| @@ -31,9 +31,7 @@ | |||
| #include "functional_ops.h" | |||
| #include "get_data_ops.h" | |||
| #include "hcom_ops.h" | |||
| #include "hvd_ops.h" | |||
| #include "image_ops.h" | |||
| #include "internal_ops.h" | |||
| #include "linalg_ops.h" | |||
| #include "logging_ops.h" | |||
| #include "lookup_ops.h" | |||
| @@ -1084,43 +1084,6 @@ REG_OP(TransShape) | |||
| .ATTR(outShape,ListInt ,{}) | |||
| .OP_END_FACTORY_REG(TransShape); | |||
| /** | |||
| *@brief Computes the (possibly normalized) Levenshtein Edit Distance. | |||
| *@par Inputs: | |||
| *@li hypothesis_indices: The indices of the hypothesis list SparseTensor.\n | |||
| This is an N x R int64 matrix. | |||
| *@li hypothesis_shape: The values of the hypothesis list SparseTensor.\n | |||
| This is an N-length vector. | |||
| *@li hypothesis_shape: The shape of the hypothesis list SparseTensor.\n | |||
| This is an R-length vector. | |||
| *@li truth_indices: The indices of the truth list SparseTensor.\n | |||
| This is an M x R int64 matrix. | |||
| *@li truth_shape: The values of the truth list SparseTensor.\n | |||
| This is an M-length vector. | |||
| *@li truth_shape: The shape of the truth list SparseTensor.\n | |||
| This is an R-length vector | |||
| *@par Attributes: | |||
| *@li normalize: boolean (if true, edit distances are normalized by length of truth). | |||
| *@par Outputs: | |||
| *@li output: A dense float tensor with rank R - 1. | |||
| *@par Third-party framework compatibility | |||
| * Compatible with TensorFlow EditDistance operator. | |||
| */ | |||
| REG_OP(EditDistance) | |||
| .INPUT(hypothesis_indices, TensorType({DT_INT64})) | |||
| .INPUT(hypothesis_values, TensorType::BasicType()) | |||
| .INPUT(hypothesis_shape, TensorType({DT_INT64})) | |||
| .INPUT(truth_indices, TensorType({DT_INT64})) | |||
| .INPUT(truth_values, TensorType::BasicType()) | |||
| .INPUT(truth_shape, TensorType({DT_INT64})) | |||
| .ATTR(normalize, Bool, true) | |||
| .OUTPUT(output, TensorType({DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(EditDistance) | |||
| } // namespace ge | |||
| #endif // GE_OP_ARRAY_OPS_H_ | |||
| @@ -50,6 +50,7 @@ If not specified, defaults to true | |||
| *@par Third-party framework compatibility | |||
| * Compatible with TensorFlow CTCLoss operator. | |||
| */ | |||
| REG_OP(CTCLoss) | |||
| .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||
| .INPUT(labels_indices, TensorType({DT_INT64})) | |||
| @@ -62,77 +63,6 @@ REG_OP(CTCLoss) | |||
| .ATTR(ignore_longer_outputs_than_inputs, Bool, false) | |||
| .OP_END_FACTORY_REG(CTCLoss) | |||
| /** | |||
| *@brief Performs greedy decoding on the logits given in inputs. | |||
| *@par Inputs: | |||
| *@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. | |||
| *@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. | |||
| *@par Attributes: | |||
| *@li merge_repeated: If True, merge repeated classes in output. | |||
| *@par Outputs: | |||
| *@li decoded_indices: Indices matrix, size `(total_decoded_outputs x 2)`,\n | |||
| of a `SparseTensor<int64, 2>`. The rows store: [batch, time]. | |||
| *@li decoded_values: Values vector, size: `(total_decoded_outputs)`,\n | |||
| of a `SparseTensor<int64, 2>`. The vector stores the decoded classes. | |||
| *@li decoded_shape: Shape vector, size `(2)`, of the decoded SparseTensor.\n | |||
| Values are: `[batch_size, max_decoded_length]`. | |||
| *@li log_probability: Matrix, size `(batch_size x 1)`, containing sequence\n | |||
| log-probabilities. | |||
| *@par Third-party framework compatibility | |||
| * Compatible with TensorFlow CTCGreedyDecoder operator. | |||
| */ | |||
| REG_OP(CTCGreedyDecoder) | |||
| .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||
| .INPUT(sequence_length, TensorType({DT_INT32})) | |||
| .ATTR(merge_repeated, Bool, false) | |||
| .OUTPUT(decoded_indices, TensorType({DT_INT64})) | |||
| .OUTPUT(decoded_values, TensorType({DT_INT64})) | |||
| .OUTPUT(decoded_shape, TensorType({DT_INT64})) | |||
| .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | |||
| .OP_END_FACTORY_REG(CTCGreedyDecoder) | |||
| /** | |||
| *@brief Performs beam search decoding on the logits given in input. | |||
| *@par Inputs: | |||
| *@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. | |||
| *@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. | |||
| *@par Attributes: | |||
| *@li merge_repeated: If True, merge repeated classes in output. | |||
| *@par Outputs: | |||
| *@li decoded_indices: A list (length: top_paths) of indices matrices. Matrix j,\n | |||
| size `(total_decoded_outputs[j] x 2)`, has indices of a\n | |||
| `SparseTensor<int64, 2>`. The rows store: [batch, time]. | |||
| *@li decoded_values: A list (length: top_paths) of values vectors. Vector j,\n | |||
| size `(length total_decoded_outputs[j])`, has the values of a\n | |||
| `SparseTensor<int64, 2>`. The vector stores the decoded classes for beam j. | |||
| *@li decoded_shape: A list (length: top_paths) of shape vector. Vector j,\n | |||
| size `(2)`, stores the shape of the decoded `SparseTensor[j]`.\n | |||
| Its values are: `[batch_size, max_decoded_length[j]]`. | |||
| *@li log_probability: A matrix, shaped: `(batch_size x top_paths)`. The\n | |||
| sequence log-probabilities. | |||
| