| */ | |||||
| REG_OP(GetDynamicDims) | |||||
| .DYNAMIC_INPUT(input, TensorType({DT_INT32, DT_INT64})) | |||||
| .OUTPUT(dims, TensorType({DT_INT32, DT_INT64})) | |||||
| .REQUIRED_ATTR(shape_info, ListInt) | |||||
| .REQUIRED_ATTR(N, Int) | |||||
| .OP_END_FACTORY_REG(GetDynamicDims) | |||||
| /** | /** | ||||
| *@brief End of sequence . \n | *@brief End of sequence . \n | ||||
| @@ -494,6 +533,29 @@ REG_OP(NextAfter) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) | .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) | ||||
| .OP_END_FACTORY_REG(NextAfter) | .OP_END_FACTORY_REG(NextAfter) | ||||
| /** | |||||
| *@brief Calculate the P-norm distance between vectors function. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| *@li p: An optional float.Defaults to 2. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type and shape of input_x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Pdist. \n | |||||
| */ | |||||
| REG_OP(Pdist) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(p, Float, 2.0) | |||||
| .OP_END_FACTORY_REG(Pdist) | |||||
| /** | /** | ||||
| *@brief Compute element-wise finiteness, return a boolean tensor. | *@brief Compute element-wise finiteness, return a boolean tensor. | ||||
| @@ -624,6 +686,7 @@ REG_OP(NLLLoss) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT})) | .OUTPUT(y, TensorType({DT_FLOAT})) | ||||
| .OUTPUT(total_weight, TensorType({DT_FLOAT})) | .OUTPUT(total_weight, TensorType({DT_FLOAT})) | ||||
| .ATTR(reduction, String, "mean") | .ATTR(reduction, String, "mean") | ||||
| .ATTR(ignore_index, Int, -100) | |||||
| .OP_END_FACTORY_REG(NLLLoss) | .OP_END_FACTORY_REG(NLLLoss) | ||||
| /** | /** | ||||
| @@ -653,6 +716,7 @@ REG_OP(NLLLossGrad) | |||||
| .INPUT(total_weight, TensorType({DT_FLOAT})) | .INPUT(total_weight, TensorType({DT_FLOAT})) | ||||
| .OUTPUT(x_grad, TensorType({DT_FLOAT})) | .OUTPUT(x_grad, TensorType({DT_FLOAT})) | ||||
| .ATTR(reduction, String, "mean") | .ATTR(reduction, String, "mean") | ||||
| .ATTR(ignore_index, Int, -100) | |||||
| .OP_END_FACTORY_REG(NLLLossGrad) | .OP_END_FACTORY_REG(NLLLossGrad) | ||||
| /** | /** | ||||
| @@ -710,6 +774,9 @@ REG_OP(IFMR) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with mindspore | *Compatible with mindspore | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(WtsARQ) | REG_OP(WtsARQ) | ||||
| @@ -741,6 +808,9 @@ REG_OP(WtsARQ) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with mindspore | *Compatible with mindspore | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(ActsULQ) | REG_OP(ActsULQ) | ||||
| @@ -748,8 +818,8 @@ REG_OP(ActsULQ) | |||||
| .INPUT(clamp_min, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(clamp_min, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(clamp_max, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(clamp_max, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(clamp_min_mask, TensorType({DT_BOOL})) | |||||
| .OUTPUT(clamp_max_mask, TensorType({DT_BOOL})) | |||||
| .OUTPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .ATTR(fixed_min, Bool, false) | .ATTR(fixed_min, Bool, false) | ||||
| .ATTR(num_bits, Int, 8) | .ATTR(num_bits, Int, 8) | ||||
| @@ -768,12 +838,15 @@ REG_OP(ActsULQ) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with mindspore | *Compatible with mindspore | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(ActsULQInputGrad) | REG_OP(ActsULQInputGrad) | ||||
| .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(clamp_min_mask, TensorType({DT_BOOL})) | |||||
| .INPUT(clamp_max_mask, TensorType({DT_BOOL})) | |||||
| .INPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(x_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(x_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(ActsULQInputGrad) | .OP_END_FACTORY_REG(ActsULQInputGrad) | ||||
| @@ -790,11 +863,14 @@ REG_OP(ActsULQInputGrad) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with mindspore | *Compatible with mindspore | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(ActULQClampMaxGrad) | REG_OP(ActULQClampMaxGrad) | ||||
| .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(clamp_max_mask, TensorType({DT_BOOL})) | |||||
| .INPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(clamp_max_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(clamp_max_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(ActULQClampMaxGrad) | .OP_END_FACTORY_REG(ActULQClampMaxGrad) | ||||
| @@ -812,15 +888,182 @@ REG_OP(ActULQClampMaxGrad) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| *Compatible with mindspore | *Compatible with mindspore | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(ActULQClampMinGrad) | REG_OP(ActULQClampMinGrad) | ||||
| .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(clamp_min_mask, TensorType({DT_BOOL})) | |||||
| .INPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(clamp_min_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(clamp_min_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(ActULQClampMinGrad) | .OP_END_FACTORY_REG(ActULQClampMinGrad) | ||||
| /** | |||||
| * @brief Computes Lp norm. | |||||
| * @par Inputs: | |||||
| * @li x: An ND tensor of type float16, float32. \n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li p: Int, "inf" or "-inf", default value is 2. | |||||
| * @li axes: ListInt, {} means all axes will be computed. | |||||
| * @li keepdim: Bool, default is false. | |||||
| * @li epsilon: Float, default is 1e-12. \n | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor of type float16, float32. The shape of y is depending | |||||
| * on axes and keepdim. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator LpNorm. | |||||
| */ | |||||
| REG_OP(LpNorm) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(p, Int, 2) | |||||
| .ATTR(axes, ListInt, {}) | |||||
| .ATTR(keepdim, Bool, false) | |||||
| .ATTR(epsilon, Float, 1e-12) | |||||
| .OP_END_FACTORY_REG(LpNorm) | |||||
| /** | |||||
| * @brief get complex. | |||||
| * @par Inputs: | |||||
| * @li real: An ND tensor of type float32. double | |||||
| * @li imag: An ND tensor of type float32. double \n | |||||
| * | |||||
| * @par Outputs: | |||||
| * @li out: An ND tensor of type complex64, complex128 \n | |||||
| */ | |||||
| REG_OP(Complex) | |||||
| .INPUT(real, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .INPUT(imag, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .OUTPUT(out, TensorType({DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(Tout, Type, DT_COMPLEX64) | |||||
| .OP_END_FACTORY_REG(Complex) | |||||
| /** | |||||
| * @brief deal complex. | |||||
| * @par Inputs: | |||||
| * @li input: An ND tensor of type complex64, complex128 \n | |||||
| * | |||||
| * @par Outputs: | |||||
| * @li output: An ND tensor of type float32. double \n | |||||
| */ | |||||
| REG_OP(Imag) | |||||
| .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(Tout, Type, DT_FLOAT) | |||||
| .OP_END_FACTORY_REG(Imag) | |||||
| /** | |||||
| * @brief deal complex. | |||||
| * @par Inputs: | |||||
| * @li input: An ND tensor of type complex64, complex128 \n | |||||
| * | |||||
| * @par Outputs: | |||||
| * @li output: An ND tensor of type float32. double \n | |||||
| */ | |||||
| REG_OP(Angle) | |||||
| .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) | |||||
| .ATTR(Tout, Type, DT_FLOAT) | |||||
| .OP_END_FACTORY_REG(Angle) | |||||
| /** | |||||
| *@brief Computes the gradient of SoftMarginLossGrad. \n | |||||
| *@par Inputs: | |||||
| *Three inputs, including: | |||||
| * @li predict: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li label: A tensor with same shape of predict. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li dout: A tensor with same shpae of predcit. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| * @li reduction: Specifies the reduction to apply to the output: | |||||
| * 'none' | 'mean' | 'sum'. Default: 'mean'. \n | |||||
| *@par Outputs: | |||||
| * gradient: A Tensor with the same type of predict. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator SoftMarginLoss Backward. \n | |||||
| */ | |||||
| REG_OP(SoftMarginLossGrad) | |||||
| .INPUT(predict, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(label, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(dout, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(gradient, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(SoftMarginLossGrad) | |||||
| /** | |||||
| *@brief Computes batched the p-norm distance between each pair of | |||||
| *the two collections of row vectors. \n | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li x1: A tensor with shpae: BxPXM. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li x2: A tensor with shpae: BxRxM. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| * @li p: An optional float >= 0 or inf. Defaults to 2.0. \n | |||||
| *@par Outputs: | |||||
| * y: A Tensor with the same type of x1's and with shape BxPxR. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Cdist. \n | |||||
| */ | |||||
| REG_OP(Cdist) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(p, Float, 2.0) | |||||
| .OP_END_FACTORY_REG(Cdist) | |||||
| /** | |||||
| *@brief Computes the grad of x1 in cdist. \n | |||||
| *@par Inputs: | |||||
| *Four inputs, including: | |||||
| * @li grad: Grad with shape BxPxR. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li x1: A tensor with shpae: BxPXM. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li x2: A tensor with shpae: BxRxM. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li cdist: Output tensor of cdist forward with shpae: BxPXR. | |||||
| * Must be one of the following types: float16, float32. \n | |||||
| *@par Attributes: | |||||
| * @li p: An optional float >= 0 or inf. Defaults to 2.0. \n | |||||
| *@par Outputs: | |||||
| * y: A Tensor with the same type and shape of x1's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Cdist Backward. \n | |||||
| */ | |||||
| REG_OP(CdistGrad) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(cdist, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .ATTR(p, Float, 2.0) | |||||
| .OP_END_FACTORY_REG(CdistGrad) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -38,8 +38,8 @@ namespace ge { | |||||
| * float32, int32. Has format [ND, NHWC] . \n | * float32, int32. Has format [ND, NHWC] . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li transpose_a: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
| *@li transpose_b: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
| *@li transpose_x1: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
| *@li transpose_x2: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: The result matrix Tensor. 2D. Must be one of the following types: float16, | *y: The result matrix Tensor. 2D. Must be one of the following types: float16, | ||||
| @@ -70,8 +70,8 @@ REG_OP(MatMul) | |||||
| * float32, int32. Has format [ND, NHWC] . \n | * float32, int32. Has format [ND, NHWC] . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li transpose_a: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
| *@li transpose_b: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
| *@li transpose_x1: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
| *@li transpose_x2: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: The result matrix Tensor. 2D. Must be one of the following types: float16, | *y: The result matrix Tensor. 2D. Must be one of the following types: float16, | ||||
| @@ -91,6 +91,36 @@ REG_OP(MatMulV2) | |||||
| .ATTR(offset_x, Int, 0) | .ATTR(offset_x, Int, 0) | ||||
| .OP_END_FACTORY_REG(MatMulV2) | .OP_END_FACTORY_REG(MatMulV2) | ||||
| /** | |||||
| *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li x1: A matrix Tensor. 2D. Must be one of the following types: int8. | |||||
| * @li x2: A matrix Tensor. 2D. Must be one of the following types: int8. | |||||
| * @li compress_index: A compress index matrix of type int8. | |||||
| * @li bias: A 1D Tensor. Must be one of the following types: int32, float16. | |||||
| *@par Attributes: | |||||
| *@li transpose_x1: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. | |||||
| *@li transpose_x2: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n | |||||
| *@par Outputs: | |||||
| *y: The result matrix Tensor. 2D. Must be one of the following types: float16, | |||||
| * int32. \n | |||||
| */ | |||||
| REG_OP(MatMulV2Compress) | |||||
| .INPUT(x1, TensorType({DT_INT8})) | |||||
| .INPUT(x2, TensorType({DT_INT8})) | |||||
| .INPUT(compress_index, TensorType({DT_INT8})) | |||||
| .OPTIONAL_INPUT(bias, TensorType({DT_INT32, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_INT32, DT_FLOAT16})) | |||||
| .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||||
| .ATTR(transpose_x1, Bool, false) | |||||
| .ATTR(transpose_x2, Bool, false) | |||||
| .ATTR(offset_x, Int, 0) | |||||
| .OP_END_FACTORY_REG(MatMulV2Compress) | |||||
| /** | /** | ||||
| *@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n | *@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n | ||||
| @@ -149,15 +179,15 @@ REG_OP(GEMM) | |||||
| *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *Three inputs, including: | |||||
| *Two inputs, including: | |||||
| * @li x1: A matrix Tensor. Must be one of the following types: float16, | * @li x1: A matrix Tensor. Must be one of the following types: float16, | ||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. | * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. | ||||
| * @li x2: A matrix Tensor. Must be one of the following types: float16, | * @li x2: A matrix Tensor. Must be one of the following types: float16, | ||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li adj_x: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||||
| *@li adj_y: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||||
| *@li adj_x1: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||||
| *@li adj_x2: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | *y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | ||||
| @@ -175,6 +205,42 @@ REG_OP(BatchMatMul) | |||||
| .ATTR(adj_x2, Bool, false) | .ATTR(adj_x2, Bool, false) | ||||
| .OP_END_FACTORY_REG(BatchMatMul) | .OP_END_FACTORY_REG(BatchMatMul) | ||||
| /** | |||||
| * @brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li x1: A matrix Tensor. Must be one of the following types: float16, | |||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. | |||||
| * @li x2: A matrix Tensor. Must be one of the following types: float16, | |||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | |||||
| * @li bias: A matrix Tensor. Must be one of the following types: float16, | |||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n | |||||
| * @par Attributes: | |||||
| * @li adj_x1: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. | |||||
| * @li adj_x2: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n | |||||
| * @par Outputs: | |||||
| * y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, | |||||
| * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. Has the same shape length as "x1" and "x2" . \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator BatchMatmul. | |||||
| */ | |||||
| REG_OP(BatchMatMulV2) | |||||
| .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) | |||||
| .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||||
| .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||||
| .ATTR(adj_x1, Bool, false) | |||||
| .ATTR(adj_x2, Bool, false) | |||||
| .ATTR(offset_x, Int, 0) | |||||
| .OP_END_FACTORY_REG(BatchMatMulV2) | |||||
| /** | /** | ||||
| *@brief Computes half the L2 norm of a tensor without the sqrt . \n | *@brief Computes half the L2 norm of a tensor without the sqrt . \n | ||||
| @@ -334,7 +400,7 @@ REG_OP(MatrixSetDiagD) | |||||
| * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | ||||
| * uint64 | * uint64 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32, int64 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float32, int8, uint8, double, | *Must be one of the following types: float16, float32, int8, uint8, double, | ||||
| * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, | ||||
| @@ -378,6 +444,9 @@ REG_OP(ScatterNdUpdate) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator TensorScatterUpdate. | * Compatible with the TensorFlow operator TensorScatterUpdate. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(TensorScatterUpdate) | REG_OP(TensorScatterUpdate) | ||||
| .INPUT(x, TensorType::BasicType()) | .INPUT(x, TensorType::BasicType()) | ||||
| @@ -386,6 +455,34 @@ REG_OP(TensorScatterUpdate) | |||||
| .OUTPUT(y, TensorType::BasicType()) | .OUTPUT(y, TensorType::BasicType()) | ||||
| .OP_END_FACTORY_REG(TensorScatterUpdate) | .OP_END_FACTORY_REG(TensorScatterUpdate) | ||||
| /** | |||||
| *@brief Uses "updates" to update tensor "data" by "indices". \n | |||||
| *@par Inputs: | |||||
| * Three inputs, including: | |||||
| *@li data: An ND Tensor . \n | |||||
| *Must be one of the following types: float16, float32, int32, int8, uint8 | |||||
| *@li indices: An ND Tensor of type int32 or int64 | |||||
| *@li updates: An Tensor. Same shape as indices. format:NCHW, NHWC . \n | |||||
| *Must be one of the following types: float16, float32, int32, int8, uint8 | |||||
| *@par Attributes: | |||||
| *@li axis: An optional attribute. Defaults to 0. | |||||
| *@par Outputs: | |||||
| *y: A Tensor. Has the same type and format as input "data" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator ScatterElements. | |||||
| */ | |||||
| REG_OP(ScatterElements) | |||||
| .INPUT(data, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(axis, Int, 0) | |||||
| .OP_END_FACTORY_REG(ScatterElements) | |||||
| /** | /** | ||||
| *@brief Adds sparse "updates" to a variable reference . \n | *@brief Adds sparse "updates" to a variable reference . \n | ||||
| @@ -394,7 +491,7 @@ REG_OP(TensorScatterUpdate) | |||||
| *@li var: An ND Tensor . \n | *@li var: An ND Tensor . \n | ||||
| *Must be one of the following types: float16, float32, int32, int8, uint8 | *Must be one of the following types: float16, float32, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor of type int32 or int64. | |||||
| *@li indices: An ND Tensor of type int32 or int64 | |||||
| *@li updates: An Tensor. format:NCHW, NHWC . \n | *@li updates: An Tensor. format:NCHW, NHWC . \n | ||||
| @@ -412,10 +509,10 @@ REG_OP(TensorScatterUpdate) | |||||
| * Compatible with the TensorFlow operator ScatterAdd. | * Compatible with the TensorFlow operator ScatterAdd. | ||||
| */ | */ | ||||
| REG_OP(ScatterAdd) | REG_OP(ScatterAdd) | ||||
| .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
| .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterAdd) | .OP_END_FACTORY_REG(ScatterAdd) | ||||
| @@ -428,7 +525,7 @@ REG_OP(ScatterAdd) | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| @@ -443,10 +540,10 @@ REG_OP(ScatterAdd) | |||||
| * Compatible with the TensorFlow operator ScatterDiv. | * Compatible with the TensorFlow operator ScatterDiv. | ||||
| */ | */ | ||||
| REG_OP(ScatterDiv) | REG_OP(ScatterDiv) | ||||
| .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterDiv) | .OP_END_FACTORY_REG(ScatterDiv) | ||||
| @@ -458,7 +555,7 @@ REG_OP(ScatterDiv) | |||||
| *@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -472,10 +569,10 @@ REG_OP(ScatterDiv) | |||||
| * Compatible with the TensorFlow operator ScatterNdAdd. | * Compatible with the TensorFlow operator ScatterNdAdd. | ||||
| */ | */ | ||||
| REG_OP(ScatterNdAdd) | REG_OP(ScatterNdAdd) | ||||
| .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
| .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterNdAdd) | .OP_END_FACTORY_REG(ScatterNdAdd) | ||||
| @@ -499,6 +596,9 @@ REG_OP(ScatterNdAdd) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator TensorScatterAdd. | * Compatible with the TensorFlow operator TensorScatterAdd. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(TensorScatterAdd) | REG_OP(TensorScatterAdd) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| @@ -515,7 +615,7 @@ REG_OP(TensorScatterAdd) | |||||
| *@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32, int64 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| @@ -530,10 +630,10 @@ REG_OP(TensorScatterAdd) | |||||
| * Compatible with the TensorFlow operator ScatterNdSub. | * Compatible with the TensorFlow operator ScatterNdSub. | ||||
| */ | */ | ||||
| REG_OP(ScatterNdSub) | REG_OP(ScatterNdSub) | ||||
| .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
| .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterNdSub) | .OP_END_FACTORY_REG(ScatterNdSub) | ||||
| @@ -557,6 +657,9 @@ REG_OP(ScatterNdSub) | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator TensorScatterSub. | * Compatible with the TensorFlow operator TensorScatterSub. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(TensorScatterSub) | REG_OP(TensorScatterSub) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| @@ -573,7 +676,7 @@ REG_OP(TensorScatterSub) | |||||
| *@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32, int64 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -587,10 +690,10 @@ REG_OP(TensorScatterSub) | |||||
| * Compatible with the TensorFlow operator ScatterSub. | * Compatible with the TensorFlow operator ScatterSub. | ||||
| */ | */ | ||||
| REG_OP(ScatterSub) | REG_OP(ScatterSub) | ||||
| .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
| .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterSub) | .OP_END_FACTORY_REG(ScatterSub) | ||||
| @@ -761,7 +864,7 @@ REG_OP(ConfusionMatrix) | |||||
| *@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor . \n | *@li updates: An ND Tensor . \n | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| @@ -778,7 +881,7 @@ REG_OP(ConfusionMatrix) | |||||
| */ | */ | ||||
| REG_OP(ScatterMul) | REG_OP(ScatterMul) | ||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| @@ -791,13 +894,13 @@ REG_OP(ScatterMul) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li var: An ND Tensor. | *@li var: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32 | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | |||||
| *@li indices: An ND Tensor. | *@li indices: An ND Tensor. | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor. | *@li updates: An ND Tensor. | ||||
| *Must be one of the following types: float16, float, int32 | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *use_locking: An optional bool. Defaults to "False". If "True", the operation | *use_locking: An optional bool. Defaults to "False". If "True", the operation | ||||
| @@ -810,10 +913,10 @@ REG_OP(ScatterMul) | |||||
| * Compatible with the TensorFlow operator ScatterMin. | * Compatible with the TensorFlow operator ScatterMin. | ||||
| */ | */ | ||||
| REG_OP(ScatterMin) | REG_OP(ScatterMin) | ||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterMin) | .OP_END_FACTORY_REG(ScatterMin) | ||||
| @@ -824,13 +927,13 @@ REG_OP(ScatterMin) | |||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li var: An ND Tensor . \n | *@li var: An ND Tensor . \n | ||||
| *Must be one of the following types: float16, float, int32 | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | |||||
| *@li indices: An NCHW, NHWC, or ND Tensor . \n | *@li indices: An NCHW, NHWC, or ND Tensor . \n | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An NCHW, NHWC, or ND Tensor . \n | *@li updates: An NCHW, NHWC, or ND Tensor . \n | ||||
| *Must be one of the following types: float16, float, int32 | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *use_locking: An optional bool. Defaults to "False". | *use_locking: An optional bool. Defaults to "False". | ||||
| @@ -843,10 +946,10 @@ REG_OP(ScatterMin) | |||||
| * Compatible with the TensorFlow operator ScatterMax. | * Compatible with the TensorFlow operator ScatterMax. | ||||
| */ | */ | ||||
| REG_OP(ScatterMax) | REG_OP(ScatterMax) | ||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterMax) | .OP_END_FACTORY_REG(ScatterMax) | ||||
| @@ -860,7 +963,7 @@ REG_OP(ScatterMax) | |||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| *@li indices: An ND Tensor . \n | *@li indices: An ND Tensor . \n | ||||
| *Must be one of the following types: int32 | |||||
| *Must be one of the following types: int32 or int64 | |||||
| *@li updates: An ND Tensor . \n | *@li updates: An ND Tensor . \n | ||||
| *Must be one of the following types: float16, float, int32, int8, uint8 | *Must be one of the following types: float16, float, int32, int8, uint8 | ||||
| @@ -876,10 +979,10 @@ REG_OP(ScatterMax) | |||||
| * Compatible with the TensorFlow operator ScatterUpdate. | * Compatible with the TensorFlow operator ScatterUpdate. | ||||
| */ | */ | ||||
| REG_OP(ScatterUpdate) | REG_OP(ScatterUpdate) | ||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
| .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(ScatterUpdate) | .OP_END_FACTORY_REG(ScatterUpdate) | ||||
| @@ -979,6 +1082,137 @@ REG_OP(MatrixDiagV2) | |||||
| .OUTPUT(output, TensorType::BasicType()) | .OUTPUT(output, TensorType::BasicType()) | ||||
| .OP_END_FACTORY_REG(MatrixDiagV2) | .OP_END_FACTORY_REG(MatrixDiagV2) | ||||
| /** | |||||
| * @brief Add updates to var_out according to axis and indices. | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li var: A Tensor. Must be one of the following types: | |||||
| * float16, float32, int32, int8, uint8. | |||||
| * @li indices: A Tensor of the indices, type should be int32. | |||||
| * @li updates: A Tensor of the same type as "var". | |||||
| * @par Attributes: | |||||
| * @li axis: An required int to specify the axis to perform indices add. | |||||
| * @par Outputs: | |||||
| * @li var_out: A Tensor. Same as input "var". | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator index_add. | |||||
| * @par Restrictions: | |||||
| * Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(IndexAdd) | |||||
| .INPUT(var, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .OUTPUT(var_out, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .ATTR(axis, Int, 0) | |||||
| .OP_END_FACTORY_REG(IndexAdd) | |||||
| /** | |||||
| *@brief: Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input \n | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| *@li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32, double, int32, uint8, int16, int8, complex64, int64, | |||||
| * qint8, quint8, qint32, uint16, complex128, uint32, uint64. | |||||
| *@li diagonal:(int, optional) – the diagonal to consider。\n | |||||
| *@par Outputs: | |||||
| *y: A Tensor. Has the same type as "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Triu. | |||||
| */ | |||||
| REG_OP(Triu) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .ATTR(diagonal, Int, 0) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .OP_END_FACTORY_REG(Triu) | |||||
| /** | |||||
| *@brief: Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input \n | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| *@li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32, double, int32, uint8, int16, int8, complex64, int64, | |||||
| * qint8, quint8, qint32, uint16, complex128, uint32, uint64. | |||||
| *@li diagonal:(int, optional) – the diagonal to consider。\n | |||||
| *@par Outputs: | |||||
| *y: A Tensor. Has the same type as "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Tril. | |||||
| */ | |||||
| REG_OP(Tril) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .ATTR(diagonal, Int, 0) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .OP_END_FACTORY_REG(Tril) | |||||
| /** | |||||
| *@brief Concatenates a list of N tensors along the first dimension. | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li values: A list of Tensors. Must be one of the following types: int32, float16, float32. | |||||
| * Tensors to be concatenated. All must have size 1 in the first dimension and same shape. | |||||
| * It's a dynamic input. | |||||
| * @li shape: A Tensor of the same type as "x". | |||||
| * The final shape of the result. Should be equal to the shapes of any input | |||||
| * but with the number of input values in the first dimension . \n | |||||
| *@par Attributes: | |||||
| *equation: The subscripts for the Einstein summation. \n | |||||
| *N: tensor size of input \n | |||||
| *@par Outputs: | |||||
| *@li y: Sums the product of the elements of the input operands along dimensions specified | |||||
| using a notation based on the Einstein summation convention. \n | |||||
| *@attention Constraints: | |||||
| *Input N must be Int. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with Pytorch einsum operator. | |||||
| */ | |||||
| REG_OP(Einsum) | |||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .REQUIRED_ATTR(equation, String) | |||||
| .REQUIRED_ATTR(N, Int) | |||||
| .OP_END_FACTORY_REG(Einsum) | |||||
| /** | |||||
| *@brief Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. \n | |||||
| *@par Inputs: | |||||
| *No inputs | |||||
| *@par Attributes: | |||||
| *@li num_rows: An required int. \n | |||||
| *@li num_columns: An optional int.Defaults to 0. \n | |||||
| *@li batch_shape: An optional ListInt.Defaults to []. \n | |||||
| *@li dtype: An optional int.Defaults to 0. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with targeted type and shape. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Eye. \n | |||||
| */ | |||||
| REG_OP(Eye) | |||||
| .OUTPUT(y, TensorType::BasicType()) /* "Result, has targeted element type" */ | |||||
| .REQUIRED_ATTR(num_rows, Int) | |||||
| .ATTR(num_columns, Int, 0) | |||||
| .ATTR(batch_shape, ListInt, {}) | |||||
| .ATTR(dtype, Int, 0) | |||||
| .OP_END_FACTORY_REG(Eye) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -144,6 +144,64 @@ REG_OP(BatchNorm) | |||||
| /** | /** | ||||
| *@brief Performs batch normalization . \n | *@brief Performs batch normalization . \n | ||||
| *@par Inputs: | |||||
| * Five inputs, including: (NHWC, NCHW, or NC1HWC0 supported) | |||||
| *@li x: A 3D or 6D Tensor of type float16 or float32, with format NDHWC or NCDHW for 4D or NDC1HWC0 for 6D. | |||||
| *@li scale: A Tensor of type float32. Must be 1D if input "x" is with format NDHWC or NCDHW. Must be 6D | |||||
| if input "x" is with format NDC1HWC0. Specifies the scaling factor. | |||||
| *@li offset: A Tensor of type float32. Must be 3D if input "x" is with format NDHWC or NCDHW. Must be 6D | |||||
| if input "x" is with format NC1HWC0. Specifies the offset. | |||||
| *@li mean: A Tensor of type float32. Must be 3D if input "x" is with format NDHWC or NCDHW. Must be 6D | |||||
| if input "x" is with format NC1HWC0. Specifies the mean used for inference. Must be "None" if the | |||||
| operation is used for training. | |||||
| *@li variance: A Tensor of type float32. Must be 3D if input "x" is with format NHWC or NCHW. Must be | |||||
| 5D if input "x" is with format NC1HWC0. Specifies the variance used for inference. Must be "None" | |||||
| if the operation is used for training . \n | |||||
| *@par Attributes: | |||||
| *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.0001". | |||||
| *@li data_format: An optional string, specifying the format of "x". Defaults to "NHWC". | |||||
| *@li is_training: An optional bool, specifying if the operation is used for training or inference. Defaults to "True" . \n | |||||
| *@par Outputs: | |||||
| * Five outputs, including: (NHWC, NCHW, or NC1HWC0 supported) | |||||
| *@li y: A 3D or 6D Tensor of type float16 or float32 for the normalized "x", with format NDHWC or NCDHW for 4D or NDC1HWC0 for 6D. | |||||
| *@li batch_mean: A Tensor of type float32. Must be 3D if input "x" is with format NDHWC or NCDHW. Must be 6D | |||||
| if input "x" is with format NDC1HWC0. Specifies the mean of "x". | |||||
| *@li batch_variance: A Tensor of type float32. Must be 1D if input "x" is with format NDHWC or NCDHW. | |||||
| Must be 6D if input "x" is with format NDC1HWC0. Specifies the variance of "x". | |||||
| *@li reserve_space_1: An optional Tensor of type float32. Must be 1D if input "x" is with format NDHWC or NCDHW. | |||||
| Must be 6D if input "x" is with format NDC1HWC0. Specifies the mean of "x" for gradient computation. Pass "None" to skip this output. | |||||
| *@li reserve_space_2: An optional Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. | |||||
| Must be 6D if input "x" is with format NDC1HWC0. Specifies the variance of "x" for gradient computation. Pass "None" to skip this output . \n | |||||
| *@attention Constraints: | |||||
| *@li If the operation is used for inference and outputs "reserve_space_1" and "reserve_space_2" are available, | |||||
| then "reserve_space_1" has the same value as "mean" and "reserve_space_2" has the same value as "variance". | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction . \n | |||||
| *@par Third-party framework compatibility | |||||
| *@li Compatible with the TensorFlow operator fused_batch_norm. | |||||
| *@li Compatible with the TensorFlow operator fused_batch_norm_v2. | |||||
| */ | |||||
| REG_OP(BatchNorm3D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(offset, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_1, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_2, TensorType({DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.0001) | |||||
| .ATTR(data_format, String, "NCDHW") | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(BatchNorm3D) | |||||
| /** | |||||
| *@brief Performs batch normalization . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Five inputs, including: (NHWC or NCHW supported) | * Five inputs, including: (NHWC or NCHW supported) | ||||
| *@li x: A 4D Tensor of type float16 or float32. | *@li x: A 4D Tensor of type float16 or float32. | ||||
| @@ -242,6 +300,52 @@ REG_OP(BatchNormGrad) | |||||
| /** | /** | ||||
| *@brief Performs the backpropagation of BatchNorm . \n | *@brief Performs the backpropagation of BatchNorm . \n | ||||
| *@par Inputs: | |||||
| * Five inputs, including: | |||||
| *@li y_backprop: A 3D or 6D Tensor of type float16 or float32, with format NDHWC, NCDHW, or NDC1HWC0, for the gradient. | |||||
| *@li x: A 3D or 6D Tensor of type float16 or float32, with format NDHWC, NCDHW, or NDC1HWC0. | |||||
| *@li scale: A 3D or 6D Tensor of type float32, with format NDHWC, NCDHW, or NDC1HWC0. | |||||
| *@li reserve_space_1: A 3D or 6D Tensor of type float32, with format NDHWC, NCDHW, or NC1HWC0. It is an output of BatchNorm. | |||||
| *@li reserve_space_2: A 3D or 6D Tensor of type float32, with format NDHWC, NCDHW, or NC1HWC0. It is an output of BatchNorm . \n | |||||
| *@par Attributes: | |||||
| *@li epsilon: An optional float32. Defaults to "0.0001". A small float number added to the variance of "x". | |||||
| *@li data_format: An optional string. Defaults to "NCDHW". | |||||
| *@li is_training: An optional bool. Defaults to "true". Specifies the operation is for training (default) or inference . \n | |||||
| *@par Outputs: | |||||
| *@li x_backprop: A Tensor of type float16 or float32, with format NHWC, NCHW, or NC1HWC0, for the offset of "x". | |||||
| *@li scale_backprop: A Tensor of type float32, with format NDHWC, NCDHW, or NDC1HWC0, for the offset of "scale". | |||||
| *@li *offset_backprop: A Tensor of type float32, with format NDHWC, NCDHW, or NDC1HWC0, for the offset of "offset". | |||||
| *@li *reserve_space_4: A Tensor of type float32, with shape NDHWC, NCDHW, or NDC1HWC0. Pass "None" to skip this output. | |||||
| *@li *reserve_space_5: A Tensor of type float32, with shape NDHWC, NCDHW, or NDC1HWC0. Pass "None" to skip this output . \n | |||||
| *@attention Constraints: | |||||
| * The preceding layer of this operator must be operator BatchNorm . \n | |||||
| *@see BatchNorm | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operators FusedBatchNormGradV2 and FusedBatchNorm3DGrad. | |||||
| */ | |||||
| REG_OP(BatchNorm3DGrad) | |||||
| .INPUT(y_backprop, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(reserve_space_1, TensorType({DT_FLOAT})) | |||||
| .INPUT(reserve_space_2, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(x_backprop, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(scale_backprop, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(offset_backprop, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_4, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_5, TensorType({DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.0001) | |||||
| .ATTR(data_format, String, "NCDHW") | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(BatchNorm3DGrad) | |||||
| /** | |||||
| *@brief Performs the backpropagation of BatchNorm . \n | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Five inputs, including: | * Five inputs, including: | ||||
| *@li y_backprop: A 4D Tensor of type float16 or float32, with format NHWC or NCHW, for the gradient. | *@li y_backprop: A 4D Tensor of type float16 or float32, with format NHWC or NCHW, for the gradient. | ||||
| @@ -315,35 +419,7 @@ REG_OP(BNInference) | |||||
| .ATTR(use_global_stats, Bool,true) | .ATTR(use_global_stats, Bool,true) | ||||
| .ATTR(mode, Int,1) | .ATTR(mode, Int,1) | ||||
| .OP_END_FACTORY_REG(BNInference) | .OP_END_FACTORY_REG(BNInference) | ||||
| /** | |||||
| *@brief aicpu batch normalization host . \n | |||||
| *@par Inputs: | |||||
| *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||||
| *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||||
| *@li momentum: An optional float, mean and variance's Scale factor | |||||
| *@par Attributes: | |||||
| *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||||
| *@li use_global_stats: mean inference mode , only can be "True". | |||||
| *@li mode: An optional attr, not use | |||||
| *@par Outputs: | |||||
| *@li alpha: A Tensor of type float16 or float32 for the cpu calculate mean | |||||
| *@li beta: A Tensor of type float16 or float32 for the cpu calculate variance | |||||
| */ | |||||
| REG_OP(BnHost) | |||||
| .INPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(momentum, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(scale, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(offset, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.00001) | |||||
| .ATTR(mode, Int, 1) | |||||
| .ATTR(use_global_stats, Bool, true) | |||||
| .OUTPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(mu, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(BnHost) | |||||
| /** | /** | ||||
| *@brief Performs batch normalization . \n | *@brief Performs batch normalization . \n | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -365,6 +365,25 @@ REG_OP(BiasAddGrad) | |||||
| * 4-D with shape [batch, out_height, out_width, out_channels] | * 4-D with shape [batch, out_height, out_width, out_channels] | ||||
| * or [batch, out_channels, out_height, out_width]. | * or [batch, out_channels, out_height, out_width]. | ||||
| * Gradients with respect to the output of the convolution. | * Gradients with respect to the output of the convolution. | ||||
| *\n | |||||
| *\n | |||||
| * The following are the supported data types and data formats: | |||||
| *@verbatim | |||||
| | Tensor | out_bckprop | filter | y | |||||
| ------------|-------------|---------|-------- | |||||
| | Data Type | float16 | float16 | float16 | |||||
| | |-------------|---------|-------- | |||||
| | | float32 | float32 | float32 | |||||
| | |-------------|---------|-------- | |||||
| | | float64 | float64 | float64 | |||||
| ------------|-------------|---------|-------- | |||||
| | Format | NCHW | NCHW | NCHW | |||||
| | | NHWC | HWCN | NHWC | |||||
| @endverbatim | |||||
| * For float32 and float64 type, the actual calculation on the chip is based on | |||||
| * float16. | |||||
| *\n | |||||
| * | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Five attributes: | * Five attributes: | ||||
| * @li strides: A tuple/list of 4 integers. The stride of the sliding window | * @li strides: A tuple/list of 4 integers. The stride of the sliding window | ||||
| @@ -377,8 +396,53 @@ REG_OP(BiasAddGrad) | |||||
| * channels. | * channels. | ||||
| * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to | * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to | ||||
| * "NHWC". Specify the data format of the input and output data. | * "NHWC". Specify the data format of the input and output data. | ||||
| *\n | |||||
| *\n | |||||
| * The following value range restrictions must be met: | |||||
| *@verbatim | |||||
| | Name | Field | Scope | |||||
| -------------------|----------|-------------- | |||||
| | input_size | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Filter | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | out_backprop | H*strideH| [1, 4096] | |||||
| | | W*strideW| [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | y(fmap) | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Stride | H | [1, 63] | |||||
| | | W | [1, 63] | |||||
| -------------------|----------|-------------- | |||||
| | Padding | Top | [0, 255] | |||||
| | | Bottom | [0, 255] | |||||
| | | Left | [0, 255] | |||||
| | | Right | [0, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Dilation | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| @endverbatim | |||||
| * In Ascend910, fmap or out_backprop's H and W not support 1 when | |||||
| * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1 | |||||
| * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096 | |||||
| *\n | |||||
| * | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type as filter,and has same format as input_size. | * y: A Tensor. Has the same type as filter,and has same format as input_size. | ||||
| *\n | |||||
| * out_backprop_height = (fmap_height + pad_top + pad_bottom - | |||||
| * (dilation_h * (filter_height - 1) + 1)) | |||||
| * / stride_h + 1 | |||||
| *\n | |||||
| * out_backprop_width = (fmap_width + pad_left + pad_right - | |||||
| * (dilation_w * (filter_width - 1) + 1)) | |||||
| * / stride_w + 1 | |||||
| *\n | |||||
| * | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with Tensorflow's conv2d_backprop_input | * Compatible with Tensorflow's conv2d_backprop_input | ||||
| */ | */ | ||||
| @@ -454,6 +518,21 @@ REG_OP(Conv2DBackpropInputD) | |||||
| * @li bias: An optional tensor. Must have the same type as "y". | * @li bias: An optional tensor. Must have the same type as "y". | ||||
| * @li offset_w: An optional 1D tensor for quantized deconvolution. | * @li offset_w: An optional 1D tensor for quantized deconvolution. | ||||
| * Type is int8. Reserved.\n | * Type is int8. Reserved.\n | ||||
| *\n | |||||
| *\n | |||||
| * The following are the supported data types and data formats: | |||||
| *@verbatim | |||||
| | Tensor | x | filter | bias | y | |||||
| ------------|---------|---------|---------|-------- | |||||
| | Data Type | float16 | float16 | float16 | float16 | |||||
| | |---------|---------|---------|-------- | |||||
| | | int8 | int8 | int32 | int32 | |||||
| ------------|---------|---------|---------|-------- | |||||
| | Format | NCHW | NCHW | ND | NCHW | |||||
| @endverbatim | |||||
| * For int8, a dequant or requant operator must be followed. | |||||
| *\n | |||||
| * | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Six attributes: | * Six attributes: | ||||
| * @li strides: A tuple or list of 2 integers. The stride of the sliding window | * @li strides: A tuple or list of 2 integers. The stride of the sliding window | ||||
| @@ -467,9 +546,54 @@ REG_OP(Conv2DBackpropInputD) | |||||
| * @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n | * @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n | ||||
| Specify the data format of the input and output data. | Specify the data format of the input and output data. | ||||
| * @li offset_x: An optional integer for quantized deconvolution. | * @li offset_x: An optional integer for quantized deconvolution. | ||||
| * Defaults to "0". | |||||
| * The negative offset added to the input image for int8 type. Ensure offset_x | |||||
| * within the effective range of int8 [-128, 127]. Defaults to "0". | |||||
| *\n | |||||
| *\n | |||||
| * The following value range restrictions must be met: | |||||
| *@verbatim | |||||
| | Name | Field | Scope | |||||
| -------------------|----------|-------------- | |||||
| | x (out_backprop) | H*strideH| [1, 4096] | |||||
| | | W*strideW| [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Filter | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | y (fmap) | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Stride | H | [1, 63] | |||||
| | | W | [1, 63] | |||||
| -------------------|----------|-------------- | |||||
| | Padding | Top | [0, 255] | |||||
| | | Bottom | [0, 255] | |||||
| | | Left | [0, 255] | |||||
| | | Right | [0, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Dilation | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Offset_x | | [-128, 127] | |||||
| @endverbatim | |||||
| * In Ascend910, fmap or out_backprop's H and W not support 1 when | |||||
| * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1 | |||||
| * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096 | |||||
| *\n | |||||
| * | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. 4D tensor with shape [batch, channels, height, width]. | * y: A Tensor. 4D tensor with shape [batch, channels, height, width]. | ||||
| *\n | |||||
| * out_backprop_height = (fmap_height + pad_top + pad_bottom - | |||||
| * (dilation_h * (filter_height - 1) + 1)) | |||||
| * / stride_h + 1 | |||||
| *\n | |||||
| * out_backprop_width = (fmap_width + pad_left + pad_right - | |||||
| * (dilation_w * (filter_width - 1) + 1)) | |||||
| * / stride_w + 1 | |||||
| *\n | |||||
| * | |||||
| * When type of x is float16, the type of y must be float16. | * When type of x is float16, the type of y must be float16. | ||||
| * When type of x is int8, the type of y must be int32. | * When type of x is int8, the type of y must be int32. | ||||
| */ | */ | ||||
| @@ -502,6 +626,25 @@ REG_OP(Deconvolution) | |||||
| * [batch, out_height, out_width, out_channels] or [batch, out_channels, | * [batch, out_height, out_width, out_channels] or [batch, out_channels, | ||||
| * out_height, out_width]. Gradients with respect to the output of the | * out_height, out_width]. Gradients with respect to the output of the | ||||
| * convolution. | * convolution. | ||||
| *\n | |||||
| *\n | |||||
| * The following are the supported data types and data formats: | |||||
| *@verbatim | |||||
| | Tensor | x | out_backprop | y | |||||
| ------------|---------|--------------|--------- | |||||
| | Data Type | float16 | float16 | float16 | |||||
| | |---------|--------------|--------- | |||||
| | | float32 | float32 | float32 | |||||
| | |---------|--------------|--------- | |||||
| | | float64 | float64 | float64 | |||||
| |-----------|---------|--------------|--------- | |||||
| | Format | NCHW | NCHW | NCHW | |||||
| | | NHWC | NHWC | HWCN | |||||
| @endverbatim | |||||
| * For float32 and float64 type of x and outbackprop, the actual calculation on the chip | |||||
| * is based on float16. | |||||
| *\n | |||||
| * | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Five attributes: | * Five attributes: | ||||
| * @li strides: A tuple/list of 4 integers. The stride of the sliding window | * @li strides: A tuple/list of 4 integers. The stride of the sliding window | ||||
| @@ -514,8 +657,52 @@ REG_OP(Deconvolution) | |||||
| * channels. | * channels. | ||||
| * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to | * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to | ||||
| * "NHWC". Specify the data format of the input and output data. | * "NHWC". Specify the data format of the input and output data. | ||||
| *\n | |||||
| *\n | |||||
| * The following value range restrictions must be met: | |||||
| *@verbatim | |||||
| | Name | Field | Scope | |||||
| -------------------|----------|-------------- | |||||
| | x(fmap) | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Filter Size | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | out_backprop | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | y | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Stride | H | [1, 63] | |||||
| | | W | [1, 63] | |||||
| -------------------|----------|-------------- | |||||
| | Padding | Top | [0, 255] | |||||
| | | Bottom | [0, 255] | |||||
| | | Left | [0, 255] | |||||
| | | Right | [0, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Dilation | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| @endverbatim | |||||
| * In Ascend910, out_backprop's H and W not support 1 when | |||||
| * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1 | |||||
| *\n | |||||
| * | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type as x, has the same format as filter_size. | * y: A Tensor. Has the same type as x, has the same format as filter_size. | ||||
| *\n | |||||
| * out_backprop_height = (in_height + pad_top + pad_bottom - | |||||
| * (dilation_h * (filter_height - 1) + 1)) | |||||
| * / stride_h + 1 | |||||
| *\n | |||||
| * out_backprop_width = (in_width + pad_left + pad_right - | |||||
| * (dilation_w * (filter_width - 1) + 1)) | |||||
| * / stride_w + 1 | |||||
| *\n | |||||
| * | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with Tensorflow's conv2d_backprop_filter | * Compatible with Tensorflow's conv2d_backprop_filter | ||||
| */ | */ | ||||
| @@ -597,16 +784,14 @@ REG_OP(Conv2DBackpropFilterD) | |||||
| | Tensor | x | filter | bias | y | | Tensor | x | filter | bias | y | ||||
| ------------|---------|---------|---------|-------- | ------------|---------|---------|---------|-------- | ||||
| | Data Type | float16 | float16 | float16 | float16 | | Data Type | float16 | float16 | float16 | float16 | ||||
| | |---------|---------|---------|-------- | |||||
| | | float32 | float32 | float32 | float32 | | | float32 | float32 | float32 | float32 | ||||
| | |---------|---------|---------|-------- | |||||
| | | int8 | int8 | int32 | int32 | | | int8 | int8 | int32 | int32 | ||||
| ------------|---------|---------|---------|-------- | ------------|---------|---------|---------|-------- | ||||
| | Format | NCHW | NCHW | ND | NCHW | | Format | NCHW | NCHW | ND | NCHW | ||||
| | | NHWC | HWCN | | NHWC | | | NHWC | HWCN | | NHWC | ||||
| @endverbatim | @endverbatim | ||||
| * For float32 type, the actual calculation on the chip is based on | * For float32 type, the actual calculation on the chip is based on | ||||
| * float16. For int8, a dequant or requant operator must be followed. | |||||
| * float16. | |||||
| *\n | *\n | ||||
| * | * | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -617,8 +802,7 @@ REG_OP(Conv2DBackpropFilterD) | |||||
| * (top, bottom, left, right) side of the input. | * (top, bottom, left, right) side of the input. | ||||
| *@li dilations: Optional. A list of 4 integers. The dilation factor for each | *@li dilations: Optional. A list of 4 integers. The dilation factor for each | ||||
| * dimension of input. The dimension order is determined by the data format of | * dimension of input. The dimension order is determined by the data format of | ||||
| * "x". The N and C dimensions must be set to 1. The H and W dimensions must be | |||||
| * set to 1 for int8 type. Defaults to [1, 1, 1, 1]. | |||||
| * "x". The N and C dimensions must be set to 1. Defaults to [1, 1, 1, 1]. | |||||
| *@li groups: Optional. An integer of type int32. The number of blocked | *@li groups: Optional. An integer of type int32. The number of blocked | ||||
| * connections from input channels to output channels. In_channels and | * connections from input channels to output channels. In_channels and | ||||
| * out_channels must both be divisible by "groups". Defaults to 1. | * out_channels must both be divisible by "groups". Defaults to 1. | ||||
| @@ -652,6 +836,8 @@ REG_OP(Conv2DBackpropFilterD) | |||||
| | Offset_x | | [-128, 127] | | Offset_x | | [-128, 127] | ||||
| @endverbatim | @endverbatim | ||||
| * The W dimension of the input image supports cases exceeding 4096, but it may | |||||
| * cause compilation errors. | |||||
| *\n | *\n | ||||
| * | * | ||||
| *@par Outputs: | *@par Outputs: | ||||
| @@ -666,21 +852,6 @@ REG_OP(Conv2DBackpropFilterD) | |||||
| * out_width = (in_width + pad_left + pad_right - | * out_width = (in_width + pad_left + pad_right - | ||||
| * (dilation_w * (filter_width - 1) + 1)) | * (dilation_w * (filter_width - 1) + 1)) | ||||
| * / stride_w + 1 | * / stride_w + 1 | ||||
| * | |||||
| *@attention Constraints: | |||||
| *@li The following restrictions on the output must be met: | |||||
| *@verbatim | |||||
| | Output | Restrictions | |||||
| ----------|-------------------------------- | |||||
| | H == 1 | H * W(input) == H * W(filter) | |||||
| | W == 1 | | |||||
| ----------|-------------------------------- | |||||
| | H != 1 | W(input) == W(filter) | |||||
| | W == 1 | Only for Ascend310 Hi3796V300CS | |||||
| @endverbatim | |||||
| * "H * W (input)" indicates the image size after padding and "H * W (filter)" | |||||
| * indicates the filter size after dilation."W(input)" and W(filter) indicate | |||||
| * the same rule on the W dimension. | |||||
| *\n | *\n | ||||
| * | * | ||||
| *@par Quantization supported or not | *@par Quantization supported or not | ||||
| @@ -778,7 +949,7 @@ REG_OP(Conv2DCompress) | |||||
| * With the format "HWCN" , the data is stored in the order of: [filter_height, | * With the format "HWCN" , the data is stored in the order of: [filter_height, | ||||
| * filter_width, in_channels / groups, out_channels]. | * filter_width, in_channels / groups, out_channels]. | ||||
| *@li offsets: A 4D tensor of x-y coordinates offset and mask. With the format | *@li offsets: A 4D tensor of x-y coordinates offset and mask. With the format | ||||
| * "NHWC", the data is stored in the order of: [batch, in_height, in_width, | |||||
| * "NHWC", the data is stored in the order of: [batch, out_height, out_width, | |||||
| * deformable_groups * filter_height * filter_width * 3]. | * deformable_groups * filter_height * filter_width * 3]. | ||||
| *@li bias: An optional 1D tensor of additive biases to the filter outputs. | *@li bias: An optional 1D tensor of additive biases to the filter outputs. | ||||
| * The data is stored in the order of: [out_channels]. | * The data is stored in the order of: [out_channels]. | ||||
| @@ -816,31 +987,20 @@ REG_OP(Conv2DCompress) | |||||
| *@li deformable_groups: Optional. An integer of type int32. The number of | *@li deformable_groups: Optional. An integer of type int32. The number of | ||||
| * deformable group partitions. In_channels must be divisible by | * deformable group partitions. In_channels must be divisible by | ||||
| * "deformable_groups". Defaults to 1. | * "deformable_groups". Defaults to 1. | ||||
| *@li modulated: Optional. Specify version of DeformableConv2D, true means v2, | |||||
| * false means v1, currently only support v2. | |||||
| *\n | *\n | ||||
| *\n | *\n | ||||
| * The following value range restrictions must be met: | * The following value range restrictions must be met: | ||||
| *@verbatim | *@verbatim | ||||
| | Name | Field | Scope | | Name | Field | Scope | ||||
| --------------------|--------|---------------------------- | --------------------|--------|---------------------------- | ||||
| | Input Image Size | H | [1, 100000] | |||||
| | | W | [1, 4096] | |||||
| --------------------|--------|---------------------------- | |||||
| | Filter Size | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| | Input Image Size | H | [1, 100000 / filter_height] | |||||
| | | W | [1, 4096 / filter_width] | |||||
| --------------------|--------|---------------------------- | --------------------|--------|---------------------------- | ||||
| | Stride | H | [1, 63] | |||||
| | Filter Size | H | [1, 63] | |||||
| | | W | [1, 63] | | | W | [1, 63] | ||||
| --------------------|--------|---------------------------- | |||||
| | Padding | Top | [0, 255] | |||||
| | | Bottom | [0, 255] | |||||
| | | Left | [0, 255] | |||||
| | | Right | [0, 255] | |||||
| ------------ -------|--------|---------------------------- | |||||
| | Dilation | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| @endverbatim | @endverbatim | ||||
| * "W(input)" indicate the image width after padding and W(filter) indicates the | |||||
| * filter width after dilation. | |||||
| *\n | *\n | ||||
| * | * | ||||
| *@par Outputs: | *@par Outputs: | ||||
| @@ -855,21 +1015,7 @@ REG_OP(Conv2DCompress) | |||||
| * out_width = (in_width + pad_left + pad_right - | * out_width = (in_width + pad_left + pad_right - | ||||
| * (dilation_w * (filter_width - 1) + 1)) | * (dilation_w * (filter_width - 1) + 1)) | ||||
| * / stride_w + 1 | * / stride_w + 1 | ||||
| * | |||||
| *@attention Constraints: | |||||
| *@li The following restrictions on the output must be met: | |||||
| *@verbatim | |||||
| | Output | Restrictions | |||||
| ----------|-------------------------------- | |||||
| | H == 1 | H * W(input) == H * W(filter) | |||||
| | W == 1 | | |||||
| ----------|-------------------------------- | |||||
| | H != 1 | W(input) == W(filter) | |||||
| | W == 1 | Only for Ascend310 Hi3796V300CS | |||||
| @endverbatim | |||||
| * "H * W(input)" indicates the image size after padding and "H * W(filter)" | |||||
| * indicates the filter size after dilation. "W(input)" and W(filter) indicate | |||||
| * the same rule on the W dimension. | |||||
| *\n | |||||
| * | * | ||||
| *@par Quantization supported or not | *@par Quantization supported or not | ||||
| *@li No | *@li No | ||||
| @@ -891,6 +1037,7 @@ REG_OP(DeformableConv2D) | |||||
| .ATTR(groups, Int, 1) | .ATTR(groups, Int, 1) | ||||
| .ATTR(data_format, String, "NHWC") | .ATTR(data_format, String, "NHWC") | ||||
| .ATTR(deformable_groups, Int, 1) | .ATTR(deformable_groups, Int, 1) | ||||
| .ATTR(modulated, Bool, true) | |||||
| .OP_END_FACTORY_REG(DeformableConv2D) | .OP_END_FACTORY_REG(DeformableConv2D) | ||||
| /** | /** | ||||
| @@ -916,12 +1063,12 @@ REG_OP(DeformableConv2D) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| * @li dilations: A list of 5 integers. Specifies the dilation factor for each | * @li dilations: A list of 5 integers. Specifies the dilation factor for each | ||||
| * dimension of "x", now only support [1,1,1,1,1] | |||||
| * The N and C dimensions must be 1. Has the same format as "x". | |||||
| * dimension of "x". | |||||
| * The N, C and D dimensions must be 1. Has the same format as "x". | |||||
| * @li offset_x: An optional int. Input offset, used for quantized inference. | * @li offset_x: An optional int. Input offset, used for quantized inference. | ||||
| * Defaults to 0. Reserved . \n | * Defaults to 0. Reserved . \n | ||||
| @@ -967,8 +1114,8 @@ REG_OP(Conv3D) | |||||
| *@par Required Attributes: | *@par Required Attributes: | ||||
| * @li strides: A list of 5 integers. Specifies the stride of the sliding window | * @li strides: A list of 5 integers. Specifies the stride of the sliding window | ||||
| * for each dimension of "x". | |||||
| * The N and C dimensions must be 1. Has the same format as "x". | |||||
| * for each dimension of "out_backprop". | |||||
| * The N and C dimensions must be 1. Has the same format as "out_backprop". | |||||
| * @li pads: A list of 6 integers. | * @li pads: A list of 6 integers. | ||||
| * Supports only padding along the D, H and W dimensions in sequence of head, | * Supports only padding along the D, H and W dimensions in sequence of head, | ||||
| * tail, top, bottom, left and right . \n | * tail, top, bottom, left and right . \n | ||||
| @@ -976,14 +1123,15 @@ REG_OP(Conv3D) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Three attributes: | * Three attributes: | ||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| * @li dilations: A tuple/list of 5 integers, The dilation factor for each | * @li dilations: A tuple/list of 5 integers, The dilation factor for each | ||||
| * dimension of the input, now only support [1,1,1,1,1] | |||||
| * dimension of the input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "out_backprop". | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type as filter,and has same format as input_size | |||||
| * y: A Tensor. Has the same type as filter,and has same format as "input_size" | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with Tensorflow's conv3d_backprop_input | * Compatible with Tensorflow's conv3d_backprop_input | ||||
| @@ -1011,8 +1159,8 @@ REG_OP(Conv3DBackpropInput) | |||||
| *@par Required Attributes: | *@par Required Attributes: | ||||
| * @li strides: A list of 5 integers. Specifies the stride of the sliding window | * @li strides: A list of 5 integers. Specifies the stride of the sliding window | ||||
| * for each dimension of "x". | |||||
| * The N and C dimensions must be 1. Has the same format as "x". | |||||
| * for each dimension of "out_backprop". | |||||
| * The N and C dimensions must be 1. Has the same format as "out_backprop". | |||||
| * @li pads: A list of 6 integers. Supports only padding along the D, H and W | * @li pads: A list of 6 integers. Supports only padding along the D, H and W | ||||
| * dimensions in sequence of head, tail, top, bottom, left and right. | * dimensions in sequence of head, tail, top, bottom, left and right. | ||||
| * @li input_size: A tuple/list of type int32, int64. An integer vector | * @li input_size: A tuple/list of type int32, int64. An integer vector | ||||
| @@ -1023,13 +1171,14 @@ REG_OP(Conv3DBackpropInput) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Three attributes: | * Three attributes: | ||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| * @li dilations: A tuple/list of 5 integers, The dilation factor for each | * @li dilations: A tuple/list of 5 integers, The dilation factor for each | ||||
| * dimension of input, now only support [1,1,1,1,1] | |||||
| * dimension of input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "out_backprop". | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type and data format as out_backprop. | |||||
| * y: A Tensor. Has the same type and data format as "out_backprop". | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with Tensorflow's conv3d_backprop_input | * Compatible with Tensorflow's conv3d_backprop_input | ||||
| @@ -1072,9 +1221,7 @@ REG_OP(Conv3DBackpropInputD) | |||||
| * @li c_t: A optinal Tensor dtype of float16, float32. The cell state at time t . \n | * @li c_t: A optinal Tensor dtype of float16, float32. The cell state at time t . \n | ||||
| *@par Third-party framework compatibility: | *@par Third-party framework compatibility: | ||||
| * Compatible with the Pytorch operator adds. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| * Compatible with the Caffe operator LSTM. | |||||
| */ | */ | ||||
| REG_OP(LSTM) | REG_OP(LSTM) | ||||
| .INPUT(x, TensorType({DT_FLOAT16})) | .INPUT(x, TensorType({DT_FLOAT16})) | ||||
| @@ -1121,14 +1268,15 @@ REG_OP(LSTM) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Three attributes: | * Three attributes: | ||||
| * @li dilations: A tuple/list of 5 integers, The dilation factor for each | * @li dilations: A tuple/list of 5 integers, The dilation factor for each | ||||
| * dimension of input, now only support [1,1,1,1,1]. | |||||
| * dimension of input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "x". | |||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor that has the same type as x | |||||
| * y: A Tensor that has the same type as "x" | |||||
| * and the format is NDHWC, NCDHW or DHWCN. | * and the format is NDHWC, NCDHW or DHWCN. | ||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with Tensorflow's conv3d_backprop_filter | * Compatible with Tensorflow's conv3d_backprop_filter | ||||
| @@ -1172,9 +1320,10 @@ REG_OP(Conv3DBackpropFilter) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Three attributes: | * Three attributes: | ||||
| * @li dilations: A tuple/list of 5 integers, The dilation factor for each | * @li dilations: A tuple/list of 5 integers, The dilation factor for each | ||||
| * dimension of input, now only support [1,1,1,1,1]. | |||||
| * dimension of input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "x". | |||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| @@ -1224,15 +1373,16 @@ REG_OP(Conv3DBackpropFilterD) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Five attributes: | * Five attributes: | ||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li dilations: A tuple/list of 5 integers, | * @li dilations: A tuple/list of 5 integers, | ||||
| * The dilation factor for each dimension of input, now only support [1,1,1,1,1] | |||||
| * The dilation factor for each dimension of input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "x". | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| * @li output_padding: The size will be added in the output shape. | * @li output_padding: The size will be added in the output shape. | ||||
| * @li offset_x: Input offset_x value. Reserved. | * @li offset_x: Input offset_x value. Reserved. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type and format as x. | |||||
| * y: A Tensor. Has the same type and format as "x". | |||||
| */ | */ | ||||
| REG_OP(Conv3DTranspose) | REG_OP(Conv3DTranspose) | ||||
| .INPUT(input_size, TensorType({DT_INT32, DT_INT64})) | .INPUT(input_size, TensorType({DT_INT32, DT_INT64})) | ||||
| @@ -1273,15 +1423,16 @@ REG_OP(Conv3DTranspose) | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * Five attributes: | * Five attributes: | ||||
| * @li dilations: A tuple/list of 5 integers, The dilation factor for each | * @li dilations: A tuple/list of 5 integers, The dilation factor for each | ||||
| * dimension of input, now only support [1,1,1,1,1] | |||||
| * dimension of input. | |||||
| * The N, C and D dimensions must be 1. Has the same format as "x". | |||||
| * @li groups: Number of blocked connections from input channels to output | * @li groups: Number of blocked connections from input channels to output | ||||
| * channels. Reserved. | |||||
| * channels. | |||||
| * @li data_format: An optional string from: "NDHWC", "NCDHW". | * @li data_format: An optional string from: "NDHWC", "NCDHW". | ||||
| * Defaults to "NDHWC". Specify the data format of the input and output data. | * Defaults to "NDHWC". Specify the data format of the input and output data. | ||||
| * @li output_padding: The size will be added in the output shape. | * @li output_padding: The size will be added in the output shape. | ||||
| * @li offset_x: Input offset_x value. Reserved. | * @li offset_x: Input offset_x value. Reserved. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. Has the same type and format as x. | |||||
| * y: A Tensor. Has the same type and format as "x". | |||||
| *@par Restrictions: | *@par Restrictions: | ||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DTranspose instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DTranspose instead. | ||||
| */ | */ | ||||
| @@ -1316,6 +1467,22 @@ REG_OP(Conv3DTransposeD) | |||||
| * or [out_channels, in_channel, filter_height, filter_width]. | * or [out_channels, in_channel, filter_height, filter_width]. | ||||
| * @li bias: An optional 1D tensor of type float16 or int32. Format is "ND". | * @li bias: An optional 1D tensor of type float16 or int32. Format is "ND". | ||||
| * @li offset_w: An optional 1D tensor for quantized inference. Reserved. | * @li offset_w: An optional 1D tensor for quantized inference. Reserved. | ||||
| *\n | |||||
| *\n | |||||
| * The following are the supported data types and data formats: | |||||
| *@verbatim | |||||
| | Tensor | x | filter | bias | y | |||||
| ------------|---------|---------|---------|-------- | |||||
| | Data Type | float16 | float16 | float16 | float16 | |||||
| | |---------|---------|---------|-------- | |||||
| | | int8 | int8 | int32 | int32 | |||||
| ------------|---------|---------|---------|-------- | |||||
| | Format | NCHW | NCHW | ND | NCHW | |||||
| | | NHWC | HWCN | | NHWC | |||||
| @endverbatim | |||||
| * For int8, a dequant or requant operator must be followed. | |||||
| *\n | |||||
| * | |||||
| *@par Required Attributes: | *@par Required Attributes: | ||||
| * @li strides: A required tuple/list of 4 integers. The stride of the sliding | * @li strides: A required tuple/list of 4 integers. The stride of the sliding | ||||
| * window for H/W dimension. The index of H/W is same as data_format. | * window for H/W dimension. The index of H/W is same as data_format. | ||||
| @@ -1333,10 +1500,58 @@ REG_OP(Conv3DTransposeD) | |||||
| * @li output_padding: The size will be added in the output shape. Defaults | * @li output_padding: The size will be added in the output shape. Defaults | ||||
| * to [0, 0, 0, 0]. | * to [0, 0, 0, 0]. | ||||
| * @li offset_x: An optional int. Input offset, used for quantized inference. | * @li offset_x: An optional int. Input offset, used for quantized inference. | ||||
| * Defaults to "0". | |||||
| * The negative offset added to the input image for int8 type. Ensure offset_x | |||||
| * within the effective range of int8 [-128, 127]. Defaults to "0". | |||||
| *\n | |||||
| *\n | |||||
| * The following value range restrictions must be met: | |||||
| *@verbatim | |||||
| | Name | Field | Scope | |||||
| -------------------|----------|-------------- | |||||
| | input_size | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | x (out_backprop) | H*strideH| [1, 4096] | |||||
| | | W*strideW| [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | filter | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | y (fmap) | H | [1, 4096] | |||||
| | | W | [1, 4096] | |||||
| -------------------|----------|-------------- | |||||
| | Stride | H | [1, 63] | |||||
| | | W | [1, 63] | |||||
| -------------------|----------|-------------- | |||||
| | Padding | Top | [0, 255] | |||||
| | | Bottom | [0, 255] | |||||
| | | Left | [0, 255] | |||||
| | | Right | [0, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Dilation | H | [1, 255] | |||||
| | | W | [1, 255] | |||||
| -------------------|----------|-------------- | |||||
| | Offset_x | | [-128, 127] | |||||
| @endverbatim | |||||
| * In Ascend910, fmap or out_backprop's H and W not support 1 when | |||||
| * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1 | |||||
| * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096 | |||||
| *\n | |||||
| * | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. A Tensor of type float16 or int32, and has same format as | * y: A Tensor. A Tensor of type float16 or int32, and has same format as | ||||
| * input_size. | * input_size. | ||||
| *\n | |||||
| * out_backprop_height = (fmap_height + pad_top + pad_bottom - | |||||
| * (dilation_h * (filter_height - 1) + 1)) | |||||
| * / stride_h + 1 | |||||
| *\n | |||||
| * out_backprop_width = (fmap_width + pad_left + pad_right - | |||||
| * (dilation_w * (filter_width - 1) + 1)) | |||||
| * / stride_w + 1 | |||||
| *\n | |||||
| * | |||||
| */ | */ | ||||
| REG_OP(Conv2DTranspose) | REG_OP(Conv2DTranspose) | ||||
| .INPUT(input_size, TensorType({DT_INT32, DT_INT64})) | .INPUT(input_size, TensorType({DT_INT32, DT_INT64})) | ||||
| @@ -1405,21 +1620,22 @@ REG_OP(Conv2DTransposeD) | |||||
| /** | /** | ||||
| *@brief Computes the deformed convolution output with the expected input | *@brief Computes the deformed convolution output with the expected input | ||||
| *@par Inputs: | *@par Inputs: | ||||
| * Four inputs: | |||||
| * Two inputs: | |||||
| * @li x: A Tensor of type float16,float32 | * @li x: A Tensor of type float16,float32 | ||||
| * @li offsets: A Tensor of type float16,float32.Deformation offset parameter. | * @li offsets: A Tensor of type float16,float32.Deformation offset parameter. | ||||
| *@par Required Attributes: | *@par Required Attributes: | ||||
| * @li strides: A tuple/list of 4 integers.The stride of the sliding window for | * @li strides: A tuple/list of 4 integers.The stride of the sliding window for | ||||
| * height and width for H/W dimension. | * height and width for H/W dimension. | ||||
| * @li pads: A tuple/list of 4 integers.Padding added to each dimension | |||||
| * @li pads: A tuple/list of 4 integers.Padding added to H/W dimension | |||||
| * of the input. | * of the input. | ||||
| * @li ksize: A tuple/list of 2 integers.kernel size. | * @li ksize: A tuple/list of 2 integers.kernel size. | ||||
| *@par Attributes: | *@par Attributes: | ||||
| * Three attributes: | |||||
| * Four attributes: | |||||
| * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension | * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension | ||||
| * of input. Defaults to [1, 1, 1, 1] | * of input. Defaults to [1, 1, 1, 1] | ||||
| * @li data_format: An optional string from: "NCHW", "NHWC". Defaults to "NCHW". Specify the data format of the input x. | * @li data_format: An optional string from: "NCHW", "NHWC". Defaults to "NCHW". Specify the data format of the input x. | ||||
| * @li deformable_groups: Specify the c-axis grouping number of input x. | * @li deformable_groups: Specify the c-axis grouping number of input x. | ||||
| * @li modulated: Specify version of DeformableConv2D, true means v2, false means v1 | |||||
| *@par Outputs: | *@par Outputs: | ||||
| * y: A Tensor. A Tensor of type float16, float32. | * y: A Tensor. A Tensor of type float16, float32. | ||||
| */ | */ | ||||
| @@ -1433,7 +1649,69 @@ REG_OP(DeformableOffsets) | |||||
| .ATTR(dilations, ListInt, {1, 1, 1, 1}) | .ATTR(dilations, ListInt, {1, 1, 1, 1}) | ||||
| .ATTR(data_format, String, "NCHW") | .ATTR(data_format, String, "NCHW") | ||||
| .ATTR(deformable_groups, Int, 1) | .ATTR(deformable_groups, Int, 1) | ||||
| .ATTR(modulated, Bool, true) | |||||
| .OP_END_FACTORY_REG(DeformableOffsets) | .OP_END_FACTORY_REG(DeformableOffsets) | ||||
| /** | |||||
| *@brief Computes the gradients of DeformableOffsets with respect to input and offsets | |||||
| *@par Inputs: | |||||
| * Three inputs: | |||||
| * @li grad: A Tensor of type float16,float32. gradients with respect to DeformableOffsets output | |||||
| * @li x: A Tensor of type float16,float32. | |||||
| * @li offsets: A Tensor of type float16,float32.Deformation offset parameter. | |||||
| *@par Required Attributes: | |||||
| * @li strides: A tuple/list of 4 integers.The stride of the sliding window for | |||||
| * height and width for H/W dimension. | |||||
| * @li pads: A tuple/list of 4 integers.Padding added to H/W dimension | |||||
| * of the input. | |||||
| * @li ksize: A tuple/list of 2 integers.kernel size. | |||||
| *@par Attributes: | |||||
| * Three attributes: | |||||
| * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension | |||||
| * of input. Defaults to [1, 1, 1, 1] | |||||
| * @li data_format: An optional string from: "NCHW", "NHWC". Defaults to "NCHW". Specify the data format of the input x. | |||||
| * @li deformable_groups: Specify the c-axis grouping number of input x. | |||||
| * @li modulated: Specify version of DeformableConv2D, true means v2, false means v1. | |||||
| *@par Outputs: | |||||
| * grad_x: A Tensor of type float16, float32. Gradients with respect to input_x | |||||
| * grad_offsets: A Tensor of type float16, float32. Gradients with respect to input_offsets | |||||
| */ | |||||
| REG_OP(DeformableOffsetsGrad) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(offsets, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(grad_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(grad_offsets, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .ATTR(dilations, ListInt, {1, 1, 1, 1}) | |||||
| .ATTR(data_format, String, "NCHW") | |||||
| .ATTR(deformable_groups, Int, 1) | |||||
| .ATTR(modulated, Bool, true) | |||||
| .OP_END_FACTORY_REG(DeformableOffsetsGrad) | |||||
| /** | |||||
| *@brief Computes the deformed dilation output with the expected input | |||||
| *@par Inputs: | |||||
| * One inputs: | |||||
| * @li x: A Tensor of type int8, float16, float32 | |||||
| *@par Required Attributes: | |||||
| * @li dilations: A tuple/list of integers. | |||||
| *@par Attributes: | |||||
| * Two attributes: | |||||
| * @li padding_value: default value filling in blank | |||||
| * @li pads: A tuple/list of integers. | |||||
| *@par Outputs: | |||||
| * y: A Tensor. A Tensor of type int8, float16, float32. | |||||
| */ | |||||
| REG_OP(Dilation) | |||||
| .INPUT(x, TensorType({DT_INT8, DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_INT8, DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(dilations, ListInt) | |||||
| .ATTR(pads, ListInt, {}) | |||||
| .ATTR(padding_value, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(Dilation) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_CALCULATION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_CALCULATION_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -254,22 +254,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(PriorBox) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .REQUIRED_ATTR(aspect_ratio, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBox); | |||||
| REG_OP(PriorBox) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .REQUIRED_ATTR(aspect_ratio, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBox); | |||||
| /** | /** | ||||
| *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | ||||
| @@ -306,25 +306,25 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
| *@par Restrictions: | *@par Restrictions: | ||||
| *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | ||||
| */ | */ | ||||
| REG_OP(PriorBoxD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBoxD); | |||||
| REG_OP(PriorBoxD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(data_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(data_w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(box_height, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(box_width, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBoxD); | |||||
| /** | /** | ||||
| *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | *@brief Performs SSD prior box detection, with four additional matrices and the "aspect_ratio" attribute deleted compared to PriorBox . \n | ||||
| @@ -358,22 +358,22 @@ is min_size/sqrt(aspect_ratio), the width is min_size*sqrt(aspect_ratio). Defaul | |||||
| *@par Restrictions: | *@par Restrictions: | ||||
| *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use PriorBox instead. | ||||
| */ | */ | ||||
| REG_OP(PriorBoxDV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBoxDV2); | |||||
| REG_OP(PriorBoxDV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(min_size, ListFloat) | |||||
| .REQUIRED_ATTR(max_size, ListFloat) | |||||
| .ATTR(img_h, Int, 0) | |||||
| .ATTR(img_w, Int, 0) | |||||
| .ATTR(step_h, Float, 0.0) | |||||
| .ATTR(step_w, Float, 0.0) | |||||
| .ATTR(flip, Bool, true) | |||||
| .ATTR(clip, Bool, false) | |||||
| .ATTR(offset, Float, 0.5) | |||||
| .ATTR(variance, ListFloat, {0.1}) | |||||
| .OP_END_FACTORY_REG(PriorBoxDV2); | |||||
| /** | /** | ||||
| *@brief Performs Position Sensitive ROI Pooling . \n | *@brief Performs Position Sensitive ROI Pooling . \n | ||||
| @@ -531,10 +531,10 @@ as xx...xyy...yww...whh...hbb...bc0c0..c0c1c1...c1......cncn...cn . \n | |||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(Yolo) | REG_OP(Yolo) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
| .ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
| .ATTR(classes, Int, 80) | .ATTR(classes, Int, 80) | ||||
| @@ -584,10 +584,10 @@ REG_OP(Yolo) | |||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(YoloV2DetectionOutput) | REG_OP(YoloV2DetectionOutput) | ||||
| .INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
| .ATTR(boxes, Int, 5) | .ATTR(boxes, Int, 5) | ||||
| .ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
| @@ -598,7 +598,7 @@ REG_OP(YoloV2DetectionOutput) | |||||
| .ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
| .ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
| .ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV2DetectionOutput) | .OP_END_FACTORY_REG(YoloV2DetectionOutput) | ||||
| @@ -647,12 +647,12 @@ REG_OP(YoloV2DetectionOutput) | |||||
| *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV2DetectionOutput instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV2DetectionOutput instead. | ||||
| */ | */ | ||||
| REG_OP(YoloV2DetectionOutputD) | REG_OP(YoloV2DetectionOutputD) | ||||
| .INPUT(coord_data, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
| .ATTR(boxes, Int, 5) | .ATTR(boxes, Int, 5) | ||||
| .ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
| @@ -663,7 +663,7 @@ REG_OP(YoloV2DetectionOutputD) | |||||
| .ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
| .ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
| .ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV2DetectionOutputD) | .OP_END_FACTORY_REG(YoloV2DetectionOutputD) | ||||
| @@ -707,16 +707,16 @@ REG_OP(YoloV2DetectionOutputD) | |||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(YoloV3DetectionOutput) | REG_OP(YoloV3DetectionOutput) | ||||
| .INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases_low, ListFloat) | .REQUIRED_ATTR(biases_low, ListFloat) | ||||
| .REQUIRED_ATTR(biases_mid, ListFloat) | .REQUIRED_ATTR(biases_mid, ListFloat) | ||||
| .REQUIRED_ATTR(biases_high, ListFloat) | .REQUIRED_ATTR(biases_high, ListFloat) | ||||
| @@ -729,7 +729,7 @@ REG_OP(YoloV3DetectionOutput) | |||||
| .ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
| .ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
| .ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV3DetectionOutput) | .OP_END_FACTORY_REG(YoloV3DetectionOutput) | ||||
| @@ -776,22 +776,22 @@ s | |||||
| *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutput instead. | *Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutput instead. | ||||
| */ | */ | ||||
| REG_OP(YoloV3DetectionOutputD) | REG_OP(YoloV3DetectionOutputD) | ||||
| .INPUT(coord_data_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(obj_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_low, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_mid, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(classes_prob_high, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(windex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(windex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(windex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(hindex1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(hindex2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(hindex3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(coord_data_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(coord_data_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(coord_data_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(obj_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_low, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_mid, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(classes_prob_high, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(img_info, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(windex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(windex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(windex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(hindex1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(hindex2, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(hindex3, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases_low, ListFloat) | .REQUIRED_ATTR(biases_low, ListFloat) | ||||
| .REQUIRED_ATTR(biases_mid, ListFloat) | .REQUIRED_ATTR(biases_mid, ListFloat) | ||||
| .REQUIRED_ATTR(biases_high, ListFloat) | .REQUIRED_ATTR(biases_high, ListFloat) | ||||
| @@ -804,7 +804,7 @@ REG_OP(YoloV3DetectionOutputD) | |||||
| .ATTR(score_threshold, Float, 0.5) | .ATTR(score_threshold, Float, 0.5) | ||||
| .ATTR(iou_threshold, Float, 0.45) | .ATTR(iou_threshold, Float, 0.45) | ||||
| .ATTR(pre_nms_topn, Int, 512) | .ATTR(pre_nms_topn, Int, 512) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV3DetectionOutputD) | .OP_END_FACTORY_REG(YoloV3DetectionOutputD) | ||||
| @@ -848,7 +848,7 @@ There are three Yolo operators at Yolov3DetectionOutput's preceding layer on Yol | |||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(YoloV3DetectionOutputV2) | REG_OP(YoloV3DetectionOutputV2) | ||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
| .ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
| .ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
| @@ -862,7 +862,7 @@ REG_OP(YoloV3DetectionOutputV2) | |||||
| .ATTR(N, Int, 10) | .ATTR(N, Int, 10) | ||||
| .ATTR(resize_origin_img_to_net, Bool, false) | .ATTR(resize_origin_img_to_net, Bool, false) | ||||
| .ATTR(out_box_dim, Int, 3) | .ATTR(out_box_dim, Int, 3) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV3DetectionOutputV2) | .OP_END_FACTORY_REG(YoloV3DetectionOutputV2) | ||||
| @@ -910,9 +910,9 @@ REG_OP(YoloV3DetectionOutputV2) | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutputV2 instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use YoloV3DetectionOutputV2 instead. | ||||
| */ | */ | ||||
| REG_OP(YoloV3DetectionOutputV2D) | REG_OP(YoloV3DetectionOutputV2D) | ||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(windex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .DYNAMIC_INPUT(hindex, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(biases, ListFloat) | .REQUIRED_ATTR(biases, ListFloat) | ||||
| .ATTR(boxes, Int, 3) | .ATTR(boxes, Int, 3) | ||||
| .ATTR(coords, Int, 4) | .ATTR(coords, Int, 4) | ||||
| @@ -926,7 +926,7 @@ REG_OP(YoloV3DetectionOutputV2D) | |||||
| .ATTR(N, Int, 10) | .ATTR(N, Int, 10) | ||||
| .ATTR(resize_origin_img_to_net, Bool, false) | .ATTR(resize_origin_img_to_net, Bool, false) | ||||
| .ATTR(out_box_dim, Int, 3) | .ATTR(out_box_dim, Int, 3) | ||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(box_out, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(box_out_num, TensorType({DT_INT32})) | .OUTPUT(box_out_num, TensorType({DT_INT32})) | ||||
| .OP_END_FACTORY_REG(YoloV3DetectionOutputV2D) | .OP_END_FACTORY_REG(YoloV3DetectionOutputV2D) | ||||
| @@ -968,8 +968,9 @@ REG_OP(SPP) | |||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li x: An NC1HWC0 tensor of type float16 or float32, describing the feature | *@li x: An NC1HWC0 tensor of type float16 or float32, describing the feature | ||||
| * map. | * map. | ||||
| *@li rois: A tensor of type float16 or float32, with shape | |||||
| *@li rois: A tensor of type float16 or float32, with 3D shape | |||||
| * [batch, 5, roi_max_num], describing the RIOs. | * [batch, 5, roi_max_num], describing the RIOs. | ||||
| * roi_max_num must be less than or equal to 6000 and must be divided by 16. | |||||
| *@li roi_actual_num: A optional tensor of type int32, with shape [batch, 8], specifying | *@li roi_actual_num: A optional tensor of type int32, with shape [batch, 8], specifying | ||||
| * the number of ROIs per batch . \n | * the number of ROIs per batch . \n | ||||
| @@ -1201,35 +1202,6 @@ REG_OP(RpnProposalsD) | |||||
| .OUTPUT(sorted_box, TensorType({DT_FLOAT16})) | .OUTPUT(sorted_box, TensorType({DT_FLOAT16})) | ||||
| .OP_END_FACTORY_REG(RpnProposalsD) | .OP_END_FACTORY_REG(RpnProposalsD) | ||||
| /** | |||||
| *@brief Computes Score Filte Pre-Sort function. | |||||
| *@par Inputs: | |||||
| *Inputs include: | |||||
| * @li rois: A Tensor. Must be float16. N-D with shape [N, 4]. | |||||
| * @li cls_bg_prob: A Tensor. Must be float16. N-D with shape [N, 1]. | |||||
| *@par Attributes: | |||||
| * @li score_threshold: required, float, threahold of topk process. | |||||
| * @li k: required, Int, threahold of topk process. | |||||
| * @li score_filter: bool, mark of score_filter. Defaults to "true" | |||||
| * @li core_max_num: int, max number of core. Defaults to "8" | |||||
| *@par Outputs: | |||||
| * @li sorted_proposal: A Tensor. Must be float16. | |||||
| * N-D with shape [8*6002, 8]. | |||||
| * @li proposal_num: A Tensor. Must be uint32. N-D with shape [8, 8]. | |||||
| */ | |||||
| REG_OP(ScoreFiltePreSort) | |||||
| .INPUT(rois, TensorType({DT_FLOAT16})) | |||||
| .INPUT(cls_bg_prob, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(sorted_proposal, TensorType({ DT_FLOAT16})) | |||||
| .OUTPUT(proposal_num, TensorType({ DT_UINT32})) | |||||
| .REQUIRED_ATTR(score_threshold, Float) | |||||
| .REQUIRED_ATTR(k, Int) | |||||
| .ATTR(score_filter, Bool, true) | |||||
| .ATTR(core_max_num, Int, 8) | |||||
| .OP_END_FACTORY_REG(ScoreFiltePreSort) | |||||
| /** | /** | ||||
| *@brief Computes Score Filte Pre-Sort function. | *@brief Computes Score Filte Pre-Sort function. | ||||
| @@ -1383,6 +1355,7 @@ REG_OP(DecodeWheelsTarget) | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| * Only computation of float16 data is supported. | * Only computation of float16 data is supported. | ||||
| * Note: when the class num per image * max_size_per_class is too big, will compile fail with ERROR-insufficient memory | |||||
| */ | */ | ||||
| REG_OP(BatchMultiClassNonMaxSuppression) | REG_OP(BatchMultiClassNonMaxSuppression) | ||||
| .INPUT(boxes, TensorType({DT_FLOAT16})) | .INPUT(boxes, TensorType({DT_FLOAT16})) | ||||
| @@ -1464,9 +1437,9 @@ REG_OP(NormalizeBBox) | |||||
| * y: A Tensor. Must have the same type as box_predictions. | * y: A Tensor. Must have the same type as box_predictions. | ||||
| */ | */ | ||||
| REG_OP(DecodeBboxV2) | REG_OP(DecodeBboxV2) | ||||
| .INPUT(boxes, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(anchors, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(anchors, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(scales, ListFloat, {1.0, 1.0, 1.0, 1.0}) | .ATTR(scales, ListFloat, {1.0, 1.0, 1.0, 1.0}) | ||||
| .ATTR(decode_clip, Float, 0.0) | .ATTR(decode_clip, Float, 0.0) | ||||
| .ATTR(reversed_box, Bool, false) | .ATTR(reversed_box, Bool, false) | ||||
| @@ -1477,7 +1450,8 @@ REG_OP(DecodeBboxV2) | |||||
| * | * | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *Inputs include: | *Inputs include: | ||||
| * x: A Tensor. Must be float16 or float32. | |||||
| * x: A Tensor. Dtype support: flaot16, flaot, int16, int8, | |||||
| uint8, int32, int64. | |||||
| * | * | ||||
| *@par Attributes: | *@par Attributes: | ||||
| * @li axis: optional, int. | * @li axis: optional, int. | ||||
| @@ -1485,16 +1459,364 @@ REG_OP(DecodeBboxV2) | |||||
| * | * | ||||
| *@par Outputs: | *@par Outputs: | ||||
| * @li y1: A Tensor. Must have the same type as x. | * @li y1: A Tensor. Must have the same type as x. | ||||
| * @li y2: A Tensor. Indices of y1 in x.Dtype must be int32. | |||||
| * @li y2: A Tensor. Indices of y1 in x. Dtype must be int32. | |||||
| * | |||||
| */ | */ | ||||
| REG_OP(Sort) | REG_OP(Sort) | ||||
| .INPUT(x, TensorType({ DT_FLOAT16 })) | |||||
| .OUTPUT(y1, TensorType({ DT_FLOAT16 })) | |||||
| .OUTPUT(y2, TensorType({ DT_INT32 })) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT16, DT_INT8, | |||||
| DT_UINT8, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT16, DT_INT8, | |||||
| DT_UINT8, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y2, TensorType({DT_INT32})) | |||||
| .ATTR(axis, Int, -1) | .ATTR(axis, Int, -1) | ||||
| .ATTR(descending, Bool, false) | .ATTR(descending, Bool, false) | ||||
| .OP_END_FACTORY_REG(Sort) | .OP_END_FACTORY_REG(Sort) | ||||
| /** | |||||
| *@brief Computes iou for input bboxes and gtboxes. | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| *@li bboxes: boxes, a 4D Tensor of type float16 with the shape (x0, x1, y0, y1), | |||||
| *@li gtboxes: boxes, a 4D Tensor of type float16 with the shape (x0, x1, y0, y1).\n | |||||
| *@par Attributes: | |||||
| *@li mode: A optional attribute of type string, whether judge the mode of iou. \n | |||||
| *@par Outputs: | |||||
| *@li overlap: A 2D Tensor of type float16 with shape [n, m]. \n | |||||
| *@attention Constraints: | |||||
| * Only computation of float16 data is supported. | |||||
| *@par Restrictions: | |||||
| *Warning:THIS FUNCTION IS DEPRECATED. Please use Iou instead. | |||||
| */ | |||||
| REG_OP(PtIou) | |||||
| .INPUT(bboxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(gtboxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(overlap, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(mode, String, "iou") | |||||
| .OP_END_FACTORY_REG(PtIou) | |||||
| /** | |||||
| *@brief Greedily selects a subset of bounding boxes in descending order of | |||||
| score . \n | |||||
| *@par Inputs: | |||||
| *Input boxes and scores must be float16 type. Inputs include: | |||||
| *@li boxes: A input tensor with shape [num_batches,spatial_dimension,4]. | |||||
| The single box data format is indicated by center_point_box. | |||||
| *@li scores: A input tensor with shape [num_batches,num_classes,spatial_dimension] | |||||
| *@li max_output_size: A scalar integer tensor representing the maximum number | |||||
| of boxes to be selected by non max suppression. | |||||
| *@li iou_threshold: A 0-D float tensor representing the threshold for deciding | |||||
| whether boxes overlap too much with respect to IOU. | |||||
| *@li score_threshold: A 0-D float tensor representing the threshold for | |||||
| deciding when to remove boxes based on score . \n | |||||
| *@par Attributes: | |||||
| *center_point_box:Integer indicate the format of the box data. | |||||
| The default is 0. 0 - the box data is supplied as [y1, x1, y2, x2] | |||||
| where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair | |||||
| of box corners and the coordinates can be provided as normalized | |||||
| (i.e., lying in the interval [0, 1]) or absolute.Mostly used for TF models. | |||||
| 1 - the box data is supplied as [x_center, y_center, width, height]. | |||||
| Mostly used for Pytorch models. \n | |||||
| *@par Outputs: | |||||
| *@li selected_indices: A 2-D integer tensor of shape [M] representing the | |||||
| selected indices from the boxes tensor, where M <= max_output_size. \n | |||||
| *@attention Constraints: | |||||
| *Input boxes and scores must be float16 type . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with onnx NonMaxSuppression operator. | |||||
| *@par Restrictions: | |||||
| *Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(NonMaxSuppressionV6) | |||||
| .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(scores, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(max_output_size, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(iou_threshold, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(score_threshold, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(selected_indices, TensorType({DT_INT32})) | |||||
| .ATTR(center_point_box, Int, 0) | |||||
| .ATTR(max_boxes_size, Int, 0) | |||||
| .OP_END_FACTORY_REG(NonMaxSuppressionV6) | |||||
| /** | |||||
| *@brief Greedily selects a subset of bounding boxes in descending order of | |||||
| score . \n | |||||
| *@par Inputs: | |||||
| *Input boxes and scores must be float16 type. Inputs include: | |||||
| *@li boxes: A input tensor with shape [num_batches,spatial_dimension,4]. | |||||
| The single box data format is indicated by center_point_box. | |||||
| *@li scores: A input tensor with shape [num_batches,num_classes,spatial_dimension] | |||||
| *@li max_output_size: A scalar integer tensor representing the maximum number | |||||
| of boxes to be selected by non max suppression. | |||||
| *@li iou_threshold: A 0-D float tensor representing the threshold for deciding | |||||
| whether boxes overlap too much with respect to IOU. | |||||
| *@li score_threshold: A 0-D float tensor representing the threshold for | |||||
| deciding when to remove boxes based on score . \n | |||||
| *@li index_id: A input tensor with shape [num_batches,num_classes,spatial_dimension,3] | |||||
| the last dim representing (batch_id,class_id,index_id) . \n | |||||
| *@par Attributes: | |||||
| *center_point_box:Integer indicate the format of the box data. | |||||
| The default is 0. 0 - the box data is supplied as [y1, x1, y2, x2] | |||||
| where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair | |||||
| of box corners and the coordinates can be provided as normalized | |||||
| (i.e., lying in the interval [0, 1]) or absolute.Mostly used for TF models. | |||||
| 1 - the box data is supplied as [x_center, y_center, width, height]. | |||||
| Mostly used for Pytorch models. \n | |||||
| *@par Outputs: | |||||
| *@li selected_indices: A 2-D integer tensor of shape [M] representing the | |||||
| selected indices from the boxes tensor, where M <= max_output_size. \n | |||||
| *@attention Constraints: | |||||
| *Input boxes and scores must be float16 type . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with onnx NonMaxSuppression operator. | |||||
| */ | |||||
| REG_OP(NonMaxSuppressionV7) | |||||
| .INPUT(boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(scores, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(max_output_size, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(iou_threshold, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(score_threshold, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(index_id, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(selected_indices, TensorType({DT_INT32})) | |||||
| .ATTR(center_point_box, Int, 0) | |||||
| .ATTR(max_boxes_size, Int, 0) | |||||
| .OP_END_FACTORY_REG(NonMaxSuppressionV7) | |||||
| /** | |||||
| *@brief Obtains the ROI feature matrix from the feature map list. It is a customized fused operator for mmdetection. \n | |||||
| *@par Inputs: | |||||
| * Three inputs, including: | |||||
| *@li features: A 5HD Tensor list of type float32 or float16. | |||||
| *@li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, | |||||
| * the value "5" indicates the indexes of images where the ROIs are located, "x0", "y0", "x1", and "y1". | |||||
| *@par Attributes: | |||||
| *@li finest_scale: A optional attribute of type int, specifying the scale of calculate levels of "rois". | |||||
| *@li roi_scale_factor: A optional attribute of type float32, specifying the rescaling of "rois" coordinates. | |||||
| *@li spatial_scale: A optional attribute of type list float32, specifying the scaling ratio of "features" | |||||
| * to the original image. | |||||
| *@li pooled_height: A optional attribute of type int32, specifying the H dimension. | |||||
| *@li pooled_width: A optional attribute of type int32, specifying the W dimension. | |||||
| *@li sample_num: An optional attribute of type int32, specifying the horizontal and vertical sampling frequency | |||||
| * of each output. If this attribute is set to "0", the sampling frequency is equal to the rounded up value of "rois", | |||||
| * which is a floating point number. Defaults to "0". | |||||
| *@li pool_mode: An optional attribute of type string to indicate pooling mode. Defaults to "avg" . \n | |||||
| *@li aligned: An optional attribute of type bool, specifying the align to corner. Defaults to true . \n | |||||
| *@par Outputs: | |||||
| * output: Outputs the feature sample of each ROI position. The format is 5HD Tensor of type float32 or float16. | |||||
| * The axis N is the number of input ROIs. Axes H, W, and C are consistent with the values of "pooled_height", | |||||
| * "pooled_width", and "features", respectively. | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with mmdetection SingleRoIExtractor operator. | |||||
| */ | |||||
| REG_OP(RoiExtractor) | |||||
| .DYNAMIC_INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(finest_scale, Int, 56) | |||||
| .ATTR(roi_scale_factor, Float, 0) | |||||
| .ATTR(spatial_scale, ListFloat, {1.f / 4, 1.f / 8, 1.f / 16, 1.f / 32}) | |||||
| .ATTR(pooled_height, Int, 7) | |||||
| .ATTR(pooled_width, Int, 7) | |||||
| .ATTR(sample_num, Int, 0) | |||||
| .ATTR(pool_mode, String, "avg") | |||||
| .ATTR(aligned, Bool, true) | |||||
| .OP_END_FACTORY_REG(RoiExtractor) | |||||
| /** | |||||
| *@brief Performs Position Sensitive PS ROI Pooling . \n | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| *@li x: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||||
| * map, dimension C1 must be equal to | |||||
| * (int(output_dim+15)/C0))*group_size*group_size. | |||||
| *@li rois: A tensor of type float16 or float32, with shape | |||||
| * [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||||
| * elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||||
| * the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||||
| * greater than or equal to "0.0" . \n | |||||
| *@par Attributes: | |||||
| *@li output_dim: A required int32, specifying the number of output channels, | |||||
| * must be greater than 0. | |||||
| *@li group_size: A required int32, specifying the number of groups to encode | |||||
| * position-sensitive score maps, must be within the range (0, 128). | |||||
| *@li spatial_scale: A required float32, scaling factor for mapping the input | |||||
| * coordinates to the ROI coordinates . \n | |||||
| *@par Outputs: | |||||
| *y: An NC1HWC0 tensor of type float16 or float32, describing the result | |||||
| * feature map . \n | |||||
| *@attention Constraints: | |||||
| * HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||||
| */ | |||||
| REG_OP(PSROIPoolingV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(spatial_scale, Float) | |||||
| .REQUIRED_ATTR(output_dim, Int) | |||||
| .REQUIRED_ATTR(group_size, Int) | |||||
| .OP_END_FACTORY_REG(PSROIPoolingV2) | |||||
| /** | |||||
| *@brief Performs Position Sensitive PS ROI Pooling Grad . \n | |||||
| *@par Inputs: | |||||
| * Two inputs, including: | |||||
| *@li x: An NC1HWC0 tensor of type float16 or float32, describing the result | |||||
| * feature map . \n | |||||
| *@li rois: A tensor of type float16 or float32, with shape | |||||
| * [batch, 5, rois_num], describing the ROIs, each ROI consists of five | |||||
| * elements: "batch_id", "x1", "y1", "x2", and "y2", which "batch_id" indicates | |||||
| * the index of the input feature map, "x1", "y1", "x2", or "y2" must be | |||||
| * greater than or equal to "0.0" . \n | |||||
| *@par Attributes: | |||||
| *@li output_dim: A required int32, specifying the number of output channels, | |||||
| * must be greater than 0. | |||||
| *@li group_size: A required int32, specifying the number of groups to encode | |||||
| * position-sensitive score maps, must be within the range (0, 128). | |||||
| *@li spatial_scale: A required float32, scaling factor for mapping the input | |||||
| * coordinates to the ROI coordinates . \n | |||||
| *@li input_size: A required listInt, mapping the gradinput size: (H, W) | |||||
| *@par Outputs: | |||||
| *y: An NC1HWC0 tensor of type float16 or float32, describing the feature | |||||
| * map, dimension C1 must be equal to | |||||
| * (int(output_dim+15)/C0))*group_size*group_size. | |||||
| *@attention Constraints: | |||||
| * HC1HWC0: channel must be Group_size squared, rois_num is a multiple of 16 | |||||
| */ | |||||
| REG_OP(PSROIPoolingGradV2D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(spatial_scale, Float) | |||||
| .REQUIRED_ATTR(output_dim, Int) | |||||
| .REQUIRED_ATTR(group_size, Int) | |||||
| .REQUIRED_ATTR(input_size, ListInt) | |||||
| .OP_END_FACTORY_REG(PSROIPoolingGradV2D) | |||||
| /** | |||||
| *@brief Generate the responsible flags of anchor in a single feature map. | |||||
| *@par Inputs: | |||||
| *@li gt_bboxes: Ground truth box, 2-D Tensor with shape `[batch, 4]`. | |||||
| *@par Attributes: | |||||
| *@li featmap_size: The size of feature maps, listint. | |||||
| *@li strides: Stride of current level, listint. | |||||
| *@li num_base_anchors: The number of base anchors. | |||||
| *@par Outputs: | |||||
| *flags: The valid flags of each anchor in a single level. | |||||
| */ | |||||
| REG_OP(AnchorResponseFlags) | |||||
| .INPUT(gt_bboxes, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(flags, TensorType({DT_UINT8})) | |||||
| .REQUIRED_ATTR(featmap_size, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(num_base_anchors, Int) | |||||
| .OP_END_FACTORY_REG(AnchorResponseFlags) | |||||
| /** | |||||
| *@brief Generates bounding boxes based on yolo's "anchor" and "ground-truth" boxes. | |||||
| * It is a customized mmdetection operator . \n | |||||
| *@par Inputs: | |||||
| * Three inputs, including: | |||||
| *@li anchor_boxes: anchor boxes generated by the yolo training set. | |||||
| * A 2D Tensor of type float32 or float16 with shape (N, 4). "N" indicates the number | |||||
| * of ROIs, "N" indicates the number of ROIs, and the value "4" refers to (tx, ty, tw, th). | |||||
| *@li gt_bboxes: target of the transformation, e.g, ground-truth boxes. | |||||
| * A 2D Tensor of type float32 or float16 with shape (N, 4). | |||||
| * "N" indicates the number of ROIs, and 4 indicates "dx", "dy", "dw", and "dh" . | |||||
| *@li stride: Scale for each box. | |||||
| * A 1D Tensor of type int32 shape (N,). | |||||
| * "N" indicates the number of ROIs. \n | |||||
| *@par Attributes: | |||||
| *@li performance_mode: select performance mode, "high_precision" or "high_performance". | |||||
| * select "high_precision" when input type is float32, the output tensor precision | |||||
| * will be smaller than 0.0001, select "high_performance" when input type is float32, | |||||
| * the ops will be best performance, but precision will be only smaller than 0.005. | |||||
| *@par Outputs: | |||||
| *encoded_bboxes: Bboxes generated based on "anchor_boxes" and "gt_bboxes". Have the | |||||
| * same format and type as "anchor_boxes". | |||||
| * | |||||
| *@attention Constraints: | |||||
| * input anchor boxes only support maximum N=20480. \n | |||||
| */ | |||||
| REG_OP(YoloBoxesEncode) | |||||
| .INPUT(anchor_boxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(gt_bboxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(stride, TensorType({DT_INT32})) | |||||
| .ATTR(performance_mode, String, "high_precision") | |||||
| .OUTPUT(encoded_bboxes, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(YoloBoxesEncode) | |||||
| /** | |||||
| *@brief Performs Position Sensitive PS ROI Pooling Grad. | |||||
| *@par Inputs: | |||||
| * Eight inputs, including: | |||||
| *@li assigned_gt_inds: Tensor of type float16 or float32, shape (n, ) | |||||
| *@li overlaps: A Tensor. Datatype is same as assigned_gt_inds. IOU between gt_bboxes and bboxes. shape(k, n) | |||||
| *@li box_responsible_flags: A Tensor. Support uint8. Flag to indicate whether box is responsible. | |||||
| *@li max_overlaps: A Tensor. Datatype is same as assigned_gt_inds. overlaps.max(axis=0). | |||||
| *@li argmax_overlaps: A Tensor. Support int32. overlaps.argmax(axis=0). | |||||
| *@li gt_max_overlaps: A Tensor. Datatype is same as assigned_gt_inds. overlaps.max(axis=1). | |||||
| *@li gt_argmax_overlaps: A Tensor. Support int32. overlaps.argmax(axis=1). | |||||
| *@li num_gts: A Tensor. Support int32. real k. shape (1, ) | |||||
| *@par Attributes: | |||||
| *@li output_dim: float. IOU threshold for positive bboxes. | |||||
| *@li group_size: float. minimum iou for a bbox to be considered as a positive bbox | |||||
| *@li spatial_scale: bool. whether to assign all bboxes with the same highest overlap with some gt to that gt. | |||||
| *@par Outputs: | |||||
| *@li assigned_gt_inds_pos: A Tensor. Support float16/float32. shape (n, ). | |||||
| */ | |||||
| REG_OP(GridAssignPositive) | |||||
| .INPUT(assigned_gt_inds, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(overlaps, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(box_responsible_flags, TensorType({ DT_UINT8 })) | |||||
| .INPUT(max_overlaps, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(argmax_overlaps, TensorType({ DT_INT32 })) | |||||
| .INPUT(gt_max_overlaps, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(gt_argmax_overlaps, TensorType({ DT_INT32 })) | |||||
| .INPUT(num_gts, TensorType({ DT_INT32 })) | |||||
| .OUTPUT(assigned_gt_inds_pos, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(pos_iou_thr, Float) | |||||
| .REQUIRED_ATTR(min_pos_iou, Float) | |||||
| .REQUIRED_ATTR(gt_max_assign_all, Bool) | |||||
| .OP_END_FACTORY_REG(GridAssignPositive) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_DETECT_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -55,7 +55,9 @@ REG_OP(LogSoftmaxGrad) | |||||
| *Two inputs, including: | *Two inputs, including: | ||||
| * @li features: A Tensor. Must be one of the following types: half, float32, double. | * @li features: A Tensor. Must be one of the following types: half, float32, double. | ||||
| * A "batch_size * num_classes" matrix. | * A "batch_size * num_classes" matrix. | ||||
| * @li labels: A Tensor of the same type as "features". batch_size vector with values in [0, num_classes). | |||||
| * @li labels: A Tensor. Must be one of the following types: 'int32', 'int64'. | |||||
| * batch_size vector with values in [0, num_classes). | |||||
| * This is the label for the given minibatch entry. | |||||
| *@par Outputs: | *@par Outputs: | ||||
| @@ -105,6 +107,9 @@ REG_OP(SoftmaxCrossEntropyWithLogits) | |||||
| * @li grad_softmax: A Tensor. Has the same shape and type as "softmax". | * @li grad_softmax: A Tensor. Has the same shape and type as "softmax". | ||||
| * The format is NC1HWC0 or DN . \n | * The format is NC1HWC0 or DN . \n | ||||
| *@par Attributes: | |||||
| * axes: An optional list of ints. Defaults to "{-1}" . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *grad_x: A Tensor. Has the same shape and type as "softmax" . \n | *grad_x: A Tensor. Has the same shape and type as "softmax" . \n | ||||
| @@ -115,6 +120,7 @@ REG_OP(SoftmaxGrad) | |||||
| .INPUT(softmax, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(softmax, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .INPUT(grad_softmax, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .INPUT(grad_softmax, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .OUTPUT(grad_x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | .OUTPUT(grad_x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) | ||||
| .ATTR(axes, ListInt, {-1}) | |||||
| .OP_END_FACTORY_REG(SoftmaxGrad) | .OP_END_FACTORY_REG(SoftmaxGrad) | ||||
| /** | /** | ||||
| @@ -160,20 +166,20 @@ REG_OP(SigmoidCrossEntropyWithLogits) | |||||
| .OP_END_FACTORY_REG(SigmoidCrossEntropyWithLogits) | .OP_END_FACTORY_REG(SigmoidCrossEntropyWithLogits) | ||||
| /** | /** | ||||
| *@brief Computes the sigmoid cross entropy loss of "predict" and "target" . \n | |||||
| *@brief Computes the sigmoid cross entropy loss of "predict" and "target". | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * four inputs, including: | * four inputs, including: | ||||
| *@li predict: A multi-dimensional Tensor of type float16 or float32, specifying the predictive value. | *@li predict: A multi-dimensional Tensor of type float16 or float32, specifying the predictive value. | ||||
| *@li target: A multi-dimensional Tensor of type float16 or float32, specifying the target value . \n | |||||
| *@li weight: An multi-dimensional Tensor, specifying the weight value. \n | |||||
| *@li target: A multi-dimensional Tensor of type float16 or float32, specifying the target value. | |||||
| *@li weight: An multi-dimensional Tensor, specifying the weight value. | |||||
| *@li pos_weight: An multi-dimensional Tensor, specifying the pos weight value. \n | *@li pos_weight: An multi-dimensional Tensor, specifying the pos weight value. \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *reduction: A character string from "none", "mean", and "sum", specifying the reduction type to be applied to the output. Defaults to "mean" . \n | |||||
| *reduction: A character string from "none", "mean", and "sum", specifying the reduction type to be applied to the output. Defaults to "mean". \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *loss: Sigmoid cross entropy between the predictive value and target value. Has the same dimensions as "predict" . \n | |||||
| *loss: Sigmoid cross entropy between the predictive value and target value. Has the same dimensions as "predict". \n | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with PyTorch operator BCEWithLogitsLoss. | * Compatible with PyTorch operator BCEWithLogitsLoss. | ||||
| @@ -427,6 +433,33 @@ REG_OP(MVN) | |||||
| .ATTR(eps, Float, 1e-9) | .ATTR(eps, Float, 1e-9) | ||||
| .OP_END_FACTORY_REG(MVN) | .OP_END_FACTORY_REG(MVN) | ||||
| /** | |||||
| *@brief Normalizes the input . \n | |||||
| *@par Inputs: | |||||
| * One input: | |||||
| *x: An NCHW tensor of type float16 or float32 . \n | |||||
| *@par Attributes: | |||||
| *@li eps: An optional float32 epsilon for not dividing by zero. Defaults to "1e-9" . \n | |||||
| *@li axes: A list of Intefers, along which axis to reduce. Defaults to "[0, 2, 3]" . \n | |||||
| *@par Outputs: | |||||
| *y: An NCHW tensor of type float16 or float32 . \n | |||||
| *@attention Constraints: | |||||
| * The input tensor must have the NCHW format, whose shape length must be 4. | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator MeanVarianceNormalization. | |||||
| */ | |||||
| REG_OP(MVNV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) /* "First operand." */ | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) /* "Result, has same element type as inputs" */ | |||||
| .ATTR(eps, Float, 1e-9) | |||||
| .ATTR(axes, ListInt, {0, 2, 3}) | |||||
| .OP_END_FACTORY_REG(MVNV2) | |||||
| /** | /** | ||||
| *@brief Normalizes the input "x1" . \n | *@brief Normalizes the input "x1" . \n | ||||
| @@ -498,6 +531,31 @@ REG_OP(LayerNorm) | |||||
| .ATTR(epsilon, Float, 0.0000001) | .ATTR(epsilon, Float, 0.0000001) | ||||
| .OP_END_FACTORY_REG(LayerNorm) | .OP_END_FACTORY_REG(LayerNorm) | ||||
| /** | |||||
| *@brief Returns a tensor where each sub-tensor of input along dimension | |||||
| * dim is normalized such that the p-norm of the sub-tensor is lower than the value maxnorm. \n | |||||
| *@par Inputs: | |||||
| *One input, including: | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32 . \n | |||||
| *@par Attributes: | |||||
| * @li p: Specify L_p norm, the type is float. | |||||
| * @li dim: The processed dim, the type is int. | |||||
| * @li maxnorm: Threshold for comparison, the type is float. \n | |||||
| *@par Outputs: | |||||
| *One outputs, including: | |||||
| * @li y: shape and dtype of output, should be same shape and type as input. | |||||
| */ | |||||
| REG_OP(Renorm) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .REQUIRED_ATTR(p, Float) | |||||
| .REQUIRED_ATTR(dim, Int) | |||||
| .REQUIRED_ATTR(maxnorm, Float) | |||||
| .OP_END_FACTORY_REG(Renorm) | |||||
| /** | /** | ||||
| *@brief LayerNormGrad operator interface implementation | *@brief LayerNormGrad operator interface implementation | ||||
| * calculating: dy, x, variance, mean, gamma | * calculating: dy, x, variance, mean, gamma | ||||
| @@ -586,6 +644,48 @@ REG_OP(LayerNormXBackprop) | |||||
| .OUTPUT(pd_x, TensorType({DT_FLOAT, DT_FLOAT16})) | .OUTPUT(pd_x, TensorType({DT_FLOAT, DT_FLOAT16})) | ||||
| .OP_END_FACTORY_REG(LayerNormXBackprop) | .OP_END_FACTORY_REG(LayerNormXBackprop) | ||||
| /** | |||||
| *@brief LayerNormXBackpropV2 operator interface implementation | |||||
| * calculating: dy, x, variance, mean, gamma | |||||
| * pd_xl = data_dy*data_gamma | |||||
| * pd_var = np.sum(((-0.5)*pd_xl*(data_x - data_mean) | |||||
| * np.power((data_variance + EPSLON), (-1.5))), | |||||
| * reduce_axis, keepdims=True) | |||||
| * pd_mean = np.sum(((-1.0)*pd_xl | |||||
| * np.power((data_variance + EPSLON), (-0.5))), | |||||
| * reduce_axis, keepdims=True) | |||||
| * + pd_var*(1.0/m) | |||||
| * np.sum(((-2.0)*(data_x - data_mean)), reduce_axis, keepdims=True) | |||||
| * pd_x = pd_xl*np.power((data_variance + EPSLON), (-0.5)) + | |||||
| * pd_var*(2.0/m)*(data_x - data_mean) + pd_mean*(1.0/m) | |||||
| * res_for_gamma = (data_x - data_mean) * np.power((data_variance + EPSLON), (-0.5)) | |||||
| *@par Inputs: | |||||
| *Five inputs, including: | |||||
| * @li dy: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li variance: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li mean: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li gamma: A Tensor. Must be one of the following types: float16, float32 . \n | |||||
| *@par Outputs: | |||||
| *Three outputs, including: | |||||
| * @li pd_x: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li res_for_gamma: A Tensor. Must be one of the following types: float32. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(LayerNormXBackpropV2) | |||||
| .INPUT(dy, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(variance, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(mean, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(gamma, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(pd_x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(res_for_gamma, TensorType({DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(LayerNormXBackpropV2) | |||||
| /** | /** | ||||
| *@brief LayerNormBetaGammaBackprop operator interface implementation | *@brief LayerNormBetaGammaBackprop operator interface implementation | ||||
| * calculating: dy, x, variance, mean | * calculating: dy, x, variance, mean | ||||
| @@ -629,6 +729,35 @@ REG_OP(LayerNormBetaGammaBackprop) | |||||
| .REQUIRED_ATTR(shape_gamma, ListInt) | .REQUIRED_ATTR(shape_gamma, ListInt) | ||||
| .OP_END_FACTORY_REG(LayerNormBetaGammaBackprop) | .OP_END_FACTORY_REG(LayerNormBetaGammaBackprop) | ||||
| /** | |||||
| *@brief LayerNormBetaGammaBackpropV2 operator interface implementation | |||||
| * calculating: dy, x, variance, mean | |||||
| * pd_gamma = np.sum((data_dy*res_for_gamma), param_axis, keepdims=True) | |||||
| * pd_beta = np.sum(data_dy, param_axis, keepdims=True) | |||||
| *@par Inputs: | |||||
| *Three inputs, including: | |||||
| * @li dy: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li variance: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li mean: A Tensor. Must be one of the following types: float16, float32 . \n | |||||
| *@par Outputs: | |||||
| *Three outputs, including: | |||||
| * @li pd_gamma: A Tensor. Must be one of the following types: float16, float32. | |||||
| * @li pd_beta: A Tensor. Must be one of the following types: float16, float32. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(LayerNormBetaGammaBackpropV2) | |||||
| .INPUT(dy, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(res_for_gamma, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(pd_gamma, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(pd_beta, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(shape_gamma, ListInt) | |||||
| .OP_END_FACTORY_REG(LayerNormBetaGammaBackpropV2) | |||||
| /** | /** | ||||
| *@brief Return "output" according to the algorithm of dropout_do_mask: | *@brief Return "output" according to the algorithm of dropout_do_mask: | ||||
| * scale_x = x *(1 / keep_prob) | * scale_x = x *(1 / keep_prob) | ||||
| @@ -656,7 +785,68 @@ REG_OP(DropOutDoMask) | |||||
| .INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | .INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | ||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | ||||
| .OP_END_FACTORY_REG(DropOutDoMask) | .OP_END_FACTORY_REG(DropOutDoMask) | ||||
| /** | |||||
| *@brief Return "output" according to the algorithm of dropout_do_mask: | |||||
| * scale_x = x *(1 / keep_prob) | |||||
| * output = select(mask == 1, scale_x, 0) | |||||
| *@par Inputs: | |||||
| *Three inputs, including: | |||||
| * @li x: A mutable Tensor. Must be one of the following types: | |||||
| * float16, float32 | |||||
| * @li mask: A mutable Tensor. Must met all of the following rules: | |||||
| * shape of mask should be 1D. | |||||
| * dtype of mask should be uint8. | |||||
| * value of shape should met the following algorithm: | |||||
| * value = (size(x) + 128 - 1) // 128 * 128 | |||||
| * @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||||
| * shape of "keep_prob" should be (1,) or [1,]. | |||||
| * Has the same type as "x" . \n | |||||
| *@par Output: | |||||
| *y: A mutable Tensor. Has the same type as "x". | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DropOutDoMaskV3) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(mask, TensorType({DT_UINT8})) | |||||
| .INPUT(keep_prob, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(DropOutDoMaskV3) | |||||
| /** | |||||
| *@brief Return "output" according to the algorithm of dropout_do_mask: | |||||
| * scale_x = x *(1 / keep_prob) | |||||
| * output = select(mask == 1, scale_x, 0) | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li x: A mutable Tensor. Must be one of the following types: | |||||
| * float16, float32 | |||||
| * @li mask: A mutable Tensor. Must met all of the following rules: | |||||
| * shape of mask should be 1D. | |||||
| * dtype of mask should be uint8. | |||||
| * value of shape should met the following algorithm: | |||||
| * value = (size(x) + 128 - 1) // 128 * 128 | |||||
| *@par Attributes: | |||||
| * @li keep_prob: A mutable Tensor. Must met all of the following rules: | |||||
| * shape of "keep_prob" should be (1,) or [1,]. | |||||
| * Has the same type as "x" . \n | |||||
| *@par Output: | |||||
| *y: A mutable Tensor. Has the same type as "x". | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DropOutDoMaskV3D) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(mask, TensorType({DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(keep_prob, Float) | |||||
| .OP_END_FACTORY_REG(DropOutDoMaskV3D) | |||||
| /** | /** | ||||
| *@brief Scales the input . \n | *@brief Scales the input . \n | ||||
| @@ -703,7 +893,7 @@ REG_OP(Scale) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *One input, including: | *One input, including: | ||||
| *@li x: A Tensor. Must be 4-D shape, and only support the following types: float16, float32 . \n | |||||
| *x: A Tensor. Must be 4-D shape, and only support the following types: float16, float32 . \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li depth_radius: An optional int32, specifying the half-width of the normalization window. Defaults to "5". | *@li depth_radius: An optional int32, specifying the half-width of the normalization window. Defaults to "5". | ||||
| @@ -960,24 +1150,427 @@ REG_OP(INInferV2D) | |||||
| .OP_END_FACTORY_REG(INInferV2D) | .OP_END_FACTORY_REG(INInferV2D) | ||||
| /** | /** | ||||
| *@brief Performs instance normalization for inference of InHost part. | |||||
| * @brief perform instance normalization to x. \n | |||||
| *@par Inputs:\n | |||||
| * One input, including: (NC1HWC0 supported) | |||||
| * variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the variance. | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32, format is NC1HWC0. | |||||
| * @li gamma: A Tensor. Must be one of the following types: float16, float32, format is ND. | |||||
| * @li beta: A Tensor. Must be one of the following types: float16, float32, format is ND. | |||||
| * @par Attributes: | |||||
| * @li data_format: An attribute of type String \n | |||||
| * @li epsilon: An attribute of type Float, . \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x", format is NC1HWC0. \n | |||||
| * @li mean: A Tensor. Has the same type as "x", format is NC1HWC0 and the shape is [N, C1, 1, 1, C0]. \n | |||||
| * @li variance: A Tensor. Has the same type as "x", format is NC1HWC0 and the shape is [N, C1, 1, 1, C0]. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Can be used by onnx InstanceNormalization | |||||
| */ | |||||
| REG_OP(InstanceNorm) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(gamma, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(beta, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(mean, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(variance, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(data_format, String) | |||||
| .REQUIRED_ATTR(epsilon, Float) | |||||
| .OP_END_FACTORY_REG(InstanceNorm) | |||||
| /** | |||||
| * @brief Computes Kl_div_loss_grad or Kl_div_loss_backward. \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li grad: A Tensor. Must be one of the following types: float16, float32. | |||||
| * Required. | |||||
| * @li input: A Tensor. Has the same type as "grad". Required. | |||||
| * @li target: A Tensor. Has the same type as "grad". Required. \n | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional attribute of type String. Defaults to "mean". \n | |||||
| * @li log_target: An optional attribute of type Bool. Defaults to false. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "grad". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator KlDivLossGrad. | |||||
| */ | |||||
| REG_OP(KlDivLossGrad) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(input, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(target, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .ATTR(log_target, Bool, false) | |||||
| .OP_END_FACTORY_REG(KlDivLossGrad) | |||||
| /** | |||||
| * @brief Computes l1_loss_grad or l1_loss_backward. \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li grads: A Tensor. Must be one of the following types: float16, float32. | |||||
| * Required. | |||||
| * @li predict: A Tensor. Has the same type as "grads". Required. | |||||
| * @li label: A Tensor. Has the same type as "grads". Required. \n | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional attribute of type String. Defaults to "mean". \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator L1LossGrad. | |||||
| */ | |||||
| REG_OP(L1LossGrad) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(predict, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(label, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(L1LossGrad) | |||||
| /** | |||||
| * @brief Computes loss of lp, p=1,2,3.... | |||||
| * @par Inputs: | |||||
| * @li predict: An ND tensor of type float16, float32. | |||||
| * @li label: An ND tensor of type float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li p: A required int attribute that decides which loss to compute, now the p only can be 1 to compute l1_loss. | |||||
| * @li reduction: An optional string.Defaults to "mean". \n | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor tensor with the same shape and type as "predict". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator LpLoss. | |||||
| */ | |||||
| REG_OP(LpLoss) | |||||
| .INPUT(predict, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(label, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .REQUIRED_ATTR(p, Int) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(LpLoss) | |||||
| /** | |||||
| * @brief Computes gradients of mse loss. | |||||
| * @par Inputs: | |||||
| * @li predict: An ND tensor of type float16, float32. | |||||
| * @li label: An ND tensor of type float16, float32. | |||||
| * @li dout: An ND tensor of type float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional string.Defaults to "mean". \n | |||||
| * @par Outputs: | |||||
| * @li y: An ND tensor tensor with the same shape and type as "predict". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator MseLossGrad. | |||||
| */ | |||||
| REG_OP(MseLossGrad) | |||||
| .INPUT(predict, TensorType({DT_FLOAT32, DT_FLOAT16})) | |||||
| .INPUT(label, TensorType({DT_FLOAT32, DT_FLOAT16})) | |||||
| .INPUT(dout, TensorType({DT_FLOAT32, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT32, DT_FLOAT16})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(MseLossGrad) | |||||
| /** | |||||
| * @brief Computes mse loss. | |||||
| * @par Inputs: | |||||
| * two inputs, including: | |||||
| * @li predict: An ND Tensor of dtype float16 or float32. | |||||
| * @li label: An ND Tensor of dtype float16 or float32.\n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li reduction:An optional str from sum, none, mean, Defaults to "mean".\n | |||||
| * | |||||
| * @par Outputs: | |||||
| * @li y: when reduction=sum/mean, y is scale. when reduction=none, y has | |||||
| * same type and shape as "predict".\n | |||||
| */ | |||||
| REG_OP(MseLoss) | |||||
| .INPUT(predict, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(label, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(MseLoss) | |||||
| /** | |||||
| * @brief Calculates the reversed outputs of the function "smooth_l1_loss_v2". \n | |||||
| * @par Inputs: | |||||
| * Three Inputs, including: | |||||
| * @li predict: A Tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li label: A Tensor. Has the same type as "predict". | |||||
| * @li dout: A Tensor. Has the same type as "predict". \n | |||||
| * @par Attributes: | |||||
| * Two Attributes, including: | |||||
| * @li sigma: An optional float. Defaults to 1.0. \n | |||||
| * @li reduction: An optional string. Defaults to "mean", | |||||
| * Must be one of the following: "none", "mean", "sum". \n | |||||
| * @par Outputs: | |||||
| * @li gradient: A Tensor. Has the same type as "predict". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator SmoothL1LossBackward. | |||||
| */ | |||||
| REG_OP(SmoothL1LossGradV2) | |||||
| .INPUT(predict, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(label, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(dout, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(gradient, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(sigma, Float, 1.0) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(SmoothL1LossGradV2) | |||||
| /** | |||||
| * @brief Creates a criterion that uses a squared term if the absolute | |||||
| * element-wise error falls below beta and an L1 term otherwise. It is | |||||
| * less sensitive to outliers than the MSELoss and in some cases prevents | |||||
| * exploding gradients. | |||||
| * @par Inputs: | |||||
| * @li predict: A multi-dimensional Tensor of type float16 or float32, | |||||
| * specifying the predictive value. \n | |||||
| * @li label: A multi-dimensional Tensor of type float16 or float32, | |||||
| * specifying the target value. \n | |||||
| * @par Attributes: | |||||
| * @li sigma: An optional int. Specifies the threshold of loss. Defaults | |||||
| * to "1.0". \n | |||||
| * @li reduction: An optional str. Specifies the reduction to apply to | |||||
| * the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, | |||||
| * 'mean': the sum of the output will be divided by the number of elements in | |||||
| * the output,'sum': the output will be summed. Default: 'mean'. \n | |||||
| * @par Outputs: | |||||
| * @li loss: Indicates the loss between the predictive value and target value. | |||||
| * Has the same dimensions as "predict". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator smooth_l1_loss. \n | |||||
| */ | |||||
| REG_OP(SmoothL1LossV2) | |||||
| .INPUT(predict, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(label, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .OUTPUT(loss, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .ATTR(sigma, Float, 1.0) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(SmoothL1LossV2) | |||||
| /** | |||||
| * @brief Computes Centralization. result = x - mean(x, axes) | |||||
| * @par Inputs: | |||||
| * @li x: An ND tensor of type float16, float32. | |||||
| * @par Attributes: | |||||
| * @li axes: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType. | |||||
| * Must be in the range [-rank(x), rank(x)). | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x". \n | |||||
| * @par Third-party framework compatibility | |||||
| * custom operator \n | |||||
| */ | |||||
| REG_OP(Centralization) | |||||
| .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .ATTR(axes, ListInt, {-1}) | |||||
| .OP_END_FACTORY_REG(Centralization) | |||||
| /** | |||||
| *@brief Roll the tensor along the given dimension(s). | |||||
| * Elements that are shifted beyond the last position are re-introduced at the first position. | |||||
| * If a dimension is not specified, the tensor will be flattened before rolling and then restored to the original shape. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li x: A tensor . Must be one of the following types: | |||||
| * float16, float32, int32, uint32, int8, uint8. \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * epsilon: An optional float32, specifying the small value added to | |||||
| variance to avoid dividing by zero. Defaults to "0.00001" . \n | |||||
| * @li shifts: The number of places by which the elements of the tensor are shifted. \n | |||||
| * @li dims: Axis along which to roll. \n | |||||
| *@par Outputs:\n | |||||
| * variance_sqrt: A [N, C1, 1, 1, C0] Tensor of type float32, for the variance_sqrt. | |||||
| *@par Outputs: | |||||
| * y: A Tensor with the same type and shape of x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Roll. \n | |||||
| */ | |||||
| REG_OP(Roll) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_UINT32,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_UINT32,DT_INT8,DT_UINT8})) | |||||
| .REQUIRED_ATTR(shifts, ListInt) | |||||
| .ATTR(dims, ListInt, {}) | |||||
| .OP_END_FACTORY_REG(Roll) | |||||
| /** | |||||
| *@brief Calculate the loss. Creates a criterion that optimizes a two-class classification | |||||
| logistic loss between input_x and input_y (containing 1 or -1). \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li input_y: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Attributes: | |||||
| *@li lambd: An optional string.Defaults to "mean". \n | |||||
| *@par Outputs: | |||||
| *output_z: while reduction == "none", A Tensor with the same type and shape of input_x's. \n | |||||
| * while reduction == "sum" or "mean", A Tensor with the same type of input_x , shape of which is (1,) | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator SoftMarginLoss. \n | |||||
| */ | |||||
| REG_OP(SoftMarginLoss) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(input_y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OUTPUT(output_z, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OP_END_FACTORY_REG(SoftMarginLoss) | |||||
| /** | |||||
| * @brief Computes gradients of sigmoid_cross_entropy_with_logits_v2. | |||||
| * @par Inputs: | |||||
| * @li predict: An ND tensor of type float16, float32. | |||||
| * @li target: An ND tensor of type float16, float32. | |||||
| * @li dout: An ND tensor of type float16, float32. | |||||
| * @li weight: An optional ND tensor of type float16, float32. | |||||
| * @li pos_weight: An optional ND tensor of type float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional string.Defaults to "mean". \n | |||||
| * @par Outputs: | |||||
| * @li gradient: An ND tensor tensor with the same shape and type as "predict". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator SigmoidCrossEntropyWithLogitsGrad. | |||||
| */ | |||||
| REG_OP(SigmoidCrossEntropyWithLogitsGradV2) | |||||
| .INPUT(predict, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(target, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(dout, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(weight, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(pos_weight, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(gradient, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(SigmoidCrossEntropyWithLogitsGradV2) | |||||
| /** | |||||
| * @brief Calculate the PoissonNllLoss function. | |||||
| * target∼Poisson(input)loss(input,target)=input−target∗log(input)+log(target!) \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * | |||||
| * @par Inputs: | |||||
| * @li target: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * four Attributes, including: | |||||
| * @li log_input: An optional bool. Defaults to "True" \n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li full: An optional bool. Defaults to "False" \n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li eps: An optional float. Defaults to "1e-8" \n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional string. Defaults to "mean" \n | |||||
| * @par Outputs: | |||||
| * loss: A Tensor has same element type as two inputs. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator PoissonNllLoss. \n | |||||
| */ | |||||
| REG_OP(PoissonNllLoss) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(target, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(loss, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(log_input, Bool, true) | |||||
| .ATTR(full, Bool, false) | |||||
| .ATTR(eps, Float, 1e-8) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(PoissonNllLoss) | |||||
| /** | |||||
| *@brief rnn_gen_mask | |||||
| * @par Inputs: | |||||
| * @li seq_length: A ND Tensor of type int32. Recoed the current length of each batch.\n | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li num_step: A required int.\n | |||||
| * @li hidden_size: A required int. \n | |||||
| * | |||||
| * | |||||
| * @par Output: | |||||
| * y: A mutable Tensor of type float16, with the shape of [num_step, batch_size, hidden_size]. \n | |||||
| * | |||||
| */ | |||||
| REG_OP(RnnGenMask) | |||||
| .INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .OUTPUT(seq_mask, TensorType({DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(num_step, Int) | |||||
| .REQUIRED_ATTR(hidden_size, Int) | |||||
| .OP_END_FACTORY_REG(RnnGenMask) | |||||
| /** | |||||
| * @brief Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) | |||||
| * between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices) \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * | |||||
| * @par Inputs: | |||||
| * @li target: A tensor. Must be the following types: | |||||
| * int32. \n | |||||
| * @par Attributes: | |||||
| * @li reduction: An optional string. Defaults to "mean" \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor has same element type as input x. \n | |||||
| * is_target: A Tensor has same element type as input target. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator MultiLabelMarginLoss. \n | |||||
| */ | */ | ||||
| REG_OP(InHost) | |||||
| .INPUT(variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(variance_sqrt, TensorType({DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.00001) | |||||
| .OP_END_FACTORY_REG(InHost) | |||||
| REG_OP(MultilabelMarginLoss) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(target, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(is_target, TensorType({DT_INT32})) | |||||
| .ATTR(reduction, String, "mean") | |||||
| .OP_END_FACTORY_REG(MultilabelMarginLoss) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_NORM_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_NORM_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -20,7 +20,144 @@ | |||||
| */ | */ | ||||
| #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | ||||
| #define OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | #define OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | ||||
| #include "graph/operator_reg.h" | |||||
| #include "nn_pooling_ops.h" | #include "nn_pooling_ops.h" | ||||
| namespace ge { | |||||
| /** | |||||
| * @brief Says whether the targets are in the top "k" predictions . \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li predictions: A 2D Tensor of type float32. A "batch_size * classes" tensor. | |||||
| * @li targets: A 1D Tensor of type IndexNumberType. A batch_size tensor of class ids. | |||||
| * @li k: A 1D Tensor of the same type as "targets". | |||||
| * Specifies the number of top elements to look at for computing precision . \n | |||||
| * @par Outputs: | |||||
| * precision: A Tensor of type bool . \n | |||||
| * @attention Constraints: | |||||
| * @li targets must be non-negative tensor. | |||||
| * @par Third-party framework compatibility | |||||
| * @li Compatible with the TensorFlow operator InTopKV2. | |||||
| */ | |||||
| REG_OP(InTopKV2) | |||||
| .INPUT(predictions, TensorType({DT_FLOAT})) | |||||
| .INPUT(targets, TensorType(IndexNumberType)) | |||||
| .INPUT(k, TensorType({IndexNumberType})) | |||||
| .OUTPUT(precision, TensorType({DT_BOOL})) | |||||
| .OP_END_FACTORY_REG(InTopKV2) | |||||
| /** | |||||
| *@brief Performs batch normalization . \n | |||||
| *@par Inputs: | |||||
| * Five inputs, including: (NHWC, NCHW, or NC1HWC0 supported) | |||||
| *@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||||
| *@li scale: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. Must be 5D | |||||
| if input "x" is with format NC1HWC0. Specifies the scaling factor. | |||||
| *@li offset: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. Must be 5D | |||||
| if input "x" is with format NC1HWC0. Specifies the offset. | |||||
| *@li mean: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. Must be 5D | |||||
| if input "x" is with format NC1HWC0. Specifies the mean used for inference. Must be "None" if the | |||||
| operation is used for training. | |||||
| *@li variance: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. Must be | |||||
| 5D if input "x" is with format NC1HWC0. Specifies the variance used for inference. Must be "None" | |||||
| if the operation is used for training . \n | |||||
| *@par Attributes: | |||||
| *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.0001". | |||||
| *@li data_format: An optional string, specifying the format of "x". Defaults to "NHWC". | |||||
| *@li is_training: An optional bool, specifying if the operation is used for training or inference. Defaults to "True" . \n | |||||
| *@par Outputs: | |||||
| * Five outputs, including: (NHWC, NCHW, or NC1HWC0 supported) | |||||
| *@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x", with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||||
| *@li batch_mean: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. Must be 5D | |||||
| if input "x" is with format NC1HWC0. Specifies the mean of "x". | |||||
| *@li batch_variance: A Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. | |||||
| Must be 5D if input "x" is with format NC1HWC0. Specifies the variance of "x". | |||||
| *@li reserve_space_1: An optional Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. | |||||
| Must be 5D if input "x" is with format NC1HWC0. Specifies the mean of "x" for gradient computation. Pass "None" to skip this output. | |||||
| *@li reserve_space_2: An optional Tensor of type float32. Must be 1D if input "x" is with format NHWC or NCHW. | |||||
| Must be 5D if input "x" is with format NC1HWC0. Specifies the variance of "x" for gradient computation. Pass "None" to skip this output . \n | |||||
| *@attention Constraints: | |||||
| *@li If the operation is used for inference and outputs "reserve_space_1" and "reserve_space_2" are available, | |||||
| then "reserve_space_1" has the same value as "mean" and "reserve_space_2" has the same value as "variance". | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction . \n | |||||
| */ | |||||
| REG_OP(FusedBatchNormV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(offset, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_1, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(reserve_space_2, TensorType({DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.0001) | |||||
| .ATTR(data_format, String, "NHWC") | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(FusedBatchNormV2) | |||||
| /** | |||||
| * @brief: Large amount of data sort.First operator of TopK. | |||||
| * @par Inputs: | |||||
| * two input, including: | |||||
| * @li input_data: A Tensor. Data to be sorted. Support float16 | |||||
| * @li input_index: A Tensor. Range(0, 2048). Datatype and format is same as input_data. | |||||
| * @par Attributes: | |||||
| * @li k_num: Int.Number to be sorted. | |||||
| * @par Outputs: | |||||
| * 1 output, including: | |||||
| * @li output_proposal: A Tensor. Datatype and format is same as input_data. Proposal sorted for each channel. | |||||
| */ | |||||
| REG_OP(SegmentSort) | |||||
| .INPUT(input_data, TensorType({DT_FLOAT16})) | |||||
| .INPUT(input_index, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(output_proposal, TensorType({DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(k_num, Int) | |||||
| .OP_END_FACTORY_REG(SegmentSort) | |||||
| /** | |||||
| * @brief: Large amount of data sort.Second operator of TopK. | |||||
| * @par Inputs: | |||||
| * two input, including: | |||||
| * @li input_proposal: A Tensor. Proposal sorted for each channel. Support float16 | |||||
| * @par Attributes: | |||||
| * @li k_num: Int.Number to be sorted. | |||||
| * @par Outputs: | |||||
| * 1 output, including: | |||||
| * @li output_proposal: A Tensor. Datatype and format is same as input_data. Proposal sorted for each channel. | |||||
| */ | |||||
| REG_OP(MultiMerge) | |||||
| .INPUT(input_proposal, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(output_proposal, TensorType({DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(k_num, Int) | |||||
| .OP_END_FACTORY_REG(MultiMerge) | |||||
| /** | |||||
| * @brief: Large amount of data sort.Third operator of TopK. | |||||
| * @par Inputs: | |||||
| * two input, including: | |||||
| * @li input_proposal: A Tensor. Proposal sorted for each channel. Support float16 | |||||
| * @par Attributes: | |||||
| * @li k_num: Int.Number to be sorted. | |||||
| * @par Outputs: | |||||
| * 2 output, including: | |||||
| * @li output_data: A Tensor. Datatype and format is same as input_data. Data sorted. | |||||
| * @li output_index: A Tensor. int32. Data index. | |||||
| */ | |||||
| REG_OP(SingleMerge) | |||||
| .INPUT(input_proposal, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(output_data, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(output_index, TensorType({DT_INT32})) | |||||
| .REQUIRED_ATTR(k_num, Int) | |||||
| .OP_END_FACTORY_REG(SingleMerge) | |||||
| }// namespace ge | |||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -182,6 +182,128 @@ REG_OP(AvgPool3D) | |||||
| .ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
| .OP_END_FACTORY_REG(AvgPool3D) | .OP_END_FACTORY_REG(AvgPool3D) | ||||
| /** | |||||
| *@brief Performs average pooling on the input. | |||||
| *@par Inputs: | |||||
| *@li x: A 5-D Tensor of shape [batch, depth, height, width, channels] and type float16, float32, double. | |||||
| *@li filter: An optional tensor of type float16, float32, double, fractal_z_3d layout. | |||||
| *@li multiplier: An optional tensor of float16, float32, double. | |||||
| *@par Attributes: | |||||
| *@li ksize: List of ints that has length 1, 3 or 5. The size of the window for each dimension of the input tensor. | |||||
| *@li strides:List of ints that has length 1, 3 or 5. The stride of the sliding window for each dimension of the input tensor. | |||||
| *@li pads: List of ints, implicit zero paddings on both sides of the input. | |||||
| *@li ceil_mode: When true, will use ceil instead of floor in the formula to compute the output shape. | |||||
| *@li count_include_pad: When true, will include the zero-padding in the averaging calculation. | |||||
| *@li divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. | |||||
| *@li data_format: A string, format of input data . \n | |||||
| *@par Outputs: | |||||
| *y: The average pooled output tensor . \n | |||||
| *@attention Constraints: | |||||
| *@li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator AvgPool3D. | |||||
| */ | |||||
| REG_OP(AvgPool3DD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OPTIONAL_INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OPTIONAL_INPUT(multiplier, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(count_include_pad, Bool, true) | |||||
| .ATTR(divisor_override, Int, 0) | |||||
| .ATTR(data_format, String, "NDHWC") | |||||
| .OP_END_FACTORY_REG(AvgPool3DD) | |||||
| /** | |||||
| * @brief Computes AvgPool3DGrad function. | |||||
| * @par Inputs: | |||||
| * @li orig_input_shape: An NDHWC tensor of type int32. | |||||
| * @li grads: An NDHWC tensor of type float16, float32, or double. | |||||
| * @par Attributes: | |||||
| * @li ksize: List of ints that has length 5. The size of the window for each dimension of the input tensor. | |||||
| * @li strides:List of ints that has length 5. The stride of the sliding window for each dimension of the input tensor. | |||||
| * @li pads: List of ints, implicit zero paddings on both sides of the input. | |||||
| * @li ceil_mode: When true, will use ceil instead of floor in the formula to compute the output shape. | |||||
| * @li count_include_pad: When true, will include the zero-padding in the averaging calculation. | |||||
| * @li divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. | |||||
| * @li data_format: A string, format of input data. | |||||
| * @par Outputs: | |||||
| * @output: A mutable tensor with the same shape and type as "orig_input_shape". | |||||
| * @attention Constraints: | |||||
| * @li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||||
| * @par Third-party framework compatibility | |||||
| * @li Compatible with the TensorFlow operator AvgPoolGrad. | |||||
| */ | |||||
| REG_OP(AvgPool3DGrad) | |||||
| .INPUT(orig_input_shape, TensorType({DT_INT32})) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(count_include_pad, Bool, true) | |||||
| .ATTR(divisor_override, Int, 0) | |||||
| .ATTR(data_format, String, "NDHWC") | |||||
| .OP_END_FACTORY_REG(AvgPool3DGrad) | |||||
| /** | |||||
| * @brief Performs average pooling on the input. | |||||
| * @par Inputs: | |||||
| * @li grads: An NDHWC tensor of type float16. | |||||
| * @li filter: An optional tensor of type float16, fractal_z_3d layout. | |||||
| * @li multiplier: An optional tensor of float16. | |||||
| * @par Attributes: | |||||
| * @li orig_input_shape: List of ints that has length 5. The size of the window for each dimension of the input tensor. | |||||
| * @li ksize: List of ints that has length 5. The size of the window for each dimension of the input tensor. | |||||
| * @li strides:List of ints that has length 5. The stride of the sliding window for each dimension of the input tensor. | |||||
| * @li pads: List of ints, implicit zero paddings on both sides of the input. | |||||
| * @li ceil_mode: When true, will use ceil instead of floor in the formula to compute the output shape. | |||||
| * @li count_include_pad: When true, will include the zero-padding in the averaging calculation. | |||||
| * @li divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. | |||||
| * @li data_format: A string, format of input data . \n | |||||
| * @par Outputs: | |||||
| * @output: The average pooled output tensor . \n | |||||
| * @attention Constraints: | |||||
| * @li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator AvgPool3DGradD. | |||||
| */ | |||||
| REG_OP(AvgPool3DGradD) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16})) | |||||
| .OPTIONAL_INPUT(filter, TensorType({DT_FLOAT16})) | |||||
| .OPTIONAL_INPUT(multiplier, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(output, TensorType({DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(orig_input_shape, ListInt) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(count_include_pad, Bool, true) | |||||
| .ATTR(divisor_override, Int, 0) | |||||
| .ATTR(data_format, String, "NDHWC") | |||||
| .OP_END_FACTORY_REG(AvgPool3DGradD) | |||||
| /** | /** | ||||
| *@brief Performs max_pool_ext2 on the input . \n | *@brief Performs max_pool_ext2 on the input . \n | ||||
| @@ -278,8 +400,8 @@ No default value. | |||||
| specifying the stride of the sliding window for each dimension of | specifying the stride of the sliding window for each dimension of | ||||
| the input tensor. No default value. | the input tensor. No default value. | ||||
| *@li padding: A required string type of float16. | *@li padding: A required string type of float16. | ||||
| *@li pads: A list type of int32. Default value {0, 0, 0}. | |||||
| *@li dilation: A list type of int32. Default value {1, 1, 1}. | |||||
| *@li pads: A list type of int32. Default value {0,0,0,0,0,0}. | |||||
| *@li dilation: A list type of int32. Default value {1,1,1,1,1,1}. | |||||
| *@li ceil_mode: A ceil mode number of int32 . Default value 0. | *@li ceil_mode: A ceil mode number of int32 . Default value 0. | ||||
| *@li data_format: An optional string. Defaults to "NDHWC" . \n | *@li data_format: An optional string. Defaults to "NDHWC" . \n | ||||
| @@ -302,12 +424,37 @@ REG_OP(MaxPool3D) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | .REQUIRED_ATTR(ksize, ListInt) | ||||
| .REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
| .REQUIRED_ATTR(padding, String) | .REQUIRED_ATTR(padding, String) | ||||
| .ATTR(pads, ListInt, {0,0,0}) | |||||
| .ATTR(dilation, ListInt, {1,1,1}) | |||||
| .ATTR(pads, ListInt, {0,0,0,0,0,0}) | |||||
| .ATTR(dilation, ListInt, {1,1,1,1,1,1}) | |||||
| .ATTR(ceil_mode, Int, 0) | .ATTR(ceil_mode, Int, 0) | ||||
| .ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
| .OP_END_FACTORY_REG(MaxPool3D) | .OP_END_FACTORY_REG(MaxPool3D) | ||||
| /** | |||||
| *@brief Applies a 2D adaptive max pooling over an input signal conposed of several input planes. \n | |||||
| * The output is of size H x W, for any input size. | |||||
| * @par Inputs: | |||||
| * One input, including: | |||||
| * @li x: A Tensor. Must be one of the following data types: | |||||
| * float16, float32, float64. \n | |||||
| * @par Attributes: | |||||
| * @li output_size: A required list of 2 ints | |||||
| * specifying the size (H,W) of the output tensor. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same data type as "x" \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator AdaptiveMaxPool2d. | |||||
| */ | |||||
| REG_OP(AdaptiveMaxPool2d) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||||
| .OUTPUT(argmax, TensorType::IndexNumberType()) | |||||
| .REQUIRED_ATTR(output_size, ListInt) | |||||
| .OP_END_FACTORY_REG(AdaptiveMaxPool2d) | |||||
| /** | /** | ||||
| * @brief Computes second-order gradients of the maxpooling3d function . \n | * @brief Computes second-order gradients of the maxpooling3d function . \n | ||||
| @@ -477,8 +624,9 @@ REG_OP(MaxPoolV2) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * One input: | * One input: | ||||
| *x: An NC1HWC0 Tensor. Supported type: float, double, int32, | |||||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64 . \n | |||||
| * x: An 4D Tensor. Supported type: float, double, int32, | |||||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||||
| * Must set the format, supported format list ["NCHW, NHWC"]. \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li ksize: A required list of int8, int16, int32, or int64 values, | *@li ksize: A required list of int8, int16, int32, or int64 values, | ||||
| @@ -490,8 +638,8 @@ REG_OP(MaxPoolV2) | |||||
| *@li padding: A required string. No default value . \n | *@li padding: A required string. No default value . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type and format as input "x". | |||||
| *argmax: A Tensor. Has the same type and format as input "x". | |||||
| *@li y: A Tensor. Has the same type and format as input "x". | |||||
| *@li argmax: A Tensor. Has the same type and format as input "x". | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, | *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, | ||||
| * ksize[1] * ksize[2] <= 255. | * ksize[1] * ksize[2] <= 255. | ||||
| @@ -517,10 +665,12 @@ REG_OP(MaxPoolWithArgmax) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li x: An NC1HWC0 tensor. Supported type: float, double, int32, | |||||
| *@li x: An 4d tensor. Supported type: float, double, int32, | |||||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | * uint8, int16, int8, int64, uint16, half, uint32, uint64. | ||||
| *@li grad: An NC1HWC0 tensor. Supported type: float, double, int32, | |||||
| * Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li grad: An 4d tensor. Supported type: float, double, int32, | |||||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | * uint8, int16, int8, int64, uint16, half, uint32, uint64. | ||||
| * Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li argmx: An NC1HWC0 tensor of type int32 or int64 . \n | *@li argmx: An NC1HWC0 tensor of type int32 or int64 . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -741,7 +891,7 @@ REG_OP(AvgPoolV2Grad) | |||||
| * @brief Computes gradients of averagev2 pooling function. | * @brief Computes gradients of averagev2 pooling function. | ||||
| * @par Inputs: | * @par Inputs: | ||||
| * @li input_grad: An NHWC tensor of type float16, float32, or double. | |||||
| *input_grad: An NHWC tensor of type float16, float32, or double. | |||||
| * @par Attributes: | * @par Attributes: | ||||
| * @li orig_input_shape: A required tuple or list of type int32. | * @li orig_input_shape: A required tuple or list of type int32. | ||||
| @@ -759,10 +909,10 @@ REG_OP(AvgPoolV2Grad) | |||||
| * @li data_format: An optional string. Defaults to "NHWC". | * @li data_format: An optional string. Defaults to "NHWC". | ||||
| * @par Outputs: | * @par Outputs: | ||||
| * @out_grad: A mutable tensor with the same shape and type as "orig_input". | |||||
| *out_grad: A mutable tensor with the same shape and type as "orig_input". | |||||
| * @par Third-party framework compatibility | * @par Third-party framework compatibility | ||||
| * @li Compatible with the TensorFlow operator AvgPoolGrad. | |||||
| *Compatible with the TensorFlow operator AvgPoolGrad. | |||||
| */ | */ | ||||
| REG_OP(AvgPoolV2GradD) | REG_OP(AvgPoolV2GradD) | ||||
| .INPUT(input_grad, TensorType({DT_FLOAT16})) | .INPUT(input_grad, TensorType({DT_FLOAT16})) | ||||
| @@ -1037,6 +1187,7 @@ REG_OP(MaxPool3DGrad) | |||||
| .OUTPUT(y, TensorType::RealNumberType()) | .OUTPUT(y, TensorType::RealNumberType()) | ||||
| .REQUIRED_ATTR(ksize, ListInt) | .REQUIRED_ATTR(ksize, ListInt) | ||||
| .REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
| .ATTR(padding, String, "SAME") | |||||
| .REQUIRED_ATTR(pads, ListInt) | .REQUIRED_ATTR(pads, ListInt) | ||||
| .ATTR(data_format, String, "NDHWC") | .ATTR(data_format, String, "NDHWC") | ||||
| .OP_END_FACTORY_REG(MaxPool3DGrad) | .OP_END_FACTORY_REG(MaxPool3DGrad) | ||||
| @@ -1107,7 +1258,7 @@ REG_OP(AvgPool1DD) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * One input: | * One input: | ||||
| *x: An NC1HWC0 Tensor of type float16. | |||||
| *x: An 4d Tensor of type float16. Must set the format, supported format list ["NCHW, NHWC"]. | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | ||||
| * each dimension of the input tensor. No default value. | * each dimension of the input tensor. No default value. | ||||
| @@ -1148,9 +1299,9 @@ REG_OP(MaxPoolWithArgmaxV2) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li x: An NC1HWC0 tensor of type float16. | |||||
| *@li grad: An NC1HWC0 tensor of type float16. | |||||
| *@li argmx: An NC1HWC0 tensor of type uint16 or int64 . \n | |||||
| *@li x: An 4d tensor of type float16. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li grad: An 4d tensor of type float16. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li argmx: An 4d tensor of type uint16 or int64. Must set the format, supported format list ["NCHW, NHWC"] \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | ||||
| @@ -1291,5 +1442,306 @@ REG_OP(MaxPoolV3Grad) | |||||
| .ATTR(global_pooling, Bool, false) | .ATTR(global_pooling, Bool, false) | ||||
| .ATTR(ceil_mode, Bool, false) | .ATTR(ceil_mode, Bool, false) | ||||
| .OP_END_FACTORY_REG(MaxPoolV3Grad) | .OP_END_FACTORY_REG(MaxPoolV3Grad) | ||||
| /** | |||||
| *@brief Performs Dilation2D on the input . \n | |||||
| *@par Inputs: | |||||
| *x: A tensor of shape is 4d, format is support NHWC. | |||||
| *filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. \n | |||||
| *@par Attributes: | |||||
| *@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1. | |||||
| *@li rates: A required list of 4 ints. The rates of the N and C dimensions are 1. | |||||
| *@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||||
| *@li pads: An optional list of 4 ints. | |||||
| *@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||||
| *@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||||
| *@par Outputs: | |||||
| *y: The output tensor. Has the same type and format as input "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator Dilation2D. | |||||
| */ | |||||
| REG_OP(Dilation2D) | |||||
| .INPUT(x,TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .INPUT(filter,TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .OUTPUT(y,TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(rates, ListInt) | |||||
| .ATTR(padding_mode, String, "SAME") | |||||
| .ATTR(pads, ListInt, {0,0,0,0}) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(data_format, String, "NHWC") | |||||
| .OP_END_FACTORY_REG(Dilation2D) | |||||
| /** | |||||
| *@brief Performs Dilation2DBackpropFilter on the input. \n | |||||
| *@par Inputs: | |||||
| *x: A tensor of shape is 4d, format is support NHWC. | |||||
| *filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||||
| *out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||||
| *@par Attributes | |||||
| *@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||||
| *@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||||
| *@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||||
| *@li pads: A optional list of 4 ints. | |||||
| *@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||||
| *@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||||
| *@par Outputs: | |||||
| *y: The output tensor. Has the same type and format as input "filter" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator Dilation2DBackpropFilter. | |||||
| */ | |||||
| REG_OP(Dilation2DBackpropFilter) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .INPUT(filter, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .INPUT(out_backprop, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .OUTPUT(y, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(rates, ListInt) | |||||
| .ATTR(padding_mode, String, "SAME") | |||||
| .ATTR(pads, ListInt, {0, 0, 0, 0}) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(data_format, String, "NHWC") | |||||
| .OP_END_FACTORY_REG(Dilation2DBackpropFilter) | |||||
| /** | |||||
| *@brief Performs Dilation2DBackpropInput on the input. \n | |||||
| *@par Inputs: | |||||
| *x: A tensor of shape is 4d, format is support NHWC. | |||||
| *filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. | |||||
| *out_backprop: Has the same type and format as input x and the c dimension is same with x. \n | |||||
| *@par Attributes | |||||
| *@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimension are 1. | |||||
| *@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1. | |||||
| *@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID. | |||||
| *@li pads: A optional list of 4 ints. | |||||
| *@li ceil_mode: An optional bool. Defaults to "false". Use ceil or floor to calculate the output size when padding_mode is "CALCULATED". | |||||
| *@li data_format: An optional string, specifying the data format of "rates" and "strides", either "NCHW" or "NHWC" (default). \n | |||||
| *@par Outputs: | |||||
| *y: The output tensor. Has the same type and format as input "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator Dilation2DBackpropInput. | |||||
| */ | |||||
| REG_OP(Dilation2DBackpropInput) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .INPUT(filter, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .INPUT(out_backprop, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .OUTPUT(y, | |||||
| TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16})) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(rates, ListInt) | |||||
| .ATTR(padding_mode, String, "SAME") | |||||
| .ATTR(pads, ListInt, {0, 0, 0, 0}) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .ATTR(data_format, String, "NHWC") | |||||
| .OP_END_FACTORY_REG(Dilation2DBackpropInput) | |||||
| /** | |||||
| * @brief Applies a 2D adaptive average pooling over | |||||
| * an input signal composed of several input planes. \n | |||||
| * @par Inputs: | |||||
| * One input, including: | |||||
| * @li x: A Tensor. Must be one of the following data types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li output_size: A required list of 2 ints | |||||
| * specifying the size (H,W) of the output tensor. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same data type as "x" \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator AdaptiveAvgPool2d. | |||||
| */ | |||||
| REG_OP(AdaptiveAvgPool2d) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(output_size, ListInt) | |||||
| .OP_END_FACTORY_REG(AdaptiveAvgPool2d) | |||||
| /** | |||||
| * @brief Compute gradients of adaptive averagev2 pooling function. | |||||
| * @par Inputs: | |||||
| * @li input_grad: A Tensor. Must be one of the following data types: | |||||
| * float16, float32. | |||||
| * @par Attributes: | |||||
| * @li orig_input_shape: A required tuple or list of type int32. | |||||
| * @par Outputs: | |||||
| * @li output_grad: A tensor with the same type as "input_grad". | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator AdaptiveAvgPool2dGrad. | |||||
| */ | |||||
| REG_OP(AdaptiveAvgPool2dGrad) | |||||
| .INPUT(input_grad, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(output_grad, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(orig_input_shape, ListInt) | |||||
| .OP_END_FACTORY_REG(AdaptiveAvgPool2dGrad) | |||||
| /** | |||||
| * @brief Performs the backpropagation of MaxPoolWithGradArgmaxV1. | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li x: An NC1HWC0 tensor of type float16. | |||||
| * @li grad: An NC1HWC0 tensor of type float16. | |||||
| * @li argmax: An NC1HWC0 tensor of type uint16 or int64. \n | |||||
| * @par Attributes: | |||||
| * @li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||||
| * each dimension of the input tensor. No default value. | |||||
| * @li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||||
| * each dimension of the input tensor. No default value. | |||||
| * @li pads: A required listint. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor. Has the same type and format as input "x". \n | |||||
| * @attention Constraints: | |||||
| * @li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||||
| * @li "strides" is a list that has length 4: strides[0] = 1 or strides[3] = 1 | |||||
| * @li "pads" is listint. | |||||
| * @li "ceil_mode" defaults to False. | |||||
| * @li "data_format" defaults to "NC1HWC0". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator MaxPoolGradWithArgmaxV1. | |||||
| */ | |||||
| REG_OP(MaxPoolGradWithArgmaxV1) | |||||
| .INPUT(x, TensorType({DT_FLOAT16})) | |||||
| .INPUT(grad, TensorType({DT_FLOAT16})) | |||||
| .INPUT(argmax, TensorType({DT_UINT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(dtype, Int, 3) | |||||
| .ATTR(dilation, ListInt, {1, 1, 1, 1}) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .OP_END_FACTORY_REG(MaxPoolGradWithArgmaxV1) | |||||
| /** | |||||
| * @brief Performs max pooling on the input and outputs both max values and indices. | |||||
| * @par Inputs: | |||||
| * One input: | |||||
| * x: An NC1HWC0 Tensor of type float16. \n | |||||
| * @par Attributes: | |||||
| * @li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||||
| * each dimension of the input tensor. No default value. | |||||
| * @li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||||
| * each dimension of the input tensor. No default value. | |||||
| * @li pads: A required string. No default value. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor. Has the same type and format as input "x". | |||||
| * argmax: A Tensor. type:uint16, format:NC1HWC0. \n | |||||
| * @attention Constraints: | |||||
| * @li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||||
| * @li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, | |||||
| * strides[2] <= 63, strides[2] >= 1. | |||||
| * @li "pads" is listint. | |||||
| * @li "ceil_mode" defaults to False. | |||||
| * @li "data_format" defaults to "NC1HWC0". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator MaxPoolWithArgmaxV1. | |||||
| */ | |||||
| REG_OP(MaxPoolWithArgmaxV1) | |||||
| .INPUT(x, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||||
| .OUTPUT(argmax, TensorType({DT_UINT16})) | |||||
| .REQUIRED_ATTR(ksize, ListInt) | |||||
| .REQUIRED_ATTR(strides, ListInt) | |||||
| .REQUIRED_ATTR(pads, ListInt) | |||||
| .ATTR(dtype, Int, 3) | |||||
| .ATTR(dilation, ListInt, {1, 1, 1, 1}) | |||||
| .ATTR(ceil_mode, Bool, false) | |||||
| .OP_END_FACTORY_REG(MaxPoolWithArgmaxV1) | |||||
| /** | |||||
| *@brief Randomly sample a subset of positive and negative examples,and overwrite | |||||
| the label vector to the ignore value (-1) for all elements that are not | |||||
| included in the sample.\n | |||||
| * @par Inputs: | |||||
| * One input: | |||||
| * labels: shape of labels,(N, ) label vector with values. \n | |||||
| * @par Attributes: | |||||
| * @li batch_size_per_images: A require attribute of type int. | |||||
| * @li positive_fraction: A require attribute of type float. | |||||
| *@par Outputs: | |||||
| *y: The result of subSample. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator SubSample. | |||||
| *@par Restrictions: | |||||
| *Warning: This operator can be integrated only by MaskRcnn. Please do not use it directly. | |||||
| */ | |||||
| REG_OP(SubSample) | |||||
| .INPUT(labels, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_INT32})) | |||||
| .REQUIRED_ATTR(batch_size_per_images, Int) | |||||
| .REQUIRED_ATTR(positive_fraction, Float) | |||||
| .OP_END_FACTORY_REG(SubSample) | |||||
| /** | |||||
| *@brief Randomly sample a subset of positive and negative examples,and overwrite | |||||
| the label vector to the ignore value (-1) for all elements that are not | |||||
| included in the sample.\n | |||||
| * @par Inputs: | |||||
| * two inputs, including: | |||||
| * @li labels: shape of labels,(N, ) label vector with values:. | |||||
| * @li shuffle_matrix: random matrix with shape (N, ). \n | |||||
| * @par Attributes: | |||||
| * @li batch_size_per_images: A require attribute of type int. | |||||
| * @li positive_fraction: A require attribute of type float. | |||||
| *@par Outputs: | |||||
| *y: The result of subSample. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator SubSampleLabels. | |||||
| *@par Restrictions: | |||||
| *Warning: This operator can be integrated only by MaskRcnn. Please do not use it directly. | |||||
| */ | |||||
| REG_OP(SubSampleLabels) | |||||
| .INPUT(labels, TensorType({DT_INT32})) | |||||
| .INPUT(shuffle_matrix, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_INT32})) | |||||
| .REQUIRED_ATTR(batch_size_per_images, Int) | |||||
| .REQUIRED_ATTR(positive_fraction, Float) | |||||
| .OP_END_FACTORY_REG(SubSampleLabels) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_POOLING_OPS_H | #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_POOLING_OPS_H | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -2101,6 +2101,55 @@ REG_OP(FusedMulApplyMomentumExtern) | |||||
| .ATTR(use_locking, Bool, false) | .ATTR(use_locking, Bool, false) | ||||
| .OP_END_FACTORY_REG(FusedMulApplyMomentumExtern) | .OP_END_FACTORY_REG(FusedMulApplyMomentumExtern) | ||||
| /** | |||||
| *@brief Updates '*var' according to the momentum scheme. | |||||
| * accum = accum * momentum - x1 * x2 * lr | |||||
| * if use_nesterov is True: | |||||
| * var += accum * momentum - x1 * x2 * lr | |||||
| * else: | |||||
| * var += accum | |||||
| * | |||||
| *@par Inputs: | |||||
| *@li var: A mutable tensor. Must be one of the data types defined in | |||||
| * TensorType::NumberType(). Should be from a Variable(). | |||||
| *@li accum: A mutable tensor. Has the same type as "var". Should be from a | |||||
| * Variable(). | |||||
| *@li lr: A tensor for the learning rate. Has the same type as "var". Should be | |||||
| * from a Variable(). | |||||
| *@li x1: A Tensor has type TensorType::NumberType(). | |||||
| *@li momentum: A scalar. Has the same type as "var". | |||||
| *@li x2: A scalar has the same type as "var". | |||||
| * | |||||
| *@par Attributes: | |||||
| *@li use_nesterov: An optional bool. Defaults to "False". | |||||
| * If "True", var will be updated by using Nesterov momentum. | |||||
| *@li use_locking: An optional bool. Defaults to "False". | |||||
| * If "True", updating of the "var" tensor is protected by a lock; | |||||
| * otherwise the behavior is undefined, but may exhibit less contention. | |||||
| * | |||||
| *@par Outputs: | |||||
| * var: A mutable tensor. Has the same type as input "var". | |||||
| * | |||||
| *@attention Constraints: | |||||
| * The input tensors must have the same shape. | |||||
| * | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator ResourceApplyKerasMomentum. | |||||
| * | |||||
| */ | |||||
| REG_OP(FusedMulApplyKerasMomentum) | |||||
| .INPUT(var, TensorType::NumberType()) | |||||
| .INPUT(accum, TensorType::NumberType()) | |||||
| .INPUT(lr, TensorType::NumberType()) | |||||
| .INPUT(x1, TensorType::NumberType()) | |||||
| .INPUT(momentum, TensorType::NumberType()) | |||||
| .INPUT(x2, TensorType::NumberType()) | |||||
| .OUTPUT(var, TensorType::NumberType()) | |||||
| .OUTPUT(accum, TensorType::NumberType()) | |||||
| .ATTR(use_locking, Bool, false) | |||||
| .ATTR(use_nesterov, Bool, false) | |||||
| .OP_END_FACTORY_REG(FusedMulApplyKerasMomentum) | |||||
| /** | /** | ||||
| *@brief Update "g" according to the LARS algorithm . \n | *@brief Update "g" according to the LARS algorithm . \n | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -223,7 +223,29 @@ REG_OP(Relu6Grad) | |||||
| .INPUT(features, TensorType::RealNumberType()) | .INPUT(features, TensorType::RealNumberType()) | ||||
| .OUTPUT(backprops, TensorType::RealNumberType()) | .OUTPUT(backprops, TensorType::RealNumberType()) | ||||
| .OP_END_FACTORY_REG(Relu6Grad) | .OP_END_FACTORY_REG(Relu6Grad) | ||||
| /** | |||||
| *@brief Calculate the elu_grad_v2 function. | |||||
| *Applies the element-wise function: | |||||
| * Computes the backward for the elu: if x>0, 1; otherwise elu() + alpha . | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li grads: A tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li activations: A tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type and shape of grads's. | |||||
| * | |||||
| *@par Attributes: | |||||
| *@li alpha: scalar parameter, default value = 1.0 | |||||
| */ | |||||
| REG_OP(EluGradV2) | |||||
| .INPUT(grads, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(activations, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(alpha, Float, 1.0) | |||||
| .OP_END_FACTORY_REG(EluGradV2) | |||||
| /** | /** | ||||
| * @brief Compute sigmoid of "x" element-wise . \n | * @brief Compute sigmoid of "x" element-wise . \n | ||||
| @@ -508,6 +530,42 @@ REG_OP(Elu) | |||||
| .ATTR(alpha, Float, 1.0) | .ATTR(alpha, Float, 1.0) | ||||
| .OP_END_FACTORY_REG(Elu) | .OP_END_FACTORY_REG(Elu) | ||||
| /** | |||||
| *@brief Continuously Differentiable Exponential Linear Uints: | |||||
| * Perform the linear uint element-wise on the input tensor X using formula: | |||||
| * max(0, x) + min(0, alpha * (exp(x/alpha) - 1)). \n | |||||
| *@par Inputs: | |||||
| *x: A float16, float32, for the input data type . \n | |||||
| *@par Attributes: | |||||
| *alpha1: A float32. Defines at which negative value the ELU saturates. Defaults to "1.0" . \n | |||||
| *@par Attributes: | |||||
| *alpha2: A float32. Defines at which negative value the ELU saturates. Defaults to "1.0" . \n | |||||
| *@par Attributes: | |||||
| *alpha3: A float32. Defines at which positive value the ELU saturates. Defaults to "1.0" . \n | |||||
| *@par Outputs: | |||||
| *y: A float16, float32, for the normalized result . \n | |||||
| *@attention Constraints: | |||||
| *@li The input is of type float16 or float32 . \n | |||||
| *@par Multiple batches supported or not | |||||
| *Supported | |||||
| *@par Third-party framework compatibility | |||||
| *@li Compatible with ONNX's Celu operator | |||||
| */ | |||||
| REG_OP(Celu) | |||||
| .INPUT(x, TensorType({DT_FLOAT,DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT,DT_FLOAT16})) | |||||
| .ATTR(alpha1, Float, 1.0) | |||||
| .ATTR(alpha2, Float, 1.0) | |||||
| .ATTR(alpha3, Float, 1.0) | |||||
| .OP_END_FACTORY_REG(Celu) | |||||
| /** | /** | ||||
| *@brief Computes gradients for the exponential linear (Elu) operation. | *@brief Computes gradients for the exponential linear (Elu) operation. | ||||
| * | * | ||||
| @@ -640,6 +698,352 @@ REG_OP(Mish) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT,DT_FLOAT16 })) | .OUTPUT(y, TensorType({ DT_FLOAT,DT_FLOAT16 })) | ||||
| .OP_END_FACTORY_REG(Mish) | .OP_END_FACTORY_REG(Mish) | ||||
| /** | |||||
| * @brief: pytorch mish_grad operator. | |||||
| * @par Inputs: | |||||
| * three input, including: | |||||
| * @li grad: A Tensor. shape, datatype and format is same as x | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32 | |||||
| * @li tanhx: A Tensor. shape, datatype and format is same as x | |||||
| * @par Outputs: | |||||
| * 1 output, including: | |||||
| * @li x_grad: A Tensor. shape, datatype and format is same as x | |||||
| */ | |||||
| REG_OP(MishGrad) | |||||
| .INPUT(grad, TensorType({ DT_FLOAT,DT_FLOAT16 })) | |||||
| .INPUT(x, TensorType({ DT_FLOAT,DT_FLOAT16 })) | |||||
| .OPTIONAL_INPUT(tanhx, TensorType({ DT_FLOAT,DT_FLOAT16 })) | |||||
| .OUTPUT(x_grad, TensorType({ DT_FLOAT,DT_FLOAT16 })) | |||||
| .OP_END_FACTORY_REG(MishGrad) | |||||
| /** | |||||
| * @brief pytorch hardtanh_backward operator. | |||||
| * | |||||
| * @par Inputs: | |||||
| * 2 inputs, including: | |||||
| * @li result, minimum tensor of the linear region range, | |||||
| * datatype: float16/float32, format:ND/5HD. | |||||
| * @li grad, maximum tensor of the linear region range, | |||||
| * datatype:float16/float32, format:ND/5HD. \n | |||||
| * @par Attributes: | |||||
| * 2 attributes, including: | |||||
| * @li min_val, minimum value of the linear region range, datatype:float. | |||||
| * @li max_val, maximum value of the linear region range, datatype:float. \n | |||||
| * @par Outputs: | |||||
| * 1 output, including: | |||||
| * @li y, hardtanh_backward output tensor, datatype and format is same as | |||||
| * input result. \n | |||||
| * @attention Constraints: | |||||
| * This operator only supports dataType: float16/float32, format: ND/5HD. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator HardtanhGrad. | |||||
| */ | |||||
| REG_OP(HardtanhGrad) | |||||
| .INPUT(result, TensorType({ DT_FLOAT16, DT_FLOAT })) /* "First operand." */ | |||||
| .INPUT(grad, TensorType({ DT_FLOAT16, DT_FLOAT })) /* "Second operand." */ | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT16, DT_FLOAT })) /* "Result, has same element type as two inputs" */ | |||||
| .ATTR(min_val, Float, -1.0) | |||||
| .ATTR(max_val, Float, 1.0) | |||||
| .OP_END_FACTORY_REG(HardtanhGrad) | |||||
| /** | |||||
| * @brief Calculates the softplus loss function with attributes of beta and threshold. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li x: A mutable Tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li beta: An optional float. Defaults to "1.0" \n | |||||
| * @li threshold: An optional float. Defaults to "20.0" \n | |||||
| * @par Outputs: | |||||
| * @li y: A mutable Tensor. Has the same type as "x" \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Softplus. | |||||
| */ | |||||
| REG_OP(SoftplusV2) | |||||
| .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .ATTR(beta, Float, 1.0) | |||||
| .ATTR(threshold, Float, 20.0) | |||||
| .OP_END_FACTORY_REG(SoftplusV2) | |||||
| /** | |||||
| * @brief Calculates the reversed outputs of the function "softplus_v2". \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li input_gradients: A mutable Tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li input_features: A mutable Tensor of the same type as "input_gradients" \n | |||||
| * @par Attributes: | |||||
| * @li beta: An optional float. Defaults to "1.0" \n | |||||
| * @li threshold: An optional float. Defaults to "20.0" \n | |||||
| * @par Outputs: | |||||
| * @li output_backprops: A mutable Tensor. Has the same type as "input_gradients" \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator SoftplusGrad. | |||||
| */ | |||||
| REG_OP(SoftplusV2Grad) | |||||
| .INPUT(input_gradients, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .INPUT(input_features, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .OUTPUT(output_backprops, TensorType({ DT_FLOAT, DT_FLOAT16 })) | |||||
| .ATTR(beta, Float, 1.0) | |||||
| .ATTR(threshold, Float, 20.0) | |||||
| .OP_END_FACTORY_REG(SoftplusV2Grad) | |||||
| /** | |||||
| * @brief ThresholdedRelu takes one input data (Tensor) and produces one output data (Tensor) | |||||
| * where the rectified linear function, y = x for x > alpha, y = 0 otherwise, is applied to the tensor elementwise. | |||||
| * | |||||
| * @par inputs | |||||
| * one input including: | |||||
| * @li x: input A Tensor. Must be one of the following types: float32, float16 | |||||
| * | |||||
| * @par output | |||||
| * one output including: | |||||
| * @li y:A Tensor of the same type as x | |||||
| * | |||||
| */ | |||||
| REG_OP(ThresholdedRelu) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(alpha, Float, 1.0) | |||||
| .OP_END_FACTORY_REG(ThresholdedRelu) | |||||
| /** | |||||
| * @brief Calculate the hard shrinkage function. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li lambd: An optional float. Defaults to 0.5. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor with the same dtype and shape of input_x's. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Hardshrink. \n | |||||
| */ | |||||
| REG_OP(HardShrink) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(lambd, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(HardShrink) | |||||
| /** | |||||
| *@brief Calculate the hard shrink grad function. \n | |||||
| * | |||||
| * Computes the gradient for the HardShrink: if x > lambda or x < -lambda, x,otherwise 0 | |||||
| * | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li gradients: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li features: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * | |||||
| *@par Outputs: | |||||
| *backprops: A Tensor with the same type and shape of features's. \n | |||||
| * | |||||
| *@par Attributes: | |||||
| *@li lambd: An optional float.Defaults to 0.5. \n | |||||
| * | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Hardshrink_backward. \n | |||||
| */ | |||||
| REG_OP(HardShrinkGrad) | |||||
| .INPUT(gradients, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(lambd, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(HardShrinkGrad) | |||||
| /** | |||||
| * @brief Calculate the hard sigmoid function. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| * @par Attributes: | |||||
| * @li alpha: An optional float. Defaults to 0.16666666. \n | |||||
| * @li beta: An optional float. Defaults to 0.5. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor with the same dtype and shape of input_x's. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Hardsigmoid. \n | |||||
| */ | |||||
| REG_OP(HardSigmoid) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(alpha, Float, 0.16666666) | |||||
| .ATTR(beta, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(HardSigmoid) | |||||
| /** | |||||
| * @brief Calculate the soft shrinkage function. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li lambd: An optional float. Defaults to 0.5. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor with the same dtype and shape of input_x's. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator Softshrink. \n | |||||
| */ | |||||
| REG_OP(SoftShrink) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(lambd, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(SoftShrink) | |||||
| /** | |||||
| * @brief Calculate the reversed outputs of the function "soft_shrink". \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li input_grad: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li input_x: A tensor of the same dtype as "input_grad". \n | |||||
| * @par Attributes: | |||||
| * @li lambd: An optional float. Defaults to 0.5. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor of the same dtype and shape as "input_graxd". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator SoftShrinkGrad. \n | |||||
| */ | |||||
| REG_OP(SoftShrinkGrad) | |||||
| .INPUT(input_grad, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(lambd, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(SoftShrinkGrad) | |||||
| /** | |||||
| *@brief Calculate the gradient of log simoid. \n | |||||
| *@par Inputs: | |||||
| *Two inputs, including: | |||||
| * @li grads: A tensor, gradient of previous layer. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li features: A tensor, input of log sigmoid. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Outputs: | |||||
| *One outputs, including: | |||||
| * @li backprops: A tensor with the same type of and shape of grads. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator LogSigmoidBackward. \n | |||||
| */ | |||||
| REG_OP(LogSigmoidGrad) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(LogSigmoidGrad) | |||||
| /** | |||||
| *@brief Calculate -ln(1+e^(-x)). \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Outputs: | |||||
| *One outputs, including: | |||||
| * @li y: A tensor with the same type and shape of x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator LogSigmoid. \n | |||||
| */ | |||||
| REG_OP(LogSigmoid) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) /* "input:x" */ | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) /* "output:y" */ | |||||
| .OP_END_FACTORY_REG(LogSigmoid) | |||||
| /** | |||||
| *@brief Calculate the backward outputs of the function "hard_sigmoid" \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li grads: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| *@par Outputs: | |||||
| *One outputs, including: | |||||
| * @li y: A tensor with the same type and shape of x's. \n | |||||
| * @par Attributes: | |||||
| * @li alpha: An optional float. Defaults to 0.16666666. \n | |||||
| * @li beta: An optional float. Defaults to 0.5. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator LogSigmoidGrad. \n | |||||
| */ | |||||
| REG_OP(HardSigmoidGrad) | |||||
| .INPUT(grads, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(alpha, Float, 0.16666666) | |||||
| .ATTR(beta, Float, 0.5) | |||||
| .OP_END_FACTORY_REG(HardSigmoidGrad) | |||||
| /** | |||||
| * @brief Calculate the shrink function. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li input_x: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li lambd: An optional float. Defaults to 0.5. \n | |||||
| * @li bias: An optional float. Defaults to 0.0. \n | |||||
| * @par Outputs: | |||||
| * y: A Tensor with the same dtype and shape of input_x's. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator Shrink. \n | |||||
| */ | |||||
| REG_OP(Shrink) | |||||
| .INPUT(input_x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(lambd, Float, 0.5) | |||||
| .ATTR(bias, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(Shrink) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_NONLINEAR_FUC_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_NONLINEAR_FUC_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -101,7 +101,7 @@ REG_OP(FillD) | |||||
| */ | */ | ||||
| REG_OP(BroadcastTo) | REG_OP(BroadcastTo) | ||||
| .INPUT(x, TensorType::BasicType()) | .INPUT(x, TensorType::BasicType()) | ||||
| .INPUT(shape, TensorType({DT_INT32})) | |||||
| .INPUT(shape, TensorType({DT_INT32,DT_INT64})) | |||||
| .OUTPUT(y, TensorType::BasicType()) | .OUTPUT(y, TensorType::BasicType()) | ||||
| .OP_END_FACTORY_REG(BroadcastTo) | .OP_END_FACTORY_REG(BroadcastTo) | ||||
| @@ -161,7 +161,7 @@ REG_OP(Pad) | |||||
| *@brief Pads a tensor . \n | *@brief Pads a tensor . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32 . \n | |||||
| *x: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *paddings: An optional "vector<vector<int>>". Defaults to "{}". | *paddings: An optional "vector<vector<int>>". Defaults to "{}". | ||||
| @@ -180,8 +180,8 @@ REG_OP(Pad) | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use Pad instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use Pad instead. | ||||
| */ | */ | ||||
| REG_OP(PadD) | REG_OP(PadD) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .REQUIRED_ATTR(paddings, ListListInt) | .REQUIRED_ATTR(paddings, ListListInt) | ||||
| .OP_END_FACTORY_REG(PadD) | .OP_END_FACTORY_REG(PadD) | ||||
| @@ -213,7 +213,7 @@ REG_OP(PadV2) | |||||
| *@brief Pads a tensor . \n | *@brief Pads a tensor . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32 . \n | |||||
| *x: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
| *constant_values: A Tensor. Must have the same type as input. | *constant_values: A Tensor. Must have the same type as input. | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -227,10 +227,7 @@ REG_OP(PadV2) | |||||
| *y: A Tensor of the same type as "x" . \n | *y: A Tensor of the same type as "x" . \n | ||||
| *@par Third-party framework compatibility: | *@par Third-party framework compatibility: | ||||
| * Compatible with TensorFlow operator Pad. | |||||
| * | |||||
| * @par Restrictions: | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use Pad instead. | |||||
| * Compatible with TensorFlow operator PadV2. | |||||
| */ | */ | ||||
| REG_OP(PadV2D) | REG_OP(PadV2D) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | ||||
| @@ -272,42 +269,42 @@ REG_OP(PadV3) | |||||
| .ATTR(paddings_contiguous, Bool, true) | .ATTR(paddings_contiguous, Bool, true) | ||||
| .OP_END_FACTORY_REG(PadV3) | .OP_END_FACTORY_REG(PadV3) | ||||
| /** | |||||
| *@brief Pads a tensor. | |||||
| *@par Inputs: | |||||
| *x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32. | |||||
| *@par Attributes: | |||||
| * @li paddings: An required "vector<vector<int>>". | |||||
| * For each dimension D of input, paddings[D, 0] indicates how many | |||||
| * values to add before the contents of tensor in that dimension, | |||||
| * and paddings[D, 1] indicates how many values to add after the | |||||
| * contents of tensor in that dimension. | |||||
| * @li constant_values: An optional int value for pad. | |||||
| * @li mode: An optional string, Defaults to "constant", indicates paddings mode, | |||||
| * support "constant", "reflect", "edge" | |||||
| * @li paddings_contiguous: An optional bool value, Defaults to true. | |||||
| * If true, paddings is arranged as [[begin0, end0], [begin1, end1], ...] | |||||
| * If false, paddings is arranged as [[begin0, begin1], ..., [end0, end1], ...] | |||||
| *@par Outputs: | |||||
| *y: A Tensor of the same type as "x". | |||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with ONNX operator Pad. | |||||
| * @par Restrictions: | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use PadV3 instead. | |||||
| */ | |||||
| REG_OP(PadV3D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8})) | |||||
| .REQUIRED_ATTR(paddings, ListListInt) | |||||
| .ATTR(constant_values, Int, 0) | |||||
| .ATTR(mode, String, "constant") | |||||
| .ATTR(paddings_contiguous, Bool, true) | |||||
| .OP_END_FACTORY_REG(PadV3D) | |||||
| /** | |||||
| *@brief Pads a tensor. | |||||
| *@par Inputs: | |||||
| *x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32. | |||||
| *@par Attributes: | |||||
| * @li paddings: An required "vector<vector<int>>". | |||||
| * For each dimension D of input, paddings[D, 0] indicates how many | |||||
| * values to add before the contents of tensor in that dimension, | |||||
| * and paddings[D, 1] indicates how many values to add after the | |||||
| * contents of tensor in that dimension. | |||||
| * @li constant_values: An optional int value for pad. | |||||
| * @li mode: An optional string, Defaults to "constant", indicates paddings mode, | |||||
| * support "constant", "reflect", "edge" | |||||
| * @li paddings_contiguous: An optional bool value, Defaults to true. | |||||
| * If true, paddings is arranged as [[begin0, end0], [begin1, end1], ...] | |||||
| * If false, paddings is arranged as [[begin0, begin1], ..., [end0, end1], ...] | |||||
| *@par Outputs: | |||||
| *y: A Tensor of the same type as "x". | |||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with ONNX operator Pad. | |||||
| * @par Restrictions: | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use PadV3 instead. | |||||
| */ | |||||
| REG_OP(PadV3D) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8})) | |||||
| .REQUIRED_ATTR(paddings, ListListInt) | |||||
| .ATTR(constant_values, Int, 0) | |||||
| .ATTR(mode, String, "constant") | |||||
| .ATTR(paddings_contiguous, Bool, true) | |||||
| .OP_END_FACTORY_REG(PadV3D) | |||||
| /** | /** | ||||
| *@brief Create a diagonal tensor | *@brief Create a diagonal tensor | ||||
| @@ -403,5 +400,76 @@ REG_OP(EmbeddingRankId) | |||||
| .ATTR(mode, String, "mod") | .ATTR(mode, String, "mod") | ||||
| .OP_END_FACTORY_REG(EmbeddingRankId) | .OP_END_FACTORY_REG(EmbeddingRankId) | ||||
| /** | |||||
| *@brief EmbeddingLocalIndex, Sort statistics index according to rank_id \n | |||||
| *@par Inputs: | |||||
| * @li addr_table: A 2D tensor which last dimension must be 3. | |||||
| * @li index: A tensor with data type int32, int64, uint32, uint64. | |||||
| *@par Attributes: | |||||
| * @li row_memory: The size of Embedding vector in a row, the default is 320. | |||||
| * @li mode: String type, currently there are two options: 'mod' and 'order' | |||||
| *@par Outputs: | |||||
| * @li local_idx:Index on each server. | |||||
| * @li nums:The number of local_idx found on each server. | |||||
| * @li recover_idx:The sorted local_idx element is at the position corresponding | |||||
| * to the original input index. | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator Diag. | |||||
| */ | |||||
| REG_OP(EmbeddingLocalIndex) | |||||
| .INPUT(addr_table, TensorType({DT_UINT64})) | |||||
| .INPUT(index, TensorType({DT_INT64,DT_INT32,DT_UINT32,DT_UINT64})) | |||||
| .OUTPUT(local_idx, TensorType({DT_INT64,DT_INT32,DT_UINT32,DT_UINT64})) | |||||
| .OUTPUT(nums, TensorType({DT_INT64,DT_INT32,DT_UINT32,DT_UINT64})) | |||||
| .OUTPUT(recover_idx, TensorType({DT_INT64,DT_INT32,DT_UINT32,DT_UINT64})) | |||||
| .ATTR(row_memory, Int, 320) | |||||
| .ATTR(mode, String, "mod") | |||||
| .OP_END_FACTORY_REG(EmbeddingLocalIndex) | |||||
| /** | |||||
| * @brief Fill the value to a tensor has the specified shape. | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li dims: An Tensor, specify the shape that the value to fill. | |||||
| * @par Attributes: | |||||
| * @li value: An optional float value. Defaults to 0.0. | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the shape specify by attr shape, and full of the value specify by attr value. | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator ConstantOfShape. | |||||
| */ | |||||
| REG_OP(FillV2) | |||||
| .INPUT(dims, TensorType({DT_INT16, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
| .ATTR(value, Float, 0) | |||||
| .OP_END_FACTORY_REG(FillV2) | |||||
| /** | |||||
| * @brief Fill the value to a tensor has the specified shape. | |||||
| * @par Attributes: | |||||
| * @li value: An optional float value. Defaults to 0.0. | |||||
| * @li dims: An required listInt to specify the shape that the value to fill. | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the shape specify by attr shape, and full of the value specify by attr value. | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the ONNX operator ConstantOfShape. | |||||
| */ | |||||
| REG_OP(FillV2D) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
| .ATTR(value, Float, 0) | |||||
| .REQUIRED_ATTR(dims, ListInt) | |||||
| .OP_END_FACTORY_REG(FillV2D) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_PAD_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_PAD_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -51,6 +51,246 @@ REG_OP(StringToNumber) | |||||
| .ATTR(out_type, Type, DT_FLOAT) | .ATTR(out_type, Type, DT_FLOAT) | ||||
| .OP_END_FACTORY_REG(StringToNumber) | .OP_END_FACTORY_REG(StringToNumber) | ||||
| /** | |||||
| *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||||
| *@brief Parse an Example prototype. | |||||
| *@par Input: | |||||
| *serialized: A Tensor of type string. | |||||
| *dense_defaults: DYNAMIC INPUT Tensor type as string, float, int64. \n | |||||
| *@par Attributes: | |||||
| *num_sparse: type int num of inputs sparse_indices , sparse_values, sparse_shapes | |||||
| *out_type: output type | |||||
| *sparse_keys: ListString | |||||
| *sparse_types: types of sparse_values | |||||
| *dense_keys: ListString | |||||
| *dense_shapes: output of dense_defaults shape | |||||
| *dense_types: output of dense_defaults type \n | |||||
| *@par Outputs: | |||||
| *sparse_indices: A Tensor of type string. | |||||
| *sparse_values: Has the same type as sparse_types. | |||||
| *sparse_shapes: A Tensor of type int64 | |||||
| *dense_values: Has the same type as dense_defaults. | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| **/ | |||||
| REG_OP(ParseSingleExample) | |||||
| .INPUT(serialized, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(dense_defaults, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(sparse_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(dense_values, TensorType({DT_STRING,DT_FLOAT,DT_INT64})) | |||||
| .ATTR(num_sparse, Int, 0) | |||||
| .ATTR(sparse_keys, ListString, {}) | |||||
| .ATTR(dense_keys, ListString, {}) | |||||
| .ATTR(sparse_types, ListType, {}) | |||||
| .ATTR(Tdense, ListType, {}) | |||||
| .ATTR(dense_shapes, ListListInt, {}) | |||||
| .OP_END_FACTORY_REG(ParseSingleExample) | |||||
| /** | |||||
| *@brief Decodes raw file into tensor . \n | |||||
| *@par Input: | |||||
| *bytes: A Tensor of type string. | |||||
| *@par Attributes: | |||||
| *little_endian: bool ture | |||||
| *out_type: output type | |||||
| *@par Outputs: | |||||
| *Output: A Tensor | |||||
| **/ | |||||
| REG_OP(DecodeRaw) | |||||
| .INPUT(bytes, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_BOOL,DT_FLOAT16,DT_DOUBLE,DT_FLOAT, | |||||
| DT_INT64,DT_INT32,DT_INT8,DT_UINT8,DT_INT16, | |||||
| DT_UINT16,DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .ATTR(out_type, Type, DT_FLOAT) | |||||
| .ATTR(little_endian, Bool, true) | |||||
| .OP_END_FACTORY_REG(DecodeRaw) | |||||
| /** | |||||
| *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. \n | |||||
| *@par Inputs: | |||||
| *serialized: A Tensor of string type. Scalar string containing serialized | |||||
| *TensorProto prototype. \n | |||||
| *@par Attributes: | |||||
| *out_type: The type of the serialized tensor. The provided type must match the | |||||
| *type of the serialized tensor and no implicit conversion will take place. \n | |||||
| *@par Outputs: | |||||
| *output: A Tensor of type out_type. \n | |||||
| *@attention Constraints: | |||||
| *The implementation for StringToNumber on Ascend uses AICPU, | |||||
| *with badperformance. \n | |||||
| *@par Third-party framework compatibility | |||||
| *@li compatible with tensorflow ParseTensor operator. | |||||
| */ | |||||
| REG_OP(ParseTensor) | |||||
| .INPUT(serialized, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType(DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, | |||||
| DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, | |||||
| DT_UINT64, DT_BOOL, DT_DOUBLE, DT_STRING, | |||||
| DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .ATTR(out_type, Type, DT_FLOAT) | |||||
| .OP_END_FACTORY_REG(ParseTensor) | |||||
| /** | |||||
| *@brief Converts each string in the input Tensor to the specified numeric | |||||
| *type . \n | |||||
| *@par Inputs: | |||||
| *Inputs include: | |||||
| *records: Each string is a record/row in the csv and all records should have the | |||||
| *same format. \n | |||||
| *record_defaults: One tensor per column of the input record, with either a | |||||
| *scalar default value for that column or an empty vector if the column is | |||||
| *required. \n | |||||
| *@par Attributes: | |||||
| *OUT_TYPE: The numeric type to interpret each string in string_tensor as . \n | |||||
| *field_delim: char delimiter to separate fields in a record. \n | |||||
| *use_quote_delim: If false, treats double quotation marks as regular characters | |||||
| *inside of the string fields (ignoring RFC 4180, Section 2, Bullet 5). \n | |||||
| *na_value: Additional string to recognize as NA/NaN. \n | |||||
| *@par Outputs: | |||||
| *output: A Tensor. Has the same type as x . \n | |||||
| *@attention Constraints: | |||||
| *The implementation for StringToNumber on Ascend uses AICPU, with bad | |||||
| *performance. \n | |||||
| *@par Third-party framework compatibility | |||||
| *@li compatible with tensorflow StringToNumber operator. | |||||
| */ | |||||
| REG_OP(DecodeCSV) | |||||
| .INPUT(records, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(record_defaults, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||||
| DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, | |||||
| DT_INT64, DT_STRING})) | |||||
| .ATTR(OUT_TYPE, ListType, {}) | |||||
| .ATTR(field_delim, String, ",") | |||||
| .ATTR(use_quote_delim, Bool, true) | |||||
| .ATTR(na_value, String, ",") | |||||
| .ATTR(select_cols, ListInt, {}) | |||||
| .OP_END_FACTORY_REG(DecodeCSV) | |||||
| /** | |||||
| *@brief Convert serialized tensorflow.TensorProto prototype to Tensor. | |||||
| *@brief Parse an Example prototype. | |||||
| *@par Input: | |||||
| *serialized: A Tensor of type string. \n | |||||
| *name:A Tensor of type string. \n | |||||
| *sparse_keys: Dynamic input tensor of string. \n | |||||
| *dense_keys: Dynamic input tensor of string \n | |||||
| *dense_defaults: Dynamic input tensor type as string, float, int64. \n | |||||
| *@par Attributes: | |||||
| *Nsparse: Number of sparse_keys, sparse_indices and sparse_shapes \n | |||||
| *Ndense: Number of dense_keys \n | |||||
| *sparse_types: types of sparse_values \n | |||||
| *Tdense: Type of dense_defaults dense_defaults and dense_values \n | |||||
| *dense_shapes: output of dense_defaults shape \n | |||||
| *@par Outputs: | |||||
| *sparse_indices: A Tensor of type string. \n | |||||
| *sparse_values: Has the same type as sparse_types. \n | |||||
| *sparse_shapes: A Tensor of type int64 \n | |||||
| *dense_values: Has the same type as dense_defaults. \n | |||||
| *@par Third-party framework compatibility \n | |||||
| *@li compatible with tensorflow StringToNumber operator. \n | |||||
| */ | |||||
| REG_OP(ParseExample) | |||||
| .INPUT(serialized, TensorType({DT_STRING})) | |||||
| .INPUT(name, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(sparse_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(dense_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(sparse_indices, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(sparse_shapes, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .ATTR(Nsparse, Int, 0) | |||||
| .ATTR(Ndense, Int, 0) | |||||
| .ATTR(sparse_types, ListType, {}) | |||||
| .ATTR(Tdense, ListType, {}) | |||||
| .ATTR(dense_shapes, ListListInt, {}) | |||||
| .OP_END_FACTORY_REG(ParseExample) | |||||
| /** | |||||
| *@brief Transforms a scalar brain.SequenceExample proto (as strings) into typed | |||||
| *tensors. | |||||
| *@par Input: | |||||
| *serialized: A Tensor of type string. \n | |||||
| *feature_list_dense_missing_assumed_empty:A Tensor of type string. \n | |||||
| *context_sparse_keys: Dynamic input tensor of string. \n | |||||
| *context_dense_keys: Dynamic input tensor of string \n | |||||
| *feature_list_sparse_keys: Dynamic input tensor of string \n | |||||
| *feature_list_dense_keys: Dynamic input tensor of string \n | |||||
| *context_dense_defaults: Dynamic input tensor of string, float, int64 \n | |||||
| *debug_name: A Tensor of type string. \n | |||||
| *@par Attributes: | |||||
| *Ncontext_sparse: Number of context_sparse_keys, context_sparse_indices and context_sparse_shapes \n | |||||
| *Ncontext_dense: Number of context_dense_keys \n | |||||
| *Nfeature_list_sparse: Number of feature_list_sparse_keys \n | |||||
| *Nfeature_list_dense: Number of feature_list_dense_keys \n | |||||
| *context_sparse_types: Types of context_sparse_values \n | |||||
| *Tcontext_dense: Number of dense_keys \n | |||||
| *feature_list_dense_types: Types of feature_list_dense_values \n | |||||
| *context_dense_shapes: Shape of context_dense \n | |||||
| *feature_list_sparse_types: Type of feature_list_sparse_values \n | |||||
| *feature_list_dense_shapes: Shape of feature_list_dense \n | |||||
| *@par Outputs: | |||||
| *context_sparse_indices: Dynamic output tensor of type int64. \n | |||||
| *context_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||||
| *context_sparse_shapes: Dynamic output tensor of type int64 \n | |||||
| *context_dense_values: Dynamic output tensor of type string, float, int64. \n | |||||
| *feature_list_sparse_indices: Dynamic output tensor of type int64. \n | |||||
| *feature_list_sparse_values: Dynamic output tensor of type string, float, int64. \n | |||||
| *feature_list_sparse_shapes: Dynamic output tensor of type int64 \n | |||||
| *feature_list_dense_values: Dynamic output tensor of type string, float, int64. \n | |||||
| *@par Third-party framework compatibility \n | |||||
| *@li compatible with tensorflow StringToNumber operator. \n | |||||
| */ | |||||
| REG_OP(ParseSingleSequenceExample) | |||||
| .INPUT(serialized, TensorType({DT_STRING})) | |||||
| .INPUT(feature_list_dense_missing_assumed_empty, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(context_sparse_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(context_dense_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(feature_list_sparse_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(feature_list_dense_keys, TensorType({DT_STRING})) | |||||
| .DYNAMIC_INPUT(context_dense_defaults, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .INPUT(debug_name, TensorType({DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(context_sparse_indices, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(context_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(context_sparse_shapes, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(context_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(feature_list_sparse_indices, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(feature_list_sparse_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .DYNAMIC_OUTPUT(feature_list_sparse_shapes, TensorType({DT_INT64})) | |||||
| .DYNAMIC_OUTPUT(feature_list_dense_values, TensorType({DT_FLOAT, DT_INT64, DT_STRING})) | |||||
| .ATTR(Ncontext_sparse, Int, 0) | |||||
| .ATTR(Ncontext_dense, Int, 0) | |||||
| .ATTR(Nfeature_list_sparse, Int, 0) | |||||
| .ATTR(Nfeature_list_dense, Int, 0) | |||||
| .ATTR(context_sparse_types, ListType, {}) | |||||
| .ATTR(Tcontext_dense, ListType, {}) | |||||
| .ATTR(feature_list_dense_types, ListType, {}) | |||||
| .ATTR(context_dense_shapes, ListListInt, {}) | |||||
| .ATTR(feature_list_sparse_types, ListType, {}) | |||||
| .ATTR(feature_list_dense_shapes, ListListInt, {}) | |||||
| .OP_END_FACTORY_REG(ParseSingleSequenceExample) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_PARSING_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -60,6 +60,26 @@ REG_OP(Dequantize) | |||||
| .ATTR(mode, String, "MIN_COMBINED") | .ATTR(mode, String, "MIN_COMBINED") | ||||
| .OP_END_FACTORY_REG(Dequantize) | .OP_END_FACTORY_REG(Dequantize) | ||||
| /** | |||||
| *@brief Quantizes the input . \n | |||||
| *@par Inputs: | |||||
| *x: shape and dtype of input_x. \n | |||||
| *scales: shape and dtype of input_scales. \n | |||||
| *zero_points: shape and dtype of input_zero_points \n | |||||
| *@par Attributes: | |||||
| *@li axis: the processed dim. \n | |||||
| *@par Outputs: | |||||
| *y: shape and dtype of output_y, should be same shape as input, dtype is same as the quantified type . \n | |||||
| */ | |||||
| REG_OP(Quantize) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(scales, TensorType({DT_FLOAT})) | |||||
| .INPUT(zero_points, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_INT8,DT_UINT8,DT_INT32})) | |||||
| .REQUIRED_ATTR(dtype, String) | |||||
| .ATTR(axis, Int, 1) | |||||
| .OP_END_FACTORY_REG(Quantize) | |||||
| /** | /** | ||||
| *@brief Quantizes the input . \n | *@brief Quantizes the input . \n | ||||
| @@ -194,7 +214,7 @@ REG_OP(AscendRequant) | |||||
| *@brief Requantizes the input of int16 . \n | *@brief Requantizes the input of int16 . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *@li x: An NC1HWC0 tensor of type int16, specifying the input. | |||||
| *@li x0: An NC1HWC0 tensor of type int16, specifying the input. | |||||
| *@li req_scale: An NC1HWC0 tensor of type uint64, specifying the scaling ratio. | *@li req_scale: An NC1HWC0 tensor of type uint64, specifying the scaling ratio. | ||||
| *@li x1: An NC1HWC0 tensor of type int16 . \n | *@li x1: An NC1HWC0 tensor of type int16 . \n | ||||
| @@ -203,22 +223,21 @@ REG_OP(AscendRequant) | |||||
| *@li relu_flag: A optional bool, specifying whether to perform ReLU, either "True" or "False". Defaults to "False" . \n | *@li relu_flag: A optional bool, specifying whether to perform ReLU, either "True" or "False". Defaults to "False" . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *@li y: The dequantized output tensor of type int8 and with format NC1HWC0. | |||||
| *@li y0: The dequantized output tensor of type int8 and with format NC1HWC0. | |||||
| *@li y1: The dequantized output tensor of type int16 and with format NC1HWC0 . \n | *@li y1: The dequantized output tensor of type int16 and with format NC1HWC0 . \n | ||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * It is a custom operator. It has no corresponding operator in Caffe. | * It is a custom operator. It has no corresponding operator in Caffe. | ||||
| */ | */ | ||||
| REG_OP(AscendRequantS16) | REG_OP(AscendRequantS16) | ||||
| .INPUT(x, TensorType({DT_INT16})) | |||||
| .INPUT(x0, TensorType({DT_INT16})) | |||||
| .INPUT(req_scale, TensorType({DT_UINT64})) | .INPUT(req_scale, TensorType({DT_UINT64})) | ||||
| .OPTIONAL_INPUT(x1, TensorType({DT_INT16})) | .OPTIONAL_INPUT(x1, TensorType({DT_INT16})) | ||||
| .OUTPUT(y, TensorType({DT_INT8})) | |||||
| .OUTPUT(y0, TensorType({DT_INT8})) | |||||
| .OUTPUT(y1, TensorType({DT_INT16})) | .OUTPUT(y1, TensorType({DT_INT16})) | ||||
| .ATTR(dual_output, Bool, false) | .ATTR(dual_output, Bool, false) | ||||
| .ATTR(relu_flag, Bool, false) | .ATTR(relu_flag, Bool, false) | ||||
| .OP_END_FACTORY_REG(AscendRequantS16) | .OP_END_FACTORY_REG(AscendRequantS16) | ||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_QUANTIZE_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_QUANTIZE_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -356,6 +356,39 @@ REG_OP(DropOutGenMask) | |||||
| .ATTR(seed2, Int, 0) | .ATTR(seed2, Int, 0) | ||||
| .OP_END_FACTORY_REG(DropOutGenMask) | .OP_END_FACTORY_REG(DropOutGenMask) | ||||
| /** | |||||
| *@brief Generate random uint8 mask for dropout v3 . \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li shape:The shape of the output tensor. | |||||
| *@li prob:0-D. Prob of 1 . \n | |||||
| *@par Attributes: | |||||
| *@li seed:If either seed or seed2 are set to be non-zero, the random number | |||||
| *generator is seeded by the given seed. Otherwise, it is seeded by a random seed. | |||||
| *@li seed2:A second seed to avoid seed collision . \n | |||||
| *@par Outputs: | |||||
| *y:Output (1-D) random number using uint8 data format . \n | |||||
| *@attention Constraints: | |||||
| *The output is aligned with 16 | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| *@see DropOutGenMaskV3() | |||||
| */ | |||||
| REG_OP(DropOutGenMaskV3) | |||||
| .INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) | |||||
| .INPUT(prob, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||||
| .OUTPUT(y, TensorType({ DT_UINT8 })) | |||||
| .ATTR(seed, Int, 0) | |||||
| .ATTR(seed2, Int, 0) | |||||
| .OP_END_FACTORY_REG(DropOutGenMaskV3) | |||||
| /** | /** | ||||
| *@brief Generates values in an interval . \n | *@brief Generates values in an interval . \n | ||||
| @@ -495,6 +528,62 @@ REG_OP(ShuffleChannel) | |||||
| DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64})) | DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64})) | ||||
| .ATTR(group, Int, 1) | .ATTR(group, Int, 1) | ||||
| .OP_END_FACTORY_REG(ShuffleChannel) | .OP_END_FACTORY_REG(ShuffleChannel) | ||||
| /** | |||||
| * @briefGenerate a tensor of samples from a multinomial | |||||
| * distribution according to the probabilities of each of | |||||
| * the possible outcomes. | |||||
| * | |||||
| * @par inputs | |||||
| * one input including: | |||||
| * @li x:Input tensor with shape [batch_size, class_size], | |||||
| * where class_size is the number of all possible outcomes. | |||||
| * Each value along the axis zero represents the unnormalized | |||||
| * log-probability of each corresponding outcome in a batch. | |||||
| * | |||||
| * @par output | |||||
| * one output including: | |||||
| * @li y:Output tensor with shape [batch_size, sample_size], | |||||
| * where sample_size is the number of times to sample. | |||||
| * Each value along the axis zero represents the outcome of | |||||
| * the corresponding sample in a batch. | |||||
| * | |||||
| * @par Restrictions: | |||||
| * Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(MultinomialFuss) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_FLOAT64})) | |||||
| .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) | |||||
| .ATTR(dtype, Int, 6) | |||||
| .ATTR(sample_size, Int, 1) | |||||
| .ATTR(seed, Float, 0) | |||||
| .OP_END_FACTORY_REG(MultinomialFuss) | |||||
| /** | |||||
| * @brief During training, randomly zeroes some of the elements of the input tensor | |||||
| * with probability | |||||
| * | |||||
| * @par Inputs: | |||||
| * @li x: A ND Tensor. Must be one of the following data types: Float, Float16 | |||||
| * @li seed: A ND Tensor. Must be one of the following data types: Float | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li p: probability of an element to be zeroed | |||||
| * | |||||
| * @par Outputs: | |||||
| * @li y: A tensor with the same shape and type as "x". | |||||
| * @li mask: A tensor with the same shape and type as "x". | |||||
| * @li new_seed: A tensor with the same shape and type as "seed". | |||||
| */ | |||||
| REG_OP(DropoutV2) | |||||
| .INPUT(x, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||||
| .INPUT(seed, TensorType({ DT_FLOAT })) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT16, DT_FLOAT })) | |||||
| .OUTPUT(mask, TensorType({ DT_FLOAT })) | |||||
| .OUTPUT(seed, TensorType({ DT_FLOAT })) | |||||
| .REQUIRED_ATTR(p, Float) | |||||
| .OP_END_FACTORY_REG(DropoutV2) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_RANDOM_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_RANDOM_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -37,7 +37,7 @@ namespace ge { | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| * This operator is a BatchNorm fusion operator for updating the moving | * This operator is a BatchNorm fusion operator for updating the moving | ||||
| * averages for training. | * averages for training. | ||||
| * This operator is used in conjunction with BNTrainingUpdate. | |||||
| * This operator is used in conjunction with BNTrainingReduce. | |||||
| */ | */ | ||||
| REG_OP(BNTrainingReduce) | REG_OP(BNTrainingReduce) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| @@ -45,6 +45,27 @@ REG_OP(BNTrainingReduce) | |||||
| .OUTPUT(square_sum, TensorType({DT_FLOAT})) | .OUTPUT(square_sum, TensorType({DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(BNTrainingReduce) | .OP_END_FACTORY_REG(BNTrainingReduce) | ||||
| /** | |||||
| *@brief Performs reduced batch normalization . \n | |||||
| *@par Inputs: | |||||
| *x: A 6D Tensor of type float16 or float32, with format NDC1HWC0 . \n | |||||
| *@par Outputs: | |||||
| *@li sum: A 3D Tensor of type float32 for SUM reduced "x". | |||||
| *@li square_sum: A 3D Tensor of type float32 for SUMSQ reduced "x" . \n | |||||
| *@attention Constraints: | |||||
| * This operator is a BatchNorm fusion operator for updating the moving | |||||
| * averages for training. | |||||
| * This operator is used in conjunction with BN3DTrainingReduce. | |||||
| */ | |||||
| REG_OP(BN3DTrainingReduce) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(sum, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(square_sum, TensorType({DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(BN3DTrainingReduce) | |||||
| /** | /** | ||||
| *@brief Performs the backpropagation of BatchNorm . \n | *@brief Performs the backpropagation of BatchNorm . \n | ||||
| @@ -88,6 +109,49 @@ REG_OP(BNTrainingReduceGrad) | |||||
| .ATTR(epsilon, Float, 0.0001) | .ATTR(epsilon, Float, 0.0001) | ||||
| .OP_END_FACTORY_REG(BNTrainingReduceGrad) | .OP_END_FACTORY_REG(BNTrainingReduceGrad) | ||||
| /** | |||||
| *@brief Performs the backpropagation of BatchNorm . \n | |||||
| *@par Inputs: | |||||
| * Seven inputs, including: | |||||
| *@li grads: A 6D Tensor of type float16 or float32, with format NDC1HWC0, for | |||||
| * the gradient. | |||||
| *@li x: A 6D Tensor of type float16 or float32, with format NDC1HWC0. | |||||
| *@li diff_scale: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the mean of "x". | |||||
| *@li diff_offset: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the variance of "x". | |||||
| *@li scale: A 6D Tensor of type float32, with format NDC1HWC0. | |||||
| *@li batch_mean: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the mean of "x". | |||||
| *@li batch_variance: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the variance of "x" . \n | |||||
| *@par Attributes: | |||||
| *epsilon: An optional float32. Defaults to "0.0001". A small float number | |||||
| * added to the variance of "x" . \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor of type float16 or float32, with format NDC1HWC0, for the offset | |||||
| * of "x" . \n | |||||
| *@attention Constraints: | |||||
| * The preceding layer of this operator must be BN3DTrainingReduceGrad . \n | |||||
| *@see BN3DTrainingReduceGrad | |||||
| */ | |||||
| REG_OP(BN3DTrainingReduceGrad) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(diff_scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(diff_offset, TensorType({DT_FLOAT})) | |||||
| .INPUT(scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
| .INPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.0001) | |||||
| .OP_END_FACTORY_REG(BN3DTrainingReduceGrad) | |||||
| /** | /** | ||||
| *@brief Performs reduced batch normalization . \n | *@brief Performs reduced batch normalization . \n | ||||
| @@ -120,7 +184,7 @@ REG_OP(BNTrainingReduceGrad) | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *@li This operator is a BatchNorm fusion operator for updating the moving | *@li This operator is a BatchNorm fusion operator for updating the moving | ||||
| averages for training. | averages for training. | ||||
| *This operator is used in conjunction with BNTrainingReduce. | |||||
| *This operator is used in conjunction with BNTrainingUpdate. | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square | *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square | ||||
| * root instruction. | * root instruction. | ||||
| */ | */ | ||||
| @@ -141,6 +205,59 @@ REG_OP(BNTrainingUpdate) | |||||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(BNTrainingUpdate) | .OP_END_FACTORY_REG(BNTrainingUpdate) | ||||
| /** | |||||
| *@brief Performs reduced batch normalization . \n | |||||
| *@par Inputs: | |||||
| * Seven inputs, including: (NDC1HWC0 supported) | |||||
| *@li x: A 6D Tensor of type float16 or float32. | |||||
| *@li sum: A 6D Tensor of type float32 for the output of operator | |||||
| * BN3DTrainingUpdate. | |||||
| *@li square_sum: A 6D Tensor of type float32 for the output of operator | |||||
| * BN3DTrainingUpdate. | |||||
| *@li scale: A 6D Tensor of type float32, for the scaling factor. | |||||
| *@li offset: A 6D Tensor of type float32, for the scaling offset. | |||||
| *@li mean: A 6D Tensor of type float32, for the updated mean. | |||||
| *@li variance: A 6D Tensor of type float32, for the updated variance . \n | |||||
| *@par Attributes: | |||||
| *@li epsilon: A required float32, specifying the small value added to variance | |||||
| * to avoid dividing by zero. | |||||
| *@li factor: A required float32, specifying the weight for updating the mean | |||||
| * and variance . \n | |||||
| *@par Outputs: | |||||
| * Five outputs, including: (NDC1HWC0 supported) | |||||
| *@li y: A 6D Tensor of type float16 or float32, for normalized "x". | |||||
| *@li mean: A 6D Tensor of type float32, for the updated mean. | |||||
| *@li variance: A 6D Tensor of type float32, for the updated variance. | |||||
| *@li batch_mean: A 6D Tensor of type float32, for the mean of "x". | |||||
| *@li batch_variance: A 6D Tensor of type float32, for the variance of "x" . \n | |||||
| *@attention Constraints: | |||||
| *@li This operator is a BatchNorm fusion operator for updating the moving | |||||
| averages for training. | |||||
| *This operator is used in conjunction with BN3DTrainingUpdate. | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square | |||||
| * root instruction. | |||||
| */ | |||||
| REG_OP(BN3DTrainingUpdate) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(sum, TensorType({DT_FLOAT})) | |||||
| .INPUT(square_sum, TensorType({DT_FLOAT})) | |||||
| .INPUT(scale, TensorType({DT_FLOAT})) | |||||
| .INPUT(offset, TensorType({DT_FLOAT})) | |||||
| .INPUT(mean, TensorType({DT_FLOAT})) | |||||
| .INPUT(variance, TensorType({DT_FLOAT})) | |||||
| .REQUIRED_ATTR(factor, Float) | |||||
| .REQUIRED_ATTR(epsilon, Float) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OUTPUT(mean, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(variance, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(BN3DTrainingUpdate) | |||||
| /** | /** | ||||
| *@brief Performs batch normalization for inference . \n | *@brief Performs batch normalization for inference . \n | ||||
| @@ -284,6 +401,40 @@ REG_OP(BNTrainingUpdateGrad) | |||||
| .OUTPUT(diff_offset, TensorType({DT_FLOAT})) | .OUTPUT(diff_offset, TensorType({DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(BNTrainingUpdateGrad) | .OP_END_FACTORY_REG(BNTrainingUpdateGrad) | ||||
| /** | |||||
| *@brief Performs the backpropagation of BatchNorm . \n | |||||
| *@par Inputs: | |||||
| * Four inputs, including: | |||||
| *@li grads: A 6D Tensor of type float16 or float32, with format NDC1HWC0, | |||||
| * for the gradient. | |||||
| *@li x: A 6D Tensor of type float16 or float32, with format NDC1HWC0. | |||||
| *@li batch_mean: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the mean of "x". | |||||
| *@li batch_variance: A 6D Tensor of type float32, with format NDC1HWC0, | |||||
| * for the variance of "x" . \n | |||||
| *@par Attributes: | |||||
| *epsilon: An optional float32. Defaults to "0.0001". A small float number | |||||
| * added to the variance of "x" . \n | |||||
| *@par Outputs: | |||||
| *@li diff_scale: A Tensor of type float32, with format NDC1HWC0, | |||||
| * for the offset of "scale". | |||||
| *@li diff_offset: A Tensor of type float32, with format NDC1HWC0, | |||||
| * for the offset of "offset" . \n | |||||
| */ | |||||
| REG_OP(BN3DTrainingUpdateGrad) | |||||
| .INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(batch_mean, TensorType({DT_FLOAT})) | |||||
| .INPUT(batch_variance, TensorType({DT_FLOAT})) | |||||
| .ATTR(epsilon, Float, 0.0001) | |||||
| .OUTPUT(diff_scale, TensorType({DT_FLOAT})) | |||||
| .OUTPUT(diff_offset, TensorType({DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(BN3DTrainingUpdateGrad) | |||||
| /** | /** | ||||
| *@brief Performs the backpropagation of BatchNorm for inference . \n | *@brief Performs the backpropagation of BatchNorm for inference . \n | ||||
| @@ -635,8 +786,8 @@ REG_OP(ReduceMin) | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceMin instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceMin instead. | ||||
| */ | */ | ||||
| REG_OP(ReduceMinD) | REG_OP(ReduceMinD) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8,DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8,DT_INT32})) | |||||
| .REQUIRED_ATTR(axes, ListInt) | .REQUIRED_ATTR(axes, ListInt) | ||||
| .ATTR(keep_dims, Bool, false) | .ATTR(keep_dims, Bool, false) | ||||
| .OP_END_FACTORY_REG(ReduceMinD) | .OP_END_FACTORY_REG(ReduceMinD) | ||||
| @@ -747,14 +898,14 @@ REG_OP(Reduction) | |||||
| *@brief Computes the euclidean norm of elements across dimensions of a tensor . \n | *@brief Computes the euclidean norm of elements across dimensions of a tensor . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *@li input_tensor: A Tensor. Must be one of the following types: float16, float32, int32. | |||||
| *@li x: A Tensor. Must be one of the following types: float16, float32, int32. | |||||
| *@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n | *@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n | *keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *output_tensor: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
| *y: A Tensor. Must be one of the following types: float16, float32, int32 . \n | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| * If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n | * If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n | ||||
| @@ -821,7 +972,7 @@ Defaults to "0.00001" . \n | |||||
| *batch_ variance: A Tensor of type float32 for the result variance . \n | *batch_ variance: A Tensor of type float32 for the result variance . \n | ||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
| *For Ascend 310, the result accuracy fails to reach 0.001 due to the square root instruction. | |||||
| */ | */ | ||||
| REG_OP(INInferV2) | REG_OP(INInferV2) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| @@ -882,7 +1033,7 @@ REG_OP(INTrainingReduceV2) | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. | *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. | ||||
| * This operator is used in conjunction with INTrainingReduceV2. | * This operator is used in conjunction with INTrainingReduceV2. | ||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
| */ | */ | ||||
| REG_OP(INTrainingUpdateV2) | REG_OP(INTrainingUpdateV2) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| @@ -965,7 +1116,7 @@ for the updated variance. | |||||
| *@attention Constraints: | *@attention Constraints: | ||||
| *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. | *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. | ||||
| * This operator is used in conjunction with GNTrainingUpdate. | * This operator is used in conjunction with GNTrainingUpdate. | ||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||||
| */ | */ | ||||
| REG_OP(GNTrainingUpdate) | REG_OP(GNTrainingUpdate) | ||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | ||||
| @@ -982,6 +1133,64 @@ REG_OP(GNTrainingUpdate) | |||||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | ||||
| .OP_END_FACTORY_REG(GNTrainingUpdate) | .OP_END_FACTORY_REG(GNTrainingUpdate) | ||||
| /** | |||||
| *@brief Joins a string Tensor across the given dimensions. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. | |||||
| *@li reduction_indices:A Tensor of type int. The text to be processed. | |||||
| *@par Attributes: | |||||
| *@li keep_dims:A bool, An optional bool. Defaults to False. If True, retain reduced dimensions with length 1.. | |||||
| *@li separator:string. | |||||
| *@par output: | |||||
| *@li output::A Tensor of type string.. | |||||
| */ | |||||
| REG_OP(ReduceJoin) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .INPUT(reduction_indices, TensorType({DT_INT32})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(keep_dims, Bool, true) | |||||
| .ATTR(separator, String, "") | |||||
| .OP_END_FACTORY_REG(ReduceJoin) | |||||
| /** | |||||
| * @brief Calculates the standard deviation and average value of Tensors. | |||||
| * @par Inputs: | |||||
| * @li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * Three Attributes, including: | |||||
| * @li dim: An optional listint, Defaults to "None". \n | |||||
| * @li unbiased: An optional bool. Defaults to "True". | |||||
| * If "True", Use Bessel Correction. | |||||
| * If "False", Do not use Bessel Correction. \n | |||||
| * @li keepdim: An optional bool. Defaults to "False". | |||||
| * If "True", Keep the original tensor dimension. | |||||
| * If "False", Do not keep the original tensor dimension. \n | |||||
| * @par Outputs: | |||||
| * Two Outputs, including: | |||||
| * @li y1: A Tensor. Has the same type as "x". | |||||
| * @li y2: A Tensor. Has the same type as "x". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator ReduceStd. | |||||
| */ | |||||
| REG_OP(ReduceStd) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y1, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y2, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .ATTR(dim, ListInt, {}) | |||||
| .ATTR(unbiased, Bool, true) | |||||
| .ATTR(keepdim, Bool, false) | |||||
| .OP_END_FACTORY_REG(ReduceStd) | |||||
| } //namespace ge | } //namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_REDUCE_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_REDUCE_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -33,6 +33,7 @@ namespace ge { | |||||
| *@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z. | *@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z. | ||||
| *@li b:A 1D Tensor. Must be one of the following types: float16. The format must be ND . \n | *@li b:A 1D Tensor. Must be one of the following types: float16. The format must be ND . \n | ||||
| *@li mask:A 1D Tensor. Must be one of the following types: uint8. | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li keep_prob:An integer identifying the keep prob in the op. Default to 1. | *@li keep_prob:An integer identifying the keep prob in the op. Default to 1. | ||||
| @@ -42,7 +43,6 @@ namespace ge { | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *seven outputs: | *seven outputs: | ||||
| *@li mask:A 1D Tensor. Must be one of the following types: uint8. | |||||
| *@li ct:A 4D Tensor. Must be one of the following types: float16, float32. | *@li ct:A 4D Tensor. Must be one of the following types: float16, float32. | ||||
| *@li ht:A 4D Tensor. Must be one of the following types: float16. | *@li ht:A 4D Tensor. Must be one of the following types: float16. | ||||
| *@li it:A 4D Tensor. Must be one of the following types: float16, float32. | *@li it:A 4D Tensor. Must be one of the following types: float16, float32. | ||||
| @@ -187,16 +187,16 @@ REG_OP(DynamicRNNGrad) | |||||
| *@brief: DynamicRNN calculation. | *@brief: DynamicRNN calculation. | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *ten inputs: | *ten inputs: | ||||
| *@li x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li b:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li seq_length:A 1D Tensor. Must be one of the following types: int32. The format must be ND. | |||||
| *@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li mask:A 1D Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||||
| *@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li seq_length:A optional Tensor. Only Support float16 in FRACTAL_NZ and int32 in ND. | |||||
| *@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | *@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | ||||
| @@ -209,6 +209,7 @@ REG_OP(DynamicRNNGrad) | |||||
| *@li time_major:An bool identifying the time major in the op. Default to true. | *@li time_major:An bool identifying the time major in the op. Default to true. | ||||
| *@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported. | *@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported. | ||||
| *@li forget_bias:An float identifying the forget bias in the op. Default to 0. | *@li forget_bias:An float identifying the forget bias in the op. Default to 0. | ||||
| *@li gate_order:An string identifying the type of gate order in the op. Support "ijfo" and "ifjo". Default to "ijfo". | |||||
| *@li is_training:An bool identifying is training in the op. Default to true . \n | *@li is_training:An bool identifying is training in the op. Default to true . \n | ||||
| *@par Outputs: | *@par Outputs: | ||||
| @@ -221,12 +222,14 @@ REG_OP(DynamicRNNGrad) | |||||
| *@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with the TF operator LSTM. | |||||
| */ | */ | ||||
| REG_OP(DynamicRNN) | REG_OP(DynamicRNN) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(seq_length, TensorType({DT_INT32, DT_FLOAT16})) | |||||
| .OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | .OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | .OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | .OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| @@ -251,9 +254,237 @@ REG_OP(DynamicRNN) | |||||
| .ATTR(time_major, Bool, true) | .ATTR(time_major, Bool, true) | ||||
| .ATTR(activation, String, "tanh") | .ATTR(activation, String, "tanh") | ||||
| .ATTR(forget_bias, Float, 0.0) | .ATTR(forget_bias, Float, 0.0) | ||||
| .ATTR(gate_order, String, "ijfo") | |||||
| .ATTR(is_training, Bool, true) | .ATTR(is_training, Bool, true) | ||||
| .OP_END_FACTORY_REG(DynamicRNN) | .OP_END_FACTORY_REG(DynamicRNN) | ||||
| /** | |||||
| *@brief: DynamicRNNV2 calculation. | |||||
| *@par Inputs: | |||||
| *ten inputs: | |||||
| *@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li weight_input:A required 4D Tensor. Must be one of the following types: float16, float32. | |||||
| *The format must be FRACTAL_Z. | |||||
| *@li weight_hidden:A required 4D Tensor. Must be one of the following types: float16, float32. | |||||
| *The format must be FRACTAL_Z. | |||||
| *@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li seq_length:A optional 1D Tensor. Must be one of the following types: int32. The format must be ND. | |||||
| *@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||||
| *@par Attributes: | |||||
| *@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | |||||
| *@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". | |||||
| *Only UNIDIRECTIONAL is currently supported. | |||||
| *@li cell_depth:An integer identifying the cell depth in the op. Default to 1. | |||||
| *@li use_peephole:An bool identifying if use peephole in the op. Default to false. | |||||
| *@li keep_prob:An float identifying the keep prob in the op. Default to 1. | |||||
| *@li cell_clip:An float identifying the cell clip in the op. Default to -1. | |||||
| *@li num_proj:An integer identifying the num projection in the op. Default to 0. | |||||
| *@li time_major:An bool identifying the time major in the op. Default to true. | |||||
| *@li activation:An string identifying the type of activation function in the op. Default to "tanh". | |||||
| *Only tanh is currently supported. | |||||
| *@li recurrent_activation:An string identifying the type of activation function in the op. Default to "sigmoid". | |||||
| *Supprot "sigmoid" and "hard_sigmoid". In general, set "hard_sigmoid" for TF Keras LSTM. | |||||
| *@li forget_bias:An float identifying the forget bias in the op. Default to 0. | |||||
| *@li gate_order:An string identifying the type of gate order in the op. Support "ijfo" and "ifco". Default to "ijfo". | |||||
| *Set "ijfo" for TF operator LSTM, Set "ifco" for TF Keras LSTM. | |||||
| *@li stateful: An bool identifying the type of stateful in the op. Default to fasle.Only false is currently supported. | |||||
| *@li merge_mode: An string identifying the type of merge_modein the op. Default to "concat". | |||||
| *Only "concat" is currently supported | |||||
| *@li is_training:An bool identifying is training in the op. Default to true . \n | |||||
| *@par Outputs: | |||||
| *eight outputs: | |||||
| *@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *Return the last output_h. | |||||
| *@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *Return the last output_c. | |||||
| *@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with the TF operator LSTM or TF keras operator LSTM. | |||||
| */ | |||||
| REG_OP(DynamicRNNV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(weight_input, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(weight_hidden, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(mask, TensorType({DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(cell_type, String, "LSTM") | |||||
| .ATTR(direction, String, "UNIDIRECTIONAL") | |||||
| .ATTR(cell_depth, Int, 1) | |||||
| .ATTR(use_peephole, Bool, false) | |||||
| .ATTR(keep_prob, Float, 1.0) | |||||
| .ATTR(cell_clip, Float, -1.0) | |||||
| .ATTR(num_proj, Int, 0) | |||||
| .ATTR(time_major, Bool, true) | |||||
| .ATTR(activation, String, "tanh") | |||||
| .ATTR(recurrent_activation, String, "sigmoid") | |||||
| .ATTR(forget_bias, Float, 0.0) | |||||
| .ATTR(gate_order, String, "ijfo") | |||||
| .ATTR(stateful, Bool, false) | |||||
| .ATTR(merge_mode, String, "concat") | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(DynamicRNNV2) | |||||
| /** | |||||
| *@brief: DynamicRNNV3 calculation. | |||||
| *@par Inputs: | |||||
| *ten inputs: | |||||
| *@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li seq_length:A optional 1D Tensor. Must be one of the following types: int32. The format must be ND. | |||||
| *@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n | |||||
| *@li real_mask:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li project:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Attributes: | |||||
| *@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported. | |||||
| *@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported. | |||||
| *@li cell_depth:An integer identifying the cell depth in the op. Default to 1. | |||||
| *@li use_peephole:An bool identifying if use peephole in the op. Default to false. | |||||
| *@li keep_prob:An float identifying the keep prob in the op. Default to 1. | |||||
| *@li cell_clip:An float identifying the cell clip in the op. Default to -1. | |||||
| *@li num_proj:An integer identifying the num projection in the op. Default to 0. | |||||
| *@li time_major:An bool identifying the time major in the op. Default to true. | |||||
| *@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported. | |||||
| *@li forget_bias:An float identifying the forget bias in the op. Default to 0. | |||||
| *@li is_training:An bool identifying is training in the op. Default to true . \n | |||||
| *@par Outputs: | |||||
| *eight outputs: | |||||
| *@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with the TF operator LSTM. | |||||
| */ | |||||
| REG_OP(DynamicRNNV3) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(mask, TensorType({DT_UINT8})) | |||||
| .OPTIONAL_INPUT(real_mask, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(project, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(cell_type, String, "LSTM") | |||||
| .ATTR(direction, String, "UNIDIRECTIONAL") | |||||
| .ATTR(cell_depth, Int, 1) | |||||
| .ATTR(use_peephole, Bool, false) | |||||
| .ATTR(keep_prob, Float, 1.0) | |||||
| .ATTR(cell_clip, Float, -1.0) | |||||
| .ATTR(num_proj, Int, 0) | |||||
| .ATTR(time_major, Bool, true) | |||||
| .ATTR(activation, String, "tanh") | |||||
| .ATTR(forget_bias, Float, 0.0) | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(DynamicRNNV3) | |||||
| /** | |||||
| *@brief: DynamicLSTMV2 calculation. | |||||
| *@par Inputs: | |||||
| *ten inputs: | |||||
| *@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li cont:A required 2D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li w_xc_x_static:A optional 2D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li h0:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li c0:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li wci:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wcf:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li wco:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li mask:A optional 1D Tensor. Must be one of the following types: uint8. The format must be ND . | |||||
| *@par Attributes: | |||||
| *@li num_output:An integer identifying the num projection in the op. Default to 0. | |||||
| *@li expose_hidden:An bool identifying the expose_hidden in the op. Default to flase. | |||||
| *@li need_output_last:An bool identifying the time major in the op. Default to true. | |||||
| *@li forget_bias:An float identifying the forget bias in the op. Default to 0. | |||||
| *@par Outputs: | |||||
| *eight outputs: | |||||
| *@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li last_output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li last_output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Third-party framework compatibility: | |||||
| * Compatible with the Caffe operator LSTM. | |||||
| *@par Restrictions: | |||||
| * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DynamicLSTMV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(cont, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(w_xc_x_static, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(h0, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(c0, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(mask, TensorType({DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(last_output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(last_output_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(num_output, Int, 0) | |||||
| .ATTR(expose_hidden, Bool, false) | |||||
| .ATTR(need_output_last, Bool, false) | |||||
| .ATTR(forget_bias, Float, 0.0) | |||||
| .OP_END_FACTORY_REG(DynamicLSTMV2) | |||||
| /** | /** | ||||
| *@brief: LSTMInputGrad calculation. | *@brief: LSTMInputGrad calculation. | ||||
| *@par Inputs: | *@par Inputs: | ||||
| @@ -297,6 +528,60 @@ REG_OP(LSTMInputGrad) | |||||
| .OP_END_FACTORY_REG(LSTMInputGrad) | .OP_END_FACTORY_REG(LSTMInputGrad) | ||||
| /** | |||||
| *@brief: Dynamic LSTM Cell grad calculation.Calculate the gradient of gates and cell state. | |||||
| *@par Inputs: | |||||
| *twelve inputs: | |||||
| *@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li dc:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li mask:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li t_state:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ . \n | |||||
| *@par Attributes: | |||||
| *@li forget_bias:An integer identifying the forget bias in the op. Default to 1. | |||||
| *@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported . \n | |||||
| *@li direction:An string that marks the calculation sequence of the operator. Default to "Forward". | |||||
| *@li gate_order:An string mark the order of output 4 gate. Default to "ijfo". | |||||
| *@par Outputs: | |||||
| *two outputs: | |||||
| *@li dgate:A 4D Tensor. Must be one of the following types: float16. | |||||
| *@li dct_1:A 4D Tensor. Must be one of the following types: float16, float32. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DynamicLSTMGradCell) | |||||
| .INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(dc, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(i, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(j, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(f, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(o, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(mask, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(t_state, TensorType({DT_INT32, DT_INT32})) | |||||
| .OUTPUT(dgate, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(dct_1, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(forget_bias, Float, 1) | |||||
| .ATTR(activation, String, "") | |||||
| .ATTR(direction, String, "Forward") | |||||
| .ATTR(gate_order, String, "ijfo") | |||||
| .OP_END_FACTORY_REG(DynamicLSTMGradCell) | |||||
| /** | /** | ||||
| *@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state. | *@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state. | ||||
| *@par Inputs: | *@par Inputs: | ||||
| @@ -475,9 +760,9 @@ REG_OP(BasicRNNCell) | |||||
| .OP_END_FACTORY_REG(BasicRNNCell) | .OP_END_FACTORY_REG(BasicRNNCell) | ||||
| /** | /** | ||||
| *@brief: DynamicGRU calculation. | |||||
| *@brief DynamicGRU calculation. | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *seven inputs: \n | |||||
| *seven inputs: | |||||
| *@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ. | *@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ. | ||||
| *@li w:Must be one of the following types: float16. The format must be FRACTAL_Z. | *@li w:Must be one of the following types: float16. The format must be FRACTAL_Z. | ||||
| *@li b:Must be one of the following types: float16, float32. The format must be ND. | *@li b:Must be one of the following types: float16, float32. The format must be ND. | ||||
| @@ -497,7 +782,7 @@ REG_OP(BasicRNNCell) | |||||
| *@li is_training:An bool identifying is training in the op. Default to true. | *@li is_training:An bool identifying is training in the op. Default to true. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *five outputs: \n | |||||
| *five outputs: | |||||
| *@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li r:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li r:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| @@ -531,9 +816,9 @@ REG_OP(DynamicGRU) | |||||
| .OP_END_FACTORY_REG(DynamicGRU) | .OP_END_FACTORY_REG(DynamicGRU) | ||||
| /** | /** | ||||
| *@brief: DynamicGRUV2 calculation. | |||||
| *@brief DynamicGRUV2 calculation. | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *seven inputs: \n | |||||
| *seven inputs: | |||||
| *@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ. | *@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ. | ||||
| *@li weight_input:Must be one of the following types: float16. The format must be FRACTAL_Z. | *@li weight_input:Must be one of the following types: float16. The format must be FRACTAL_Z. | ||||
| *@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z. | *@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z. | ||||
| @@ -555,16 +840,13 @@ REG_OP(DynamicGRU) | |||||
| *@li is_training:An bool identifying is training in the op. Default to true. | *@li is_training:An bool identifying is training in the op. Default to true. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| *six outputs: \n | |||||
| *six outputs: | |||||
| *@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(DynamicGRUV2) | REG_OP(DynamicGRUV2) | ||||
| .INPUT(x, TensorType({DT_FLOAT16})) | .INPUT(x, TensorType({DT_FLOAT16})) | ||||
| @@ -592,6 +874,68 @@ REG_OP(DynamicGRUV2) | |||||
| .ATTR(is_training, Bool, true) | .ATTR(is_training, Bool, true) | ||||
| .OP_END_FACTORY_REG(DynamicGRUV2) | .OP_END_FACTORY_REG(DynamicGRUV2) | ||||
| /** | |||||
| *@brief DynamicGRUV2Hidden calculation. | |||||
| *@par Inputs: | |||||
| *five inputs: | |||||
| *@li x_weight_input:Must be one of the following types: float32. The format must be FRACTAL_NZ. | |||||
| *@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z. | |||||
| *@li bias_hidden:Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li seq_length:Must be one of the following types: int32. The format must be ND. | |||||
| *@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Attributes: | |||||
| *@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". | |||||
| Only UNIDIRECTIONAL is currently supported. | |||||
| *@li cell_depth:An integer identifying the cell depth in the op. Default to 1. | |||||
| *@li keep_prob:An float identifying the keep prob in the op. Default to 1. | |||||
| *@li cell_clip:An float identifying the cell clip in the op. Default to -1. | |||||
| *@li num_proj:An integer identifying the num projection in the op. Default to 0. | |||||
| *@li time_major:An bool identifying the time major in the op. Default to true. | |||||
| *@li activation:An string identifying the type of activation function in the op. Default to "tanh". | |||||
| Only tanh is currently supported. | |||||
| *@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option. | |||||
| *@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true. | |||||
| *@li is_training:An bool identifying is training in the op. Default to true. | |||||
| *@par Outputs: | |||||
| *six outputs: | |||||
| *@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(DynamicGRUV2Hidden) | |||||
| .INPUT(x_weight_input, TensorType({DT_FLOAT32})) | |||||
| .INPUT(weight_hidden, TensorType({DT_FLOAT16})) | |||||
| .OPTIONAL_INPUT(bias_hidden, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(update, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(new, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(direction, String, "UNIDIRECTIONAL") | |||||
| .ATTR(cell_depth, Int, 1) | |||||
| .ATTR(keep_prob, Float, 1.0) | |||||
| .ATTR(cell_clip, Float, -1.0) | |||||
| .ATTR(num_proj, Int, 0) | |||||
| .ATTR(time_major, Bool, true) | |||||
| .ATTR(activation, String, "tanh") | |||||
| .ATTR(gate_order, String, "zrh") | |||||
| .ATTR(reset_after, Bool, true) | |||||
| .ATTR(is_training, Bool, true) | |||||
| .OP_END_FACTORY_REG(DynamicGRUV2Hidden) | |||||
| /** | /** | ||||
| *@brief: DynamicGRUV2Grad calculation. | *@brief: DynamicGRUV2Grad calculation. | ||||
| *@par Inputs: | *@par Inputs: | ||||
| @@ -618,7 +962,6 @@ REG_OP(DynamicGRUV2) | |||||
| *@li cell_clip:An float identifying the cell clip in the op. Default to -1. | *@li cell_clip:An float identifying the cell clip in the op. Default to -1. | ||||
| *@li num_proj:An integer identifying the num projection in the op. Default to 0. | *@li num_proj:An integer identifying the num projection in the op. Default to 0. | ||||
| *@li time_major:An bool identifying the time major in the op. Default to true. | *@li time_major:An bool identifying the time major in the op. Default to true. | ||||
| *@li bias_type:An string identifying the type of bias_type function in the op. Default to "double_bias". | |||||
| *@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option. | *@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option. | ||||
| *@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true. | *@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true. | ||||
| @@ -630,6 +973,9 @@ REG_OP(DynamicGRUV2) | |||||
| *@li db_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li db_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(DynamicGRUV2Grad) | REG_OP(DynamicGRUV2Grad) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| @@ -658,7 +1004,6 @@ REG_OP(DynamicGRUV2Grad) | |||||
| .ATTR(cell_clip, Float, -1.0) | .ATTR(cell_clip, Float, -1.0) | ||||
| .ATTR(num_proj, Int, 0) | .ATTR(num_proj, Int, 0) | ||||
| .ATTR(time_major, Bool, true) | .ATTR(time_major, Bool, true) | ||||
| .ATTR(bias_type, String, "double_bias") | |||||
| .ATTR(gate_order, String, "zrh") | .ATTR(gate_order, String, "zrh") | ||||
| .ATTR(reset_after, Bool, true) | .ATTR(reset_after, Bool, true) | ||||
| .OP_END_FACTORY_REG(DynamicGRUV2Grad) | .OP_END_FACTORY_REG(DynamicGRUV2Grad) | ||||
| @@ -667,7 +1012,7 @@ REG_OP(DynamicGRUV2Grad) | |||||
| *@brief: GRUV2HiddenGrad calculation. | *@brief: GRUV2HiddenGrad calculation. | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *nine inputs: \n | *nine inputs: \n | ||||
| *@li weight_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li dh_pre_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| @@ -678,6 +1023,7 @@ REG_OP(DynamicGRUV2Grad) | |||||
| *@li hidden_new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li hidden_new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li t_state:An Int identifying the current t state. Default to [0, 4]. | |||||
| *@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option. | *@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option. | ||||
| *@par Outputs: | *@par Outputs: | ||||
| @@ -685,10 +1031,12 @@ REG_OP(DynamicGRUV2Grad) | |||||
| *@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li dgate_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dgate_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@li dnt_x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | *@li dnt_x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | ||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | */ | ||||
| REG_OP(GRUV2HiddenGrad) | |||||
| .INPUT(weight_hidden, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| REG_OP(GRUV2HiddenGradCell) | |||||
| .INPUT(dh_pre_t, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT})) | .INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| @@ -699,8 +1047,197 @@ REG_OP(GRUV2HiddenGrad) | |||||
| .OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(dgate_h, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(dgate_h, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .OUTPUT(dnt_x, TensorType({DT_FLOAT16, DT_FLOAT})) | .OUTPUT(dnt_x, TensorType({DT_FLOAT16, DT_FLOAT})) | ||||
| .ATTR(t_state, Int, 0) | |||||
| .ATTR(gate_order, String, "zrh") | .ATTR(gate_order, String, "zrh") | ||||
| .OP_END_FACTORY_REG(GRUV2HiddenGrad) | |||||
| .OP_END_FACTORY_REG(GRUV2HiddenGradCell) | |||||
| /** | |||||
| * @brief Calculates the reversed outputs of the function "embedding". \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li grad: A mutable Tensor of word grad. Must be one of the following types: | |||||
| * float32. | |||||
| * @li indices: A mutable word index Tensor of the int32 type.\n | |||||
| * @par Attributes: | |||||
| * @li num_weights: An int attr which use to judge how many words in dict. \n | |||||
| * @li padding_idx: An int attr judge which word to fill zeros. Defaults to "-1". \n | |||||
| * @li scale_grad_by_freq: An optional bool. Defaults to "False". | |||||
| * If "True", "grad_weight" will be scale by word_frequency. | |||||
| * If "False", "grad_weight" will not be scale by word_frequency. \n | |||||
| * @par Outputs: | |||||
| * @li grad_weight: A mutable output Tensor of new word grad has the same type as "grads". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator EmbeddingDenseGrad. | |||||
| */ | |||||
| REG_OP(EmbeddingDenseGrad) | |||||
| .INPUT(grad, TensorType({ DT_FLOAT32 })) /* "First operand." */ | |||||
| .INPUT(indices, TensorType({ DT_INT32 })) /* "Second operand." */ | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT32 })) /* "Result, has same element type as two inputs" */ | |||||
| .REQUIRED_ATTR(num_weights, Int) | |||||
| .ATTR(padding_idx, Int, -1) | |||||
| .ATTR(scale_grad_by_freq, Bool, false) | |||||
| .OP_END_FACTORY_REG(EmbeddingDenseGrad) | |||||
| /** | |||||
| *@brief CommonLSTM calculation. | |||||
| *@par Inputs: | |||||
| *eight inputs: \n | |||||
| *@li x:Each time step is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li w:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li r:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM. | |||||
| *@li b:An optional input. Each direction is a 1D Tensor. Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@li sequence_lens:An optional input. A 1D Tensor.Must be one of the following types: int32. The format must be ND. | |||||
| *@li initial_h:An optional input. Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li initial_c:An optional input. Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li p:An optional input. Each direction is a 1D Tensor.Must be one of the following types: float16, float32. The format must be ND. | |||||
| *@par Attributes: | |||||
| *@li activation_alpha:Optional scaling values used by some activation functions. Empty is currently supported. | |||||
| *@li activation_beta:Optional scaling values used by some activation functions. Empty is currently supported. | |||||
| *@li activations:The list of activation functions. Empty is currently supported. | |||||
| *@li clip:An float identifying the cell clip in the op. Default to -1. | |||||
| *@li direction:Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward(default), reverse, or bidirectional. | |||||
| *@li hidden_size:Number of neurons in the hidden layer. Reserved. | |||||
| *@li input_forget:Couple the input and forget gates if 1. Reserved. | |||||
| *@par Outputs: | |||||
| *three outputs: \n | |||||
| *@li y:First dimension is time step, second dimension is direction, others is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li y_h:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| *@li y_c:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ. | |||||
| */ | |||||
| REG_OP(CommonLSTM) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(r, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(sequence_lens, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(initial_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(initial_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(p, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y_c, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(activation_alpha, ListFloat, {}) | |||||
| .ATTR(activation_beta, ListFloat, {}) | |||||
| .ATTR(activations, ListString, {}) | |||||
| .ATTR(clip, Float, -1.0) | |||||
| .ATTR(direction, String, "forward") | |||||
| .REQUIRED_ATTR(hidden_size, Int) | |||||
| .ATTR(input_forget, Int, 0) | |||||
| .OP_END_FACTORY_REG(CommonLSTM) | |||||
| /** | |||||
| * @brief Calculate the mask. According to hidden_size and num_step, convert seq_length to mask. | |||||
| * | |||||
| * @par Inputs: | |||||
| * @li seq_length: A 1D Tensor. Must be one of the following types: int32. Record the current length of each batch. [batch_size]. | |||||
| * @li b: A 1D Tensor. Must be one of the following types: fp16/fp32. Record the hidden_size. [4 * hidden_size]. | |||||
| * @li x: A 3D Tensor. Must be one of the following types: fp16/fp32. Record the num_step/batch_size/input_size. [num_step, batch_size, input_size]. | |||||
| * | |||||
| * @par Outputs: | |||||
| * seq_mask: A 3D Tensor. Must be one of the following types: fp16/fp32. with the shape of [num_step, batch_size, hidden_size]. And has the same type as "b" \n | |||||
| * | |||||
| * @par Restrictions: | |||||
| * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(RnnGenMaskV2) | |||||
| .INPUT(seq_length, TensorType({DT_INT32})) | |||||
| .INPUT(b, TensorType({{DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(seq_mask, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(RnnGenMaskV2) | |||||
| /** | |||||
| * @brief Common GRU calculation. | |||||
| * @par Inputs: | |||||
| * Eight inputs, including: | |||||
| * @li x: The input sequences packed (and pontentially padded) into on 3D Tesnor(float16). The format must be FRACTAL_NZ | |||||
| * @li w: The weight tensor for the gates is 3D Tensor(float16). The format must be FRACTAL_Z | |||||
| * @li r: The recurrence weight tesnor is 3D Tensor(float16). The format must be FRACTAL_Z | |||||
| * @li b: The bias tensor for the gates. The format must be ND | |||||
| * @li sequence_lens: Optional tensor specifying lengths of sequences(int32). The format must be ND | |||||
| * @li init_h: Optional initial value of the hidden(float16,float32). The format must be FRACTAL_NZ | |||||
| * @par Attributes: | |||||
| * @li activation_alpha: Optional scaling values used by some activation functions. \n | |||||
| * @li activation_beta: Optional scaling values used by some activation functions. \n | |||||
| * @li activations: A list of 2 (or 4 if bidirectional) activation functions for update, reset, and hidden gates. \n | |||||
| * @li clip: Cell clip threshold. \n | |||||
| * @li direction: Specify if the RNN is forward, reverse, or bidirectional. \n | |||||
| * @li hidden_size: Number of neurons in the hidden layer. \n | |||||
| * @li linear_before_reset: When computing the output of the hidden gate, apply the linear transformation before multiplying by the output of the reset gate. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor that concats all the intermediate output values of the hidden(float16,float32). The format must be FRACTAL_NZ | |||||
| * @li y_h: The last output value of the hidden(float16,float32). The format must be FRACTAL_NZ | |||||
| */ | |||||
| REG_OP(CommonGRU) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(r, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OPTIONAL_INPUT(sequence_lens, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(initial_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OUTPUT(y_h, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(activation_alpha, ListFloat, {}) | |||||
| .ATTR(activation_beta , ListFloat, {}) | |||||
| .ATTR(activations , ListString, {}) | |||||
| .ATTR(clip, Float, -1.0) | |||||
| .ATTR(direction, String, "forward") | |||||
| .REQUIRED_ATTR(hidden_size, Int) | |||||
| .ATTR(linear_before_reset , Int, 0) | |||||
| .OP_END_FACTORY_REG(CommonGRU) | |||||
| /** | |||||
| * @brief Calculates the reversed outputs of the function "embedding". \n | |||||
| * @par Inputs: | |||||
| * Four inputs, including: | |||||
| * @li weight: A mutable Tensor of word grad. Must be one of the following types: | |||||
| * float32. | |||||
| * @li indices: A mutable word index Tensor of the int32 type.\n | |||||
| * @li offsets: A mutable word index Tensor of the int32 type.\n | |||||
| * @li per_sample_weights: to indicate all weights should be taken to be 1. | |||||
| * If specified, per_sample_weights must have exactly the same shape as input | |||||
| * and is treated as having the same offsets, if those are not None. | |||||
| * Only supported for mode='sum'..\n | |||||
| * @par Attributes: | |||||
| * @li mode: An string attr which use "sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.. \n | |||||
| * @li scale_grad_by_freq: An optional bool. Defaults to "False". | |||||
| * If "True", "grad_weight" will be scale by word_frequency. | |||||
| * If "False", "grad_weight" will not be scale by word_frequency. \n | |||||
| * @li sparse: if True, gradient w.r.t.attr weight matrix will be a sparse tensor. \n | |||||
| * @li include_last_offset: if True, attr offsets has one additional element, where the last element | |||||
| * is equivalent to the size of indices. This matches the CSR format.. \n | |||||
| * @par Outputs: | |||||
| * @li grad_weight: A mutable output Tensor of new word grad has the same type as "grads". \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator EmbeddingBag. | |||||
| */ | |||||
| REG_OP(EmbeddingBag) | |||||
| .INPUT(weight, TensorType({ DT_FLOAT32 })) | |||||
| .INPUT(indices, TensorType({ DT_INT32 })) | |||||
| .OPTIONAL_INPUT(offsets, TensorType({DT_INT32})) | |||||
| .OPTIONAL_INPUT(per_sample_weights, TensorType({DT_FLOAT32})) | |||||
| .OUTPUT(y, TensorType({ DT_FLOAT32 })) | |||||
| .ATTR(mode, String, "mean") | |||||
| .ATTR(scale_grad_by_freq, Bool, false) | |||||
| .ATTR(sparse, Bool, false) | |||||
| .ATTR(include_last_offset, Bool, false) | |||||
| .OP_END_FACTORY_REG(EmbeddingBag) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -239,6 +239,30 @@ REG_OP(GatherV2D) | |||||
| .REQUIRED_ATTR(axis, Int) | .REQUIRED_ATTR(axis, Int) | ||||
| .OP_END_FACTORY_REG(GatherV2D) | .OP_END_FACTORY_REG(GatherV2D) | ||||
| /** | |||||
| *@Gathers values along an axis specified by dim . \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be one of the following types: float16, float32, int32, int64. | |||||
| *@li index: A Tensor. Must be one of the following types: int64 . \n | |||||
| *@par Attributes: | |||||
| * dim: the axis along which to index . \n | |||||
| *@par Outputs: | |||||
| * y: A Tensor. Has the same type as "x" . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the PyTorch operator Gather. | |||||
| */ | |||||
| REG_OP(GatherElements) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) | |||||
| .INPUT(index, TensorType({DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) | |||||
| .ATTR(dim, Int, 0) | |||||
| .OP_END_FACTORY_REG(GatherElements) | |||||
| /** | /** | ||||
| *@brief Extracts a strided slice of a tensor. Roughly speaking, this op | *@brief Extracts a strided slice of a tensor. Roughly speaking, this op | ||||
| extracts a slice of size (end-begin)/stride from the given input tensor. | extracts a slice of size (end-begin)/stride from the given input tensor. | ||||
| @@ -275,8 +299,6 @@ REG_OP(GatherV2D) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x" . \n | *y: A Tensor. Has the same type as "x" . \n | ||||
| *@attention Constraints: | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator StridedSlice. | * Compatible with the TensorFlow operator StridedSlice. | ||||
| */ | */ | ||||
| @@ -327,8 +349,6 @@ REG_OP(StridedSlice) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x" . \n | *y: A Tensor. Has the same type as "x" . \n | ||||
| *@attention Constraints: | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator StridedSlice. | * Compatible with the TensorFlow operator StridedSlice. | ||||
| @@ -385,8 +405,6 @@ REG_OP(StridedSliceD) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *output: A Tensor. Has the same type as "dy" . \n | *output: A Tensor. Has the same type as "dy" . \n | ||||
| *@attention Constraints: | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator StridedSliceGradD. | * Compatible with the TensorFlow operator StridedSliceGradD. | ||||
| @@ -444,8 +462,6 @@ REG_OP(StridedSliceGradD) | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *output: A Tensor has the same type as "dy" . \n | *output: A Tensor has the same type as "dy" . \n | ||||
| *@attention Constraints: | |||||
| *@par Third-party framework compatibility | *@par Third-party framework compatibility | ||||
| * Compatible with the TensorFlow operator StridedSliceGrad. | * Compatible with the TensorFlow operator StridedSliceGrad. | ||||
| */ | */ | ||||
| @@ -486,6 +502,38 @@ REG_OP(UnsortedSegmentSum) | |||||
| .OUTPUT(y, TensorType::NumberType()) | .OUTPUT(y, TensorType::NumberType()) | ||||
| .OP_END_FACTORY_REG(UnsortedSegmentSum) | .OP_END_FACTORY_REG(UnsortedSegmentSum) | ||||
| /** | |||||
| *@brief Creates a one-dimensional tensor of size steps whose values are evenly spaced from start to | |||||
| * end, inclusive, on a logarithmic scale with base base. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li assist: A tensor. Must be one of the following types: | |||||
| * float16, float32. \n | |||||
| * @par Attributes: | |||||
| * @li start: An required float. Used to select the start. \n | |||||
| * @li end: An required float. Used to select the end. \n | |||||
| * @li steps: An optional int.Defaults to 100. \n | |||||
| * @li base: An optional float.Defaults to 10.0. \n | |||||
| * @li dtype: An optional int.Defaults to 1. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type and shape of input_x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator logspaced. \n | |||||
| */ | |||||
| REG_OP(LogSpaceD) | |||||
| .INPUT(assist, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR (start, Float) | |||||
| .REQUIRED_ATTR (end, Float) | |||||
| .ATTR(steps, Int, 100) | |||||
| .ATTR(base, Float, 10.0) | |||||
| .ATTR(dtype, Int, 1) | |||||
| .OP_END_FACTORY_REG(LogSpaceD) | |||||
| /** | /** | ||||
| *@brief Computes the sum along segments of a tensor . \n | *@brief Computes the sum along segments of a tensor . \n | ||||
| @@ -796,6 +844,34 @@ REG_OP(SliceD) | |||||
| .REQUIRED_ATTR(size, ListInt) | .REQUIRED_ATTR(size, ListInt) | ||||
| .OP_END_FACTORY_REG(SliceD) | .OP_END_FACTORY_REG(SliceD) | ||||
| /** | |||||
| *@brief Extracts a slice from a tensor. | |||||
| * This operation extracts a slice of size "size" from a tensor "x" | |||||
| * starting at the location specified by "begin" . \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | |||||
| * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32 . \n | |||||
| *@par Inputs: | |||||
| *@li offsets: The starting location for the slice. | |||||
| *@par Attributes: | |||||
| *@li size: The tensor shape . \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor. Has the same type as "x". The slice extracted from the tensor. | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS DEPRECATED. Please use Slice instead. | |||||
| */ | |||||
| REG_OP(SliceDV2) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .INPUT(offsets, TensorType::IndexNumberType()) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .REQUIRED_ATTR(size, ListInt) | |||||
| .OP_END_FACTORY_REG(SliceDV2) | |||||
| /** | /** | ||||
| * @brief Finds values and indices of the "k" largest elements for the last | * @brief Finds values and indices of the "k" largest elements for the last | ||||
| * dimension . \n | * dimension . \n | ||||
| @@ -829,8 +905,8 @@ REG_OP(SliceD) | |||||
| * @li sorted = true | * @li sorted = true | ||||
| * @li It's unstable sorted indices on the platform of Ascend310 | * @li It's unstable sorted indices on the platform of Ascend310 | ||||
| * @par Third-party framework compatibility | |||||
| * @li Compatible with the TensorFlow operator TopK. | |||||
| * @par Restrictions: | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use TopKV2 instead. | |||||
| */ | */ | ||||
| REG_OP(TopKD) | REG_OP(TopKD) | ||||
| .INPUT(x, TensorType::RealNumberType()) | .INPUT(x, TensorType::RealNumberType()) | ||||
| @@ -855,6 +931,44 @@ REG_OP(TopKD) | |||||
| * Number of top elements to look for along the last dimension (along each row | * Number of top elements to look for along the last dimension (along each row | ||||
| * for matrices) . \n | * for matrices) . \n | ||||
| * @par Attributes: | |||||
| * @li sorted: An optional bool. Defaults to true. | |||||
| * If true, the resulting "k" elements will be sorted by the values in descending | |||||
| * order. | |||||
| * @li dim: An optional int. Defaults to -1. For reserved use. | |||||
| * @li largest: An optional bool. Defaults to true. For reserved use. \n | |||||
| * @par Outputs: | |||||
| * @li values: A Tensor, specifying the sorted data. Has the same type as | |||||
| * "input". | |||||
| * @li indices: A Tensor of type int32, specifying the indices of sorted data . \n | |||||
| * @see TopK() | |||||
| * @par Third-party framework compatibility | |||||
| * @li Compatible with the TensorFlow operator TopKV2. | |||||
| */ | |||||
| REG_OP(TopKV2) | |||||
| .INPUT(x, TensorType::RealNumberType()) | |||||
| .INPUT(k, TensorType({DT_INT32})) | |||||
| .OUTPUT(values, TensorType::RealNumberType()) | |||||
| .OUTPUT(indices, TensorType({DT_INT32})) | |||||
| .ATTR(sorted, Bool, true) | |||||
| .ATTR(dim, Int, -1) | |||||
| .ATTR(largest, Bool, true) | |||||
| .OP_END_FACTORY_REG(TopKV2) | |||||
| /** | |||||
| * @brief Finds values and indices of the "k" largest elements for the last | |||||
| * dimension . \n | |||||
| * @par Inputs: | |||||
| * Two inputs, including: | |||||
| * @li x: A 1D or higher tensor of type BasicType, with the last dimension | |||||
| * at least "k". | |||||
| * @li k: A 0D Tensor of type int32. | |||||
| * Number of top elements to look for along the last dimension (along each row | |||||
| * for matrices) . \n | |||||
| * @par Attributes: | * @par Attributes: | ||||
| * @li sorted: An optional bool. Defaults to true. | * @li sorted: An optional bool. Defaults to true. | ||||
| * If true, the resulting "k" elements will be sorted by the values in descending | * If true, the resulting "k" elements will be sorted by the values in descending | ||||
| @@ -876,15 +990,17 @@ REG_OP(TopK) | |||||
| .OUTPUT(values, TensorType::RealNumberType()) | .OUTPUT(values, TensorType::RealNumberType()) | ||||
| .OUTPUT(indices, TensorType({DT_INT32})) | .OUTPUT(indices, TensorType({DT_INT32})) | ||||
| .ATTR(sorted, Bool, true) | .ATTR(sorted, Bool, true) | ||||
| .ATTR(largest, Bool, true) | |||||
| .ATTR(dim, Int, -1) | |||||
| .OP_END_FACTORY_REG(TopK) | .OP_END_FACTORY_REG(TopK) | ||||
| /** | /** | ||||
| *@brief Creates a new tensor by applying sparse "updates" to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given "shape" according to "indices" . \n | *@brief Creates a new tensor by applying sparse "updates" to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given "shape" according to "indices" . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *Inputs including: | *Inputs including: | ||||
| * @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||||
| * @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8. | |||||
| * @li shape: A required list of int32, specifying the output shape. | |||||
| * @li indices: A required index tensor. Must be one of the following types: int32 or int64. | |||||
| * @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8... | |||||
| * @li shape: A required list of int32 or int64, specifying the output shape. | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:A output Tensor with same datatype as "updates" . \n | *y:A output Tensor with same datatype as "updates" . \n | ||||
| @@ -895,7 +1011,7 @@ REG_OP(TopK) | |||||
| * Compatible with the TensorFlow operator ScatterNd. | * Compatible with the TensorFlow operator ScatterNd. | ||||
| */ | */ | ||||
| REG_OP(ScatterNd) | REG_OP(ScatterNd) | ||||
| .INPUT(indices, TensorType::BasicType()) | |||||
| .INPUT(indices, TensorType::IndexNumberType()) | |||||
| .INPUT(x, TensorType::BasicType()) | .INPUT(x, TensorType::BasicType()) | ||||
| .INPUT(shape, TensorType::IndexNumberType()) | .INPUT(shape, TensorType::IndexNumberType()) | ||||
| .OUTPUT(y, TensorType::BasicType()) | .OUTPUT(y, TensorType::BasicType()) | ||||
| @@ -908,11 +1024,11 @@ REG_OP(ScatterNd) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| *Inputs including: | *Inputs including: | ||||
| * @li indices: A required index tensor. Must be one of the following types: | * @li indices: A required index tensor. Must be one of the following types: | ||||
| * float, float16, int32, int16. format:ND. | |||||
| * int32 or int64. format:ND. | |||||
| * @li x: A required slice tensor. Must be one of the following types: | * @li x: A required slice tensor. Must be one of the following types: | ||||
| * float, float16, int32, int16. format:ND. | |||||
| * float16, float, int32, int8, uint8. format:ND. | |||||
| *@par Attributes: | *@par Attributes: | ||||
| * @li shape: A required list of int32, specifying the output shape. | |||||
| * @li shape: A required list of int32 or int64, specifying the output shape. | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: A Tensor. Has the same type as "x". format:ND . \n | *y: A Tensor. Has the same type as "x". format:ND . \n | ||||
| @@ -927,8 +1043,8 @@ REG_OP(ScatterNd) | |||||
| */ | */ | ||||
| REG_OP(ScatterNdD) | REG_OP(ScatterNdD) | ||||
| .INPUT(indices, TensorType::IndexNumberType()) | .INPUT(indices, TensorType::IndexNumberType()) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16})) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8})) | |||||
| .REQUIRED_ATTR(shape, ListInt) | .REQUIRED_ATTR(shape, ListInt) | ||||
| .OP_END_FACTORY_REG(ScatterNdD) | .OP_END_FACTORY_REG(ScatterNdD) | ||||
| @@ -1752,6 +1868,33 @@ REG_OP(Crop) | |||||
| .REQUIRED_ATTR(offsets, ListInt) | .REQUIRED_ATTR(offsets, ListInt) | ||||
| .OP_END_FACTORY_REG(Crop) | .OP_END_FACTORY_REG(Crop) | ||||
| /** | |||||
| *@brief Returns a namedtuple (values, indices) where values is the cumulative | |||||
| * the cumulative minimum of elements of input in the dimension dim. | |||||
| * And indices is the index location of each maximum value found in the dimension dim. \n | |||||
| *@par Inputs: | |||||
| *One inputs, including: | |||||
| * @li x: A tensor . Must be one of the following types: | |||||
| * float16, float32, int32, uint32, int8, uint8. \n | |||||
| *@par Attributes: | |||||
| * @li axis: Axis along which to cummin. \n | |||||
| *@par Outputs: | |||||
| * y: A Tensor with the same type and shape of x's. \n | |||||
| * indices: A Tensor with the int32 type and the same shape of x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator Cummin. \n | |||||
| */ | |||||
| REG_OP(Cummin) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .OUTPUT(indices, TensorType::BasicType()) | |||||
| .REQUIRED_ATTR(axis, Int) | |||||
| .OP_END_FACTORY_REG(Cummin) | |||||
| /** | /** | ||||
| *@brief Extends the input with copies of data along a specified dimension. For example: | *@brief Extends the input with copies of data along a specified dimension. For example: | ||||
| *(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2); | *(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2); | ||||
| @@ -1921,6 +2064,215 @@ REG_OP(CumulativeLogsumexpD) | |||||
| .ATTR(exclusive, Bool, false) | .ATTR(exclusive, Bool, false) | ||||
| .ATTR(reverse, Bool, false) | .ATTR(reverse, Bool, false) | ||||
| .OP_END_FACTORY_REG(CumulativeLogsumexpD) | .OP_END_FACTORY_REG(CumulativeLogsumexpD) | ||||
| /** | |||||
| * @brief Add updates to var according to axis and indices. | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li var: A Tensor. Must be one of the following types: | |||||
| * float16, float32, int16, int32, int8, uint8. | |||||
| * @li indices: A Tensor of the indices, type should be int32. | |||||
| * @li updates: A Tensor of the same type as "var". \n | |||||
| * @par Attributes: | |||||
| * @li axis: An required int to specify the axis to perform indices add. \n | |||||
| * @par Outputs: | |||||
| * @li var: A Tensor. Same as input "var". | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Pytorch operator index_add_. | |||||
| */ | |||||
| REG_OP(InplaceIndexAdd) | |||||
| .INPUT(var, TensorType({DT_INT16, DT_INT32, DT_INT8, | |||||
| DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .INPUT(updates, TensorType({DT_INT16, DT_INT32, DT_INT8, | |||||
| DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .OUTPUT(var, TensorType({DT_INT16, DT_INT32, DT_INT8, | |||||
| DT_UINT8, DT_FLOAT32, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(axis, Int) | |||||
| .OP_END_FACTORY_REG(InplaceIndexAdd) | |||||
| /** | |||||
| * @brief Replace the value of X with value according to mask. | |||||
| * @par Inputs: | |||||
| * three inputs, including: | |||||
| * @li x: A Tensor of dtype is float16 or float32 or int64 or int32 or int8. | |||||
| * @li mask: A Tensor of dtype bool. | |||||
| * @li value: A Tensor of dtype float16 or float32 or int64 or int32 or int8. | |||||
| * @par Outputs: | |||||
| * @li y: A tensor. Must be one of the following dtypes: | |||||
| * float16, float32, int64, int32, int8. | |||||
| */ | |||||
| REG_OP(MaskedFill) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32, DT_INT64})) | |||||
| .INPUT(mask, TensorType({DT_BOOL})) | |||||
| .INPUT(value, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32, DT_INT64})) | |||||
| .OP_END_FACTORY_REG(MaskedFill) | |||||
| /** | |||||
| * @brief Choose the value of X with value according to mask. | |||||
| * @par Inputs: | |||||
| * two inputs, including: | |||||
| * @li x: A Tensor of dtype is float16 or float32. | |||||
| * @li mask: A Tensor of dtype is bool. \n | |||||
| * @par Outputs: | |||||
| * @li y: A tensor with the same type as x. \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the Numpy operator select. | |||||
| * Replaces the pytorch operator masked_select in some scenarios.\n | |||||
| */ | |||||
| REG_OP(MaskedSelectV2) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(mask, TensorType({DT_BOOL})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(MaskedSelectV2) | |||||
| /** | |||||
| * @brief Slice a tensor at its last dim, e.x. a[..., begin:end:stride]. \n | |||||
| * @par Inputs: | |||||
| * One inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: float16, float32, int16, int32. | |||||
| * @par Attributes: | |||||
| * @li start: An attribute of type Int, start index of last dim. \n | |||||
| * @li end: An attribute of type Int, end index of last dim. \n | |||||
| * @li stride: An attribute of type Int, stride of slice. \n | |||||
| * @par Outputs: | |||||
| * @li y: A Tensor. Has the same type as "x". \n | |||||
| * @par Third-party framework compatibility | |||||
| * No compatibility | |||||
| */ | |||||
| REG_OP(SliceLastDim) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64})) | |||||
| .REQUIRED_ATTR(start, Int) | |||||
| .REQUIRED_ATTR(end, Int) | |||||
| .ATTR(stride, Int, 1) | |||||
| .OP_END_FACTORY_REG(SliceLastDim) | |||||
| /** | |||||
| * @brief Extracts a strided slice of a tensor. Roughly speaking, this op \n | |||||
| * extracts a slice of size (end-begin)/stride from the given input tensor. \n | |||||
| * Starting at the location specified by begin the slice continues by \n | |||||
| * adding stride to the index until all dimensions are not less than end. \n | |||||
| * | |||||
| * @par Inputs: | |||||
| * Four inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n | |||||
| * complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n | |||||
| * complex128, float16, uint32, uint64, complex64, complex128. \n | |||||
| * @li begin: A Tensor of type int32 or int64, for the index of the first value to select. | |||||
| * | |||||
| * @li end: A Tensor of type int32 or int64, for the index of the last value to select. | |||||
| * | |||||
| * @li axes: A Tensor of type int32 or int64, indicate axis to be select. | |||||
| * | |||||
| * @li strides: A Tensor of type int32 or int64, for the increment. | |||||
| * | |||||
| * @par Attributes: | |||||
| * @li begin_mask: A Tensor of type int32. \n | |||||
| * A bitmask where a bit "i" being "1" means to ignore the begin \n | |||||
| * value and instead use the largest interval possible. | |||||
| * @li end_mask: A Tensor of type int32. \n | |||||
| * Analogous to "begin_mask". | |||||
| * @li ellipsis_mask: A Tensor of type int32. \n | |||||
| * A bitmask where bit "i" being "1" means the "i"th position \n | |||||
| * is actually an ellipsis. | |||||
| * @li new_axis_mask: A Tensor of type int32. \n | |||||
| * A bitmask where bit "i" being "1" means the "i"th \n | |||||
| * specification creates a new shape 1 dimension. | |||||
| * @li shrink_axis_mask: A Tensor of type int32. \n | |||||
| * A bitmask where bit "i" implies that the "i"th \n | |||||
| * specification should shrink the dimensionality. | |||||
| * | |||||
| * @par Outputs: | |||||
| * y: A Tensor. Has the same type as "x". | |||||
| * | |||||
| * @attention Constraints: | |||||
| * | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the TensorFlow operator StridedSliceV2. | |||||
| */ | |||||
| REG_OP(StridedSliceV2) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .INPUT(begin, TensorType::IndexNumberType()) | |||||
| .INPUT(end, TensorType::IndexNumberType()) | |||||
| .OPTIONAL_INPUT(axes, TensorType::IndexNumberType()) | |||||
| .OPTIONAL_INPUT(strides, TensorType::IndexNumberType()) | |||||
| .ATTR(begin_mask, Int, 0) | |||||
| .ATTR(end_mask, Int, 0) | |||||
| .ATTR(ellipsis_mask, Int, 0) | |||||
| .ATTR(new_axis_mask, Int, 0) | |||||
| .ATTR(shrink_axis_mask, Int, 0) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .OP_END_FACTORY_REG(StridedSliceV2) | |||||
| /** | |||||
| *@brief Fills the elements of the input tensor with value val by selecting the indices in the order given in index. \n | |||||
| *@par Inputs: | |||||
| *Three inputs, including: | |||||
| * @li x: A tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| *@li assist1: A tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| *@li assist2: A tensor. Must be one of the following types: | |||||
| * float16, float32, int32. \n | |||||
| * @par Attributes: | |||||
| * @li dim: A required int. Used to select the dimension of this tensor. \n | |||||
| *@par Outputs: | |||||
| *y: A Tensor with the same type and shape of input_x's. \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with the Pytorch operator IndexFill. \n | |||||
| */ | |||||
| REG_OP(IndexFillD) | |||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(assist1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .INPUT(assist2, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||||
| .REQUIRED_ATTR(dim, Int) | |||||
| .OP_END_FACTORY_REG(IndexFillD) | |||||
| /** | |||||
| * @brief For each row r of this and for each column c, do (*this)(r, c) += src(j, c), \n | |||||
| * where j ranges from indexes[r].first through indexes[r].second - 1. \n | |||||
| * In general indexes must be >= 0 and < src.NumRows(); \n | |||||
| * but to represent an empty range you may use the pair (-1, -1) or any pair of numbers (i, j) such that i >= j. \n | |||||
| * @par Inputs: | |||||
| * Three inputs, including: | |||||
| * @li x: A Tensor. Must be one of the following types: | |||||
| * float16, float32. | |||||
| * @li indices: A Tensor of the indices, type should be int32. | |||||
| * @li src: A Tensor of the same type as "x". \n | |||||
| * @par Outputs: | |||||
| * @li x: A Tensor. Same as input "x". | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with the kaldi operator AddRowRanges. | |||||
| */ | |||||
| REG_OP(AddRowRanges) | |||||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(src, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .INPUT(indices, TensorType({DT_INT32})) | |||||
| .OUTPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(AddRowRanges) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_SELECTION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_SELECTION_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -383,11 +383,11 @@ REG_OP(SparseFillEmptyRowsGrad) | |||||
| REG_OP(SparseTensorDenseMatMul) | REG_OP(SparseTensorDenseMatMul) | ||||
| .INPUT(x1_indices, TensorType({DT_INT32, DT_INT64})) | .INPUT(x1_indices, TensorType({DT_INT32, DT_INT64})) | ||||
| .INPUT(x1_values, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, \ | .INPUT(x1_values, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, \ | ||||
| DT_COMPLEXT64, DT_COMPLEX128, DT_FLOAT16})) | |||||
| DT_COMPLEXT64, DT_COMPLEX128, DT_FLOAT16, DT_INT64})) | |||||
| .INPUT(x1_shape, TensorType({DT_INT64})) | .INPUT(x1_shape, TensorType({DT_INT64})) | ||||
| .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_COMPLEXT64, \ | |||||
| .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_COMPLEXT64, \ | |||||
| DT_COMPLEX128, DT_FLOAT16})) | DT_COMPLEX128, DT_FLOAT16})) | ||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_COMPLEXT64, \ | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_COMPLEXT64, \ | |||||
| DT_COMPLEX128, DT_FLOAT16})) | DT_COMPLEX128, DT_FLOAT16})) | ||||
| .ATTR(adjoint_a, Bool, false) | .ATTR(adjoint_a, Bool, false) | ||||
| .ATTR(adjoint_b, Bool, false) | .ATTR(adjoint_b, Bool, false) | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -26,6 +26,24 @@ | |||||
| namespace ge { | namespace ge { | ||||
| /** | |||||
| *@brief Computes the inverse 1-dimensional discrete Fourier transform over the | |||||
| inner-most dimension of `x`. \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be the following types: complex64, complex128. \n | |||||
| *@par Outputs: | |||||
| *@li y: A complex tensor of the same rank as `x`. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with TensorFlow IFFT operator. | |||||
| */ | |||||
| REG_OP(IFFT) | |||||
| .INPUT(x, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(IFFT) | |||||
| /** | /** | ||||
| *@brief Real-valued fast Fourier transform . \n | *@brief Real-valued fast Fourier transform . \n | ||||
| @@ -47,6 +65,84 @@ REG_OP(RFFT) | |||||
| .OUTPUT(y, TensorType({DT_COMPLEX64})) | .OUTPUT(y, TensorType({DT_COMPLEX64})) | ||||
| .OP_END_FACTORY_REG(RFFT) | .OP_END_FACTORY_REG(RFFT) | ||||
| /** | |||||
| *@brief Inverse real-valued fast Fourier transform. \n | |||||
| *@par Inputs: | |||||
| *@li x: A complex64 tensor. | |||||
| *@li fft_length: An int32 tensor of shape [1]. The FFT length. \n | |||||
| *@par Outputs: | |||||
| *@li y: A float32 tensor of the same rank as `input`. The inner-most | |||||
| dimension of `input` is replaced with the `fft_length` samples of its inverse | |||||
| 1D Fourier transform. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with TensorFlow IRFFT operator. | |||||
| */ | |||||
| REG_OP(IRFFT) | |||||
| .INPUT(x, TensorType({DT_COMPLEX64})) | |||||
| .INPUT(fft_length, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT})) | |||||
| .OP_END_FACTORY_REG(IRFFT) | |||||
| /** | |||||
| *@brief 2D fast Fourier transform. \n | |||||
| *@par Inputs: | |||||
| *@li x: A complex64 tensor. | |||||
| *@par Outputs: | |||||
| *@li y: A complex64 tensor of the same shape as `input`. The inner-most 2 | |||||
| dimensions of `input` are replaced with their 2D Fourier transform. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with TensorFlow FFT2D operator. | |||||
| */ | |||||
| REG_OP(FFT2D) | |||||
| .INPUT(x, TensorType({DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(FFT2D) | |||||
| /** | |||||
| *@brief Calculate the one-dimensional discrete Fourier transform on the | |||||
| innermost dimension of the input. \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be the following types: complex64, complex128. \n | |||||
| *@par Outputs: | |||||
| *@li y: A complex tensor with the same shape as input. The innermost dimension | |||||
| of the input is replaced by its 1-dimensional Fourier transform. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with TensorFlow FFT operator. | |||||
| */ | |||||
| REG_OP(FFT) | |||||
| .INPUT(x, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(FFT) | |||||
| /** | |||||
| *@brief Calculate the inverse 1-dimensional discrete Fourier transform on the | |||||
| innermost dimension of the input. \n | |||||
| *@par Inputs: | |||||
| *@li x: A Tensor. Must be the following types: complex64, complex128. \n | |||||
| *@par Outputs: | |||||
| *@li y: A complex tensor with the same shape as input. The innermost dimension | |||||
| of the input is replaced by its inverse two-dimensional Fourier transform. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with TensorFlow IFFT2D operator. | |||||
| */ | |||||
| REG_OP(IFFT2D) | |||||
| .INPUT(x, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_COMPLEX64,DT_COMPLEX128})) | |||||
| .OP_END_FACTORY_REG(IFFT2D) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_SPECTRAL_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_SPECTRAL_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -62,8 +62,8 @@ REG_OP(Split) | |||||
| *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li split_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to split. No default value. | |||||
| *@li num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value . \n | |||||
| *@li split_dim: A required int32. Specifies the dimension along which to split. No default value. | |||||
| *@li num_split: A required int32. Specifies the number of output tensors. No default value . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y:Dynamic output. A list of output tensors. Has the same type and format as "x" . \n | *y:Dynamic output. A list of output tensors. Has the same type and format as "x" . \n | ||||
| @@ -94,12 +94,12 @@ REG_OP(SplitD) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Three inputs, including: | * Three inputs, including: | ||||
| *@li x: An ND Tensor. | *@li x: An ND Tensor. | ||||
| *Must be one of the following types: | |||||
| *@li size_splits: A list of int8, int16, int32, or int64. Specifies a list containing the sizes of each output tensor along the split dimension. | |||||
| *@li split_dim: An int8, int16, int32, or int64. Specifies the dimension along which to split . \n | |||||
| *Must be one of the types:float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||||
| *@li size_splits: Must be one of the types:int32, int64. Specifies a list containing the sizes of each output tensor along the split dimension. | |||||
| *@li split_dim: Must be the following type:int32. Specifies the dimension along which to split . \n | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value . \n | |||||
| *num_split: A required int32. Specifies the number of output tensors. No default value . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: Dynamic output.A list of output tensors. Has the same type and format as "x" . \n | *y: Dynamic output.A list of output tensors. Has the same type and format as "x" . \n | ||||
| @@ -129,9 +129,9 @@ REG_OP(SplitV) | |||||
| *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | ||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li size_splits: A required list of int8, int16, int32, or int64. Specifies a list containing the sizes of each output tensor along the split dimension. | |||||
| *@li split_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to split. No default value. | |||||
| *@li num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value . \n | |||||
| *@li size_splits: A required list of int32. Specifies a list containing the sizes of each output tensor along the split dimension. | |||||
| *@li split_dim: A required int32. Specifies the dimension along which to split. No default value. | |||||
| *@li num_split: A required int32. Specifies the number of output tensors. No default value . \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *y: Dynamic output.A list of output tensors. Has the same type and format as "x" . \n | *y: Dynamic output.A list of output tensors. Has the same type and format as "x" . \n | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -25,6 +25,235 @@ | |||||
| #include "graph/operator_reg.h" | #include "graph/operator_reg.h" | ||||
| namespace ge { | namespace ge { | ||||
| /** | |||||
| *@brief Creates ngrams from ragged string data . \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li data:1-D.The values tensor of the ragged string tensor to make ngrams out of. | |||||
| *@li data_splits:The splits tensor of the ragged string tensor to make ngrams out of . \n | |||||
| *@par Attributes: | |||||
| * separator:The string to append between elements of the token. Use "" for no separator. | |||||
| * ngram_widths:The sizes of the ngrams to create. | |||||
| * left_pad:The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0. | |||||
| * right_pad:The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0. | |||||
| * pad_width:The number of padding elements to add to each side of each sequence. | |||||
| * preserve_short_sequences: Preserve short sequences. \n | |||||
| *@par Outputs: | |||||
| *@li ngrams:The values tensor of the output ngrams ragged tensor. | |||||
| *@li ngrams_splits:The splits tensor of the output ngrams ragged tensor. \n | |||||
| *@see StringNGrams() | |||||
| *@par Third-party framework compatibility | |||||
| *compatible with StringNGrams op of tensorflow | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(StringNGrams) | |||||
| .INPUT(data, TensorType({DT_STRING})) | |||||
| .INPUT(data_splits, TensorType({DT_INT32, DT_INT64})) | |||||
| .OUTPUT(ngrams, TensorType({DT_STRING})) | |||||
| .OUTPUT(ngrams_splits, TensorType({DT_INT32, DT_INT64})) | |||||
| .REQUIRED_ATTR(separator, String) | |||||
| .ATTR(ngram_widths, ListInt, {}) | |||||
| .REQUIRED_ATTR(left_pad, String) | |||||
| .REQUIRED_ATTR(right_pad, String) | |||||
| .REQUIRED_ATTR(pad_width, Int) | |||||
| .REQUIRED_ATTR(preserve_short_sequences, Bool) | |||||
| .OP_END_FACTORY_REG(StringNGrams) | |||||
| /** | |||||
| *@brief Decodes each string in `input` into a sequence of Unicode code points . \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||||
| to a vector of char values. \n | |||||
| *@par Attributes: | |||||
| * input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
| by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
| * errors:Error handling policy when there is invalid formatting found in the input. | |||||
| The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
| error on any invalid input formatting. A value of 'replace' (the default) will | |||||
| cause the operation to replace any invalid formatting in the input with the | |||||
| `replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
| skip any invalid formatting in the input and produce no corresponding output | |||||
| character. | |||||
| * replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
| formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
| be used. The default value is the default unicode replacement character is | |||||
| 0xFFFD or U+65533. | |||||
| * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
| `replacement_char`. Default is false. \n | |||||
| *@par Outputs: | |||||
| *@li row_splits:A 1D tensor containing the row splits. | |||||
| *@li char_values:A 1D tensor containing the decoded codepoints. | |||||
| *@li char_to_byte_starts:A 1D int32 Tensor containing the byte index in the input string where each | |||||
| character in `char_values` starts. \n | |||||
| *@see UnicodeDecodeWithOffsets() | |||||
| *@par Third-party framework compatibility | |||||
| *compatible with UnicodeDecodeWithOffsets op of tensorflow | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(UnicodeDecodeWithOffsets) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(row_splits, TensorType({DT_INT64})) | |||||
| .OUTPUT(char_values, TensorType({DT_INT32})) | |||||
| .OUTPUT(char_to_byte_starts, TensorType({DT_INT64})) | |||||
| .REQUIRED_ATTR(input_encoding, String) | |||||
| .ATTR(errors, String, "replace") | |||||
| .ATTR(replacement_char, Int, 65533) | |||||
| .ATTR(replace_control_characters, Bool, false) | |||||
| .ATTR(Tsplits, Type, DT_INT64) | |||||
| .OP_END_FACTORY_REG(UnicodeDecodeWithOffsets) | |||||
| /** | |||||
| *@brief Decodes each string in `input` into a sequence of Unicode code points. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:The text to be decoded. Can have any shape. Note that the output is flattened | |||||
| to a vector of char values. \n | |||||
| *@par Attributes: | |||||
| * input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
| by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
| * errors:Error handling policy when there is invalid formatting found in the input. | |||||
| The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
| error on any invalid input formatting. A value of 'replace' (the default) will | |||||
| cause the operation to replace any invalid formatting in the input with the | |||||
| `replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
| skip any invalid formatting in the input and produce no corresponding output | |||||
| character. | |||||
| * replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
| formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
| be used. The default value is the default unicode replacement character is | |||||
| 0xFFFD or U+65533. | |||||
| * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
| `replacement_char`. Default is false. \n | |||||
| *@par Outputs: | |||||
| *@li row_splits:A 1D tensor containing the row splits. | |||||
| *@li char_values:A 1D tensor containing the decoded codepoints. \n | |||||
| *@see UnicodeDecode() | |||||
| *@par Third-party framework compatibility | |||||
| *compatible with UnicodeDecode op of tensorflow | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(UnicodeDecode) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(row_splits, TensorType({DT_INT64})) | |||||
| .OUTPUT(char_values, TensorType({DT_INT32})) | |||||
| .REQUIRED_ATTR(input_encoding, String) | |||||
| .ATTR(errors, String, "replace") | |||||
| .ATTR(replacement_char, Int, 65533) | |||||
| .ATTR(replace_control_characters, Bool, false) | |||||
| .ATTR(Tsplits, Type, DT_INT64) | |||||
| .OP_END_FACTORY_REG(UnicodeDecode) | |||||
| /** | |||||
| *@brief Transcode the input text from a source encoding to a destination encoding. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:The text to be processed. Can have any shape. \n | |||||
| *@par Attributes: | |||||
| * input_encoding:Text encoding of the input strings. This is any of the encodings supported | |||||
| by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. | |||||
| * output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||||
| Multi-byte encodings will be big-endian. | |||||
| * errors:Error handling policy when there is invalid formatting found in the input. | |||||
| The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
| error on any invalid input formatting. A value of 'replace' (the default) will | |||||
| cause the operation to replace any invalid formatting in the input with the | |||||
| `replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
| skip any invalid formatting in the input and produce no corresponding output | |||||
| character. | |||||
| * replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
| formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
| be used. The default value is the default unicode replacement character is | |||||
| 0xFFFD or U+65533. | |||||
| * replace_control_characters:Whether to replace the C0 control characters (00-1F) with the | |||||
| `replacement_char`. Default is false. \n | |||||
| *@par Outputs: | |||||
| *@li output:A string tensor containing unicode text encoded using `output_encoding`. \n | |||||
| *@see UnicodeTranscode() | |||||
| *@par Third-party framework compatibility | |||||
| *compatible with UnicodeTranscode op of tensorflow | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(UnicodeTranscode) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .REQUIRED_ATTR(input_encoding, String) | |||||
| .ATTR(output_encoding, String, "UTF-8") | |||||
| .ATTR(errors, String, "replace") | |||||
| .ATTR(replacement_char, Int, 65533) | |||||
| .ATTR(replace_control_characters, Bool, false) | |||||
| .OP_END_FACTORY_REG(UnicodeTranscode) | |||||
| /** | |||||
| *@brief Encode a tensor of ints into unicode strings. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input_values:A 1D tensor containing the unicode codepoints that should be encoded. | |||||
| *@li input_splits:A 1D tensor specifying how the unicode codepoints should be split into strings. \n | |||||
| *@par Attributes: | |||||
| * output_encoding:The unicode encoding to use in the output. Must be one of `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. | |||||
| Multi-byte encodings will be big-endian. | |||||
| * errors:Error handling policy when there is invalid formatting found in the input. | |||||
| The value of 'strict' will cause the operation to produce a InvalidArgument | |||||
| error on any invalid input formatting. A value of 'replace' (the default) will | |||||
| cause the operation to replace any invalid formatting in the input with the | |||||
| `replacement_char` codepoint. A value of 'ignore' will cause the operation to | |||||
| skip any invalid formatting in the input and produce no corresponding output | |||||
| character. | |||||
| * replacement_char:The replacement character codepoint to be used in place of any invalid | |||||
| formatting in the input when `errors='replace'`. Any valid unicode codepoint may | |||||
| be used. The default value is the default unicode replacement character is | |||||
| 0xFFFD or U+65533. \n | |||||
| *@par Outputs: | |||||
| *@li output:The 1-D Tensor of strings encoded from the provided unicode codepoints. \n | |||||
| *@see UnicodeEncode() | |||||
| *@par Third-party framework compatibility | |||||
| *compatible with UnicodeEncode op of tensorflow | |||||
| *@par Restrictions: | |||||
| *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. | |||||
| */ | |||||
| REG_OP(UnicodeEncode) | |||||
| .INPUT(input_values, TensorType({DT_INT32})) | |||||
| .INPUT(input_splits, TensorType({DT_INT32, DT_INT64})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(errors, String, "replace") | |||||
| .ATTR(output_encoding, String, "UTF-8") | |||||
| .ATTR(replacement_char, Int, 65533) | |||||
| .OP_END_FACTORY_REG(UnicodeEncode) | |||||
| /** | /** | ||||
| *@brief Split elements of input based on delimiter into a SparseTensor . \n | *@brief Split elements of input based on delimiter into a SparseTensor . \n | ||||
| @@ -61,6 +290,116 @@ REG_OP(StringSplit) | |||||
| .ATTR(skip_empty, Bool, true) | .ATTR(skip_empty, Bool, true) | ||||
| .OP_END_FACTORY_REG(StringSplit) | .OP_END_FACTORY_REG(StringSplit) | ||||
| /** | |||||
| *@brief Replaces the match of pattern in input with rewrite. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. \n | |||||
| *@par Attributes: | |||||
| *@li pattern:A string. The regular expression to match the input. | |||||
| *@li rewrite:A string. The rewrite to be applied to the matched expression. | |||||
| *@li replace_global:An optional bool. Defaults to True. If True, the replacement is global, | |||||
| otherwise the replacement is done only on the first match. | |||||
| *@par output: | |||||
| *@li output::A Tensor of type string. | |||||
| */ | |||||
| REG_OP(StaticRegexReplace) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(pattern, String, "") | |||||
| .ATTR(rewrite, String, "") | |||||
| .ATTR(replace_global, Bool, true) | |||||
| .OP_END_FACTORY_REG(StaticRegexReplace) | |||||
| /** | |||||
| *@brief The input is a string tensor of any shape. The pattern is the | |||||
| *regular expression to be matched with every element of the input tensor. | |||||
| *The boolean values (True or False) of the output tensor indicate | |||||
| *if the input matches the regex pattern provided. | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. \n | |||||
| *@par Attributes: | |||||
| *@li pattern:A string. The regular expression to match the input. | |||||
| *@par output: | |||||
| *@li output::A bool tensor with the same shape as `input`. | |||||
| */ | |||||
| REG_OP(StaticRegexFullMatch) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_BOOL})) | |||||
| .ATTR(pattern, String, "") | |||||
| .OP_END_FACTORY_REG(StaticRegexFullMatch) | |||||
| /** | |||||
| *@brief A Tensor of type string. The input to be joined. \n | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. | |||||
| *@li segment_ids:A Tensor. Must be one of the following types: int32, int64. | |||||
| *A tensor whose shape is a prefix of data.shape. Negative segment ids are not supported. | |||||
| *@li num_segments:A Tensor. Must be one of the following types: int32, int64. A scalar. | |||||
| *@par Attributes: | |||||
| *@li separator:An optional string. Defaults to "". The separator to use when joining. | |||||
| *@par output: | |||||
| *@li output::A Tensor of type string.. | |||||
| */ | |||||
| REG_OP(UnsortedSegmentJoin) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .INPUT(segment_ids, TensorType({DT_INT32,DT_INT64})) | |||||
| .INPUT(num_segments, TensorType({DT_INT32,DT_INT64})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(separator, String, "") | |||||
| .OP_END_FACTORY_REG(UnsortedSegmentJoin) | |||||
| /** | |||||
| *@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||||
| *This method is used to obtain a symbolic handle that represents the computation of the input. | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. | |||||
| *@par Attributes: | |||||
| *@li encoding:An optional string. Defaults to "". | |||||
| *@par output: | |||||
| *@li output::A Tensor of type string.. | |||||
| */ | |||||
| REG_OP(StringLower) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(encoding, String, "") | |||||
| .OP_END_FACTORY_REG(StringLower) | |||||
| /** | |||||
| *@brief Inputs to TensorFlow operations are outputs of another TensorFlow operation. | |||||
| *This method is used to obtain a symbolic handle that represents the computation of the input. | |||||
| *@par Inputs: | |||||
| include: | |||||
| *@li input:A Tensor of type string. The text to be processed. | |||||
| *@par Attributes: | |||||
| *@li encoding:An optional string. Defaults to "". | |||||
| *@par output: | |||||
| *@li output::A Tensor of type string.. | |||||
| */ | |||||
| REG_OP(StringUpper) | |||||
| .INPUT(input, TensorType({DT_STRING})) | |||||
| .OUTPUT(output, TensorType({DT_STRING})) | |||||
| .ATTR(encoding, String, "") | |||||
| .OP_END_FACTORY_REG(StringUpper) | |||||
| /** | /** | ||||
| *@brief Split elements of source based on sep into a SparseTensor . \n | *@brief Split elements of source based on sep into a SparseTensor . \n | ||||
| @@ -488,7 +827,7 @@ include: | |||||
| */ | */ | ||||
| REG_OP(AsString) | REG_OP(AsString) | ||||
| .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT, \ | .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT, \ | ||||
| DT_DOUBLE, DT_BOOL})) | |||||
| DT_DOUBLE, DT_BOOL, DT_COMPLEX64, DT_COMPLEX128})) | |||||
| .OUTPUT(y, TensorType({DT_STRING})) | .OUTPUT(y, TensorType({DT_STRING})) | ||||
| .ATTR(precision, Int, -1) | .ATTR(precision, Int, -1) | ||||
| .ATTR(scientific, Bool, false) | .ATTR(scientific, Bool, false) | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -141,7 +141,7 @@ support "NHWC/NCHW" to "NC1HWC0" and "NC1HWC0" to "NHWC/NCHW" | |||||
| *@par Attributes: | *@par Attributes: | ||||
| *@li src_format: A string source data format, can be "NHWC", "NCHW", "FRACTAL_Zn" etc. | *@li src_format: A string source data format, can be "NHWC", "NCHW", "FRACTAL_Zn" etc. | ||||
| *@li dst_format: A string target data format, can be "NC1HWC0", "NCHW", "FRACTAL_Zn" etc. | *@li dst_format: A string target data format, can be "NC1HWC0", "NCHW", "FRACTAL_Zn" etc. | ||||
| *@li group: A required int32, default value is 1. \n | |||||
| *@li group: A optional int32, default value is 1. \n | |||||
| *@par Outputs: | *@par Outputs: | ||||
| *dst: A Tensor dtype of all types. | *dst: A Tensor dtype of all types. | ||||
| @@ -151,7 +151,7 @@ REG_OP(TransData) | |||||
| .OUTPUT(dst, TensorType::BasicType()) | .OUTPUT(dst, TensorType::BasicType()) | ||||
| .REQUIRED_ATTR(src_format, String) | .REQUIRED_ATTR(src_format, String) | ||||
| .REQUIRED_ATTR(dst_format, String) | .REQUIRED_ATTR(dst_format, String) | ||||
| .ATTR(group, Int, 1) | |||||
| .ATTR(groups, Int, 1) | |||||
| .OP_END_FACTORY_REG(TransData) | .OP_END_FACTORY_REG(TransData) | ||||
| /** | /** | ||||
| @@ -357,7 +357,7 @@ REG_OP(DepthToSpace) | |||||
| *@brief Permutes data into spatial data blocks and then prunes them . \n | *@brief Permutes data into spatial data blocks and then prunes them . \n | ||||
| *@par Inputs: | *@par Inputs: | ||||
| *@li x: A 4D Tensor with format NHWC. | |||||
| *@li x: A 4D Tensor with format. Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li crops: A 1D list or tuple of int32 or int64 . \n | *@li crops: A 1D list or tuple of int32 or int64 . \n | ||||
| *Must be one of the following types: float16, float32 | *Must be one of the following types: float16, float32 | ||||
| @@ -418,12 +418,8 @@ REG_OP(BatchToSpace) | |||||
| * Warning: THIS FUNCTION IS DEPRECATED. Please use BatchToSpace instead. | * Warning: THIS FUNCTION IS DEPRECATED. Please use BatchToSpace instead. | ||||
| */ | */ | ||||
| REG_OP(BatchToSpaceD) | REG_OP(BatchToSpaceD) | ||||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||||
| DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||||
| DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8, | |||||
| DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64, | |||||
| DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32})) | |||||
| .INPUT(x, TensorType::BasicType()) | |||||
| .OUTPUT(y, TensorType::BasicType()) | |||||
| .REQUIRED_ATTR(block_size, Int) | .REQUIRED_ATTR(block_size, Int) | ||||
| .REQUIRED_ATTR(crops, ListInt) | .REQUIRED_ATTR(crops, ListInt) | ||||
| .OP_END_FACTORY_REG(BatchToSpaceD) | .OP_END_FACTORY_REG(BatchToSpaceD) | ||||
| @@ -434,9 +430,10 @@ REG_OP(BatchToSpaceD) | |||||
| *@par Inputs: | *@par Inputs: | ||||
| * Two inputs, including: | * Two inputs, including: | ||||
| *@li x: An NHWC Tensor. Must be one of the following types: | |||||
| *@li x: An 4D Tensor. Must be one of the following types: | |||||
| * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | ||||
| * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | ||||
| * Must set the format, supported format list ["NCHW, NHWC"] | |||||
| *@li paddings: A 2D tensor of type int, specifying the input . \n | *@li paddings: A 2D tensor of type int, specifying the input . \n | ||||
| *@par Attributes: | *@par Attributes: | ||||
| @@ -518,7 +515,8 @@ REG_OP(Unpack) | |||||
| * @par Inputs: | * @par Inputs: | ||||
| * x: A 4D Tensor with shape [batch, in_rows, in_cols, depth], Must be one of the | * x: A 4D Tensor with shape [batch, in_rows, in_cols, depth], Must be one of the | ||||
| * following types:float32, double, int32, uint8, int16, int8, int64, uint16, | * following types:float32, double, int32, uint8, int16, int8, int64, uint16, | ||||
| * float16, uint32, uint64 | |||||
| * float16, uint32, uint64. The inputs must have data_format with one of follows: | |||||
| * NHWC, NCHW. | |||||
| * @par Attributes: | * @par Attributes: | ||||
| * @li ksizes: A required list or tuple. The size of the sliding window for each | * @li ksizes: A required list or tuple. The size of the sliding window for each | ||||
| @@ -533,7 +531,6 @@ REG_OP(Unpack) | |||||
| * This is equivalent to rate in dilated (a.k.a. Atrous) convolutions. | * This is equivalent to rate in dilated (a.k.a. Atrous) convolutions. | ||||
| * @li padding: A required string. The type of padding algorithm to use, | * @li padding: A required string. The type of padding algorithm to use, | ||||
| support "SAME" or "VALID". \n | support "SAME" or "VALID". \n | ||||
| * @li data_format: A required string. The format of input, only supported NHWC. \n | |||||
| * @par Outputs: | * @par Outputs: | ||||
| * y: A 4D Tensor with shape [batch, out_rows, out_cols, ksize_rows * | * y: A 4D Tensor with shape [batch, out_rows, out_cols, ksize_rows * | ||||
| @@ -554,7 +551,6 @@ REG_OP(ExtractImagePatches) | |||||
| .REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
| .REQUIRED_ATTR(rates, ListInt) | .REQUIRED_ATTR(rates, ListInt) | ||||
| .REQUIRED_ATTR(padding, String) | .REQUIRED_ATTR(padding, String) | ||||
| .ATTR(data_format, String, "NHWC") | |||||
| .OP_END_FACTORY_REG(ExtractImagePatches) | .OP_END_FACTORY_REG(ExtractImagePatches) | ||||
| /** | /** | ||||
| @@ -563,6 +559,7 @@ REG_OP(ExtractImagePatches) | |||||
| * @par Inputs: | * @par Inputs: | ||||
| * x: A 5D Tensor with shape [batch, in_planes, in_rows, in_cols, depth] . \n | * x: A 5D Tensor with shape [batch, in_planes, in_rows, in_cols, depth] . \n | ||||
| * The inputs must have data_format with one of follows: NDHWC, NCDHW. \n | |||||
| * @par Attributes: | * @par Attributes: | ||||
| * @li ksizes: A required list or tuple. The size of the sliding window for each | * @li ksizes: A required list or tuple. The size of the sliding window for each | ||||
| @@ -571,7 +568,6 @@ REG_OP(ExtractImagePatches) | |||||
| * patches are in "x". Must be: [1, stride_planes, stride_rows, stride_cols, 1]. | * patches are in "x". Must be: [1, stride_planes, stride_rows, stride_cols, 1]. | ||||
| * @li padding: A required string. The type of padding algorithm to use , | * @li padding: A required string. The type of padding algorithm to use , | ||||
| * support "SAME" or "VALID" . \n | * support "SAME" or "VALID" . \n | ||||
| * @li data_format: An optional string. The format of input, only supported NDHWC. \n | |||||
| * @par Outputs: | * @par Outputs: | ||||
| * Output: A 5D Tensor with shape [batch, out_planes, out_rows, out_cols, ksize_planes * | * Output: A 5D Tensor with shape [batch, out_planes, out_rows, out_cols, ksize_planes * | ||||
| @@ -590,7 +586,6 @@ REG_OP(ExtractVolumePatches) | |||||
| .REQUIRED_ATTR(ksizes, ListInt) | .REQUIRED_ATTR(ksizes, ListInt) | ||||
| .REQUIRED_ATTR(strides, ListInt) | .REQUIRED_ATTR(strides, ListInt) | ||||
| .REQUIRED_ATTR(padding, String) | .REQUIRED_ATTR(padding, String) | ||||
| .ATTR(data_format, String, "NDHWC") | |||||
| .OP_END_FACTORY_REG(ExtractVolumePatches) | .OP_END_FACTORY_REG(ExtractVolumePatches) | ||||
| /** | /** | ||||
| @@ -717,6 +712,118 @@ REG_OP(CompressFcOp) | |||||
| .OUTPUT(compress_index, TensorType({DT_INT8})) | .OUTPUT(compress_index, TensorType({DT_INT8})) | ||||
| .REQUIRED_ATTR(compress_parameters, ListInt) | .REQUIRED_ATTR(compress_parameters, ListInt) | ||||
| .OP_END_FACTORY_REG(CompressFcOp) | .OP_END_FACTORY_REG(CompressFcOp) | ||||
| /** | |||||
| *@brief Performs Col2im for each batch entry. \n | |||||
| *@par Inputs: | |||||
| *@li input_x: The Col Tensor. 5-D, shape: `(n, c1, kernel_h*kernel_w, ho*wo, c0)`. | |||||
| where ho/wo is do = (output_d + 2*padding_d - dilation_d*(kernel_d - 1) - 1)//stride_d + 1 \n | |||||
| *@par Outputs: | |||||
| *@li output_y: The img Tensor. 5-D, shape: `(n, c1, output_h, output_w, c0)`. \n | |||||
| *@par Attributes: | |||||
| *@li kernel_shape: ListInt, value: `(kernel_h, kernel_w)`, the shape of kernel in convolution. | |||||
| *@li dilation: ListInt, value: `(dilation_h, dilation_w)`, the dilation in convolution. | |||||
| *@li padding: ListInt, value: `(padding_h, padding_w)`, the dilation in convolution. | |||||
| *@li stride: ListInt, value: `(stride_h, stride_w)`, the dilation in convolution. \n | |||||
| *@par Third-party framework compatibility | |||||
| * Compatible with Pytorch col2im/im2col_backward operator. | |||||
| */ | |||||
| REG_OP(Col2im) | |||||
| .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .INPUT(output_size, TensorType({DT_INT32, DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) | |||||
| .REQUIRED_ATTR(kernel_size, ListInt) | |||||
| .REQUIRED_ATTR(dilation, ListInt) | |||||
| .REQUIRED_ATTR(padding, ListInt) | |||||
| .REQUIRED_ATTR(stride, ListInt) | |||||
| .OP_END_FACTORY_REG(Col2im) | |||||
| /** | |||||
| * @brief Performs Im2col for each batch entry. \n | |||||
| * @par Inputs: | |||||
| * x: A 4D Tensor with shape [batch, in_rows, in_cols, depth], Must be one of the | |||||
| * following types:float32, int8, float16. The inputs must have data_format with | |||||
| * one of follows:NHWC, NCHW. | |||||
| * @par Attributes: | |||||
| * @li ksizes: A required list or tuple. The size of the sliding window for each | |||||
| * dimension of images. | |||||
| * @li strides: A optional list or tuple. How far the centers of two consecutive | |||||
| * patches are in the images. Defaults to "{1}". | |||||
| * @li dilations: A optional list or tuple. Defaults to "{1}". | |||||
| * This is the input stride, specifying how far two consecutive patch | |||||
| * samples are in the input. Equivalent to extracting patches | |||||
| * with patch_sizes_eff = patch_sizes + (patch_sizes - 1) * | |||||
| * (dilations - 1), followed by subsampling them spatially by a factor of dilations. | |||||
| * This is equivalent to rate in dilated (a.k.a. Atrous) convolutions. | |||||
| * @li padding_mode: A optional String. The type of padding algorithm to use, | |||||
| * support "SAME", "VALID", "CALCULATED". Among the three modes, only the "CALCULATED" | |||||
| * means to use the pads below. Defaults to "CALCULATED". | |||||
| * @li pads: A optional list or tuple. The pad distance. Defaults to "{0}". \n | |||||
| * @par Outputs: | |||||
| * y: A 4D Tensor with shape [batch, out_rows, out_cols, ksize_rows * | |||||
| * ksize_cols * depth] containing image patches with size ksize_rows x ksize_cols | |||||
| * x depth vectorized in the "depth" dimension. Note "out_rows" and "out_cols" | |||||
| * are the dimensions of the output patches . \n | |||||
| * @attention Constraints: | |||||
| * "ksizes", "strides", "dilations" and "pads" are lists of integers . \n | |||||
| * @par Third-party framework compatibility | |||||
| * Compatible with Pytorch Im2col operator. | |||||
| */ | |||||
| REG_OP(Im2col) | |||||
| .INPUT(x, TensorType::RealNumberType()) | |||||
| .OUTPUT(y, TensorType::RealNumberType()) | |||||
| .REQUIRED_ATTR(ksizes, ListInt) | |||||
| .ATTR(strides, ListInt, {1}) | |||||
| .ATTR(dilations, ListInt, {1}) | |||||
| .ATTR(padding_mode, String, "CALCULATED") | |||||
| .ATTR(pads, ListInt, {0}) | |||||
| .OP_END_FACTORY_REG(Im2col) | |||||
| /** | |||||
| *@brief Generates a 2D or 3D flow field (sampling grid), given a batch of affine | |||||
| matrices theta. \n | |||||
| *@par Inputs: | |||||
| *Input theta must be float16 or float, output_size must be int32 type.Inputs | |||||
| include: | |||||
| *@li theta: input batch of affine matrices with shape (N,2,3) for 2D or (N,3,4) | |||||
| for 3D | |||||
| *@li output_size: the target output image size. (N×C×H×W for 2D or N×C×D×H×W for | |||||
| 3D) Example: torch.Size((32, 3, 24, 24)) . \n | |||||
| *@par Attributes: | |||||
| *align_corners: if True, consider -1 and 1 to refer to the centers of the corner | |||||
| pixels rather than the image corners.Refer to grid_sample() for a more complete | |||||
| description. A grid generated by affine_grid() should be passed to grid_sample() | |||||
| with the same setting for this option. Default: False \n | |||||
| *@par Outputs: | |||||
| *@li y: A 2-D integer tensor of shape [M] representing the | |||||
| selected indices from the boxes tensor, where M <= max_output_size. \n | |||||
| *@attention Constraints: | |||||
| *Input theta must be float16 or float, output_size must be int32 type . \n | |||||
| *@par Third-party framework compatibility | |||||
| *Compatible with Pytorch affine_grid operator. | |||||
| */ | |||||
| REG_OP(AffineGrid) | |||||
| .INPUT(theta, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .INPUT(output_size, TensorType({DT_INT32})) | |||||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||||
| .ATTR(align_corners, Bool, false) | |||||
| .OP_END_FACTORY_REG(AffineGrid) | |||||
| } // namespace ge | } // namespace ge | ||||
| #endif // OPS_BUILT_IN_OP_PROTO_INC_TRANSFORMATION_OPS_H_ | #endif // OPS_BUILT_IN_OP_PROTO_INC_TRANSFORMATION_OPS_H_ | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -156,7 +156,7 @@ RTS_API rtError_t rtProfilerTrace(uint64_t id, bool notify, uint32_t flags, rtSt | |||||
| /** | /** | ||||
| * @ingroup profiling_base | * @ingroup profiling_base | ||||
| * @brief ts send keypoint for step info. | |||||
| * @brief ts send keypoint profiler log. | |||||
| */ | */ | ||||
| RTS_API rtError_t rtProfilerTraceEx(uint64_t id, uint64_t modelId, uint16_t tagId, rtStream_t stream); | RTS_API rtError_t rtProfilerTraceEx(uint64_t id, uint64_t modelId, uint16_t tagId, rtStream_t stream); | ||||
| @@ -206,7 +206,7 @@ RTS_API rtError_t rtRegDeviceStateCallback(const char *regName, rtDeviceStateCal | |||||
| /** | /** | ||||
| * @ingroup dvrt_base | * @ingroup dvrt_base | ||||
| * @brief register callback for fail task | |||||
| * @brief register callback for fail task | |||||
| * @param [in] uniName unique register name, can't be null | * @param [in] uniName unique register name, can't be null | ||||
| * @param [in] callback fail task callback function | * @param [in] callback fail task callback function | ||||
| * @param [out] NA | * @param [out] NA | ||||
| @@ -345,11 +345,11 @@ RTS_API rtError_t rtLabelCreateEx(rtLabel_t *label, rtStream_t stream); | |||||
| * @return RT_ERROR_NONE for ok | * @return RT_ERROR_NONE for ok | ||||
| * @return RT_ERROR_INVALID_VALUE for error input | * @return RT_ERROR_INVALID_VALUE for error input | ||||
| */ | */ | ||||
| rtError_t rtLabelCreateExV2(rtLabel_t *label, rtModel_t model, rtStream_t stream); | |||||
| RTS_API rtError_t rtLabelCreateExV2(rtLabel_t *label, rtModel_t model, rtStream_t stream); | |||||
| /** | /** | ||||
| * @ingroup dvrt_base | * @ingroup dvrt_base | ||||
| * @brief get current thread last stream id and task id | |||||
| * @brief get current thread last stream id and task id | |||||
| * @param [out] stream id and task id | * @param [out] stream id and task id | ||||
| * @param [in] null | * @param [in] null | ||||
| * @return RT_ERROR_NONE for ok | * @return RT_ERROR_NONE for ok | ||||
| @@ -46,6 +46,12 @@ typedef enum tagRtChipType { | |||||
| CHIP_END, | CHIP_END, | ||||
| } rtChipType_t; | } rtChipType_t; | ||||
| typedef enum tagRtAicpuScheType { | |||||
| SCHEDULE_SOFTWARE = 0, /* Software Schedule */ | |||||
| SCHEDULE_SOFTWARE_OPT, | |||||
| SCHEDULE_HARDWARE, /* HWTS Schedule */ | |||||
| } rtAicpuScheType; | |||||
| typedef enum tagRtVersion { | typedef enum tagRtVersion { | ||||
| VER_BEGIN = 0, | VER_BEGIN = 0, | ||||
| VER_NA = VER_BEGIN, | VER_NA = VER_BEGIN, | ||||
| @@ -126,6 +132,11 @@ typedef struct tagRtPlatformConfig { | |||||
| uint32_t platformConfig; | uint32_t platformConfig; | ||||
| } rtPlatformConfig_t; | } rtPlatformConfig_t; | ||||
| typedef enum tagRTTaskTimeoutType { | |||||
| RT_TIMEOUT_TYPE_OP_WAIT = 0, | |||||
| RT_TIMEOUT_TYPE_OP_EXECUTE, | |||||
| } rtTaskTimeoutType_t; | |||||
| /** | /** | ||||
| * @ingroup | * @ingroup | ||||
| * @brief get AI core count | * @brief get AI core count | ||||
| @@ -184,6 +195,37 @@ RTS_API rtError_t rtMemGetL2Info(rtStream_t stream, void **ptr, uint32_t *size); | |||||
| */ | */ | ||||
| RTS_API rtError_t rtGetRuntimeVersion(uint32_t *runtimeVersion); | RTS_API rtError_t rtGetRuntimeVersion(uint32_t *runtimeVersion); | ||||
| /** | |||||
| * @ingroup | |||||
| * @brief get device feature ability by device id, such as task schedule ability. | |||||
| * @param [in] deviceId | |||||
| * @param [in] moduleType | |||||
| * @param [in] featureType | |||||
| * @param [out] value | |||||
| * @return RT_ERROR_NONE for ok | |||||
| * @return RT_ERROR_INVALID_VALUE for error input | |||||
| */ | |||||
| RTS_API rtError_t rtGetDeviceCapability(int32_t deviceId, int32_t moduleType, int32_t featureType, int32_t *value); | |||||
| /** | |||||
| * @ingroup | |||||
| * @brief set event wait task timeout time. | |||||
| * @param [in] timeout | |||||
| * @return RT_ERROR_NONE for ok | |||||
| * @return RT_ERROR_INVALID_VALUE for error input | |||||
| */ | |||||
| RTS_API rtError_t rtSetOpWaitTimeOut(uint32_t timeout); | |||||
| /** | |||||
| * @ingroup | |||||
| * @brief set op execute task timeout time. | |||||
| * @param [in] timeout | |||||
| * @return RT_ERROR_NONE for ok | |||||
| * @return RT_ERROR_INVALID_VALUE for error input | |||||
| */ | |||||
| RTS_API rtError_t rtSetOpExecuteTimeOut(uint32_t timeout); | |||||
| #if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | #if defined(__cplusplus) && !defined(COMPILE_OMG_PACKAGE) | ||||
| } | } | ||||
| #endif | #endif | ||||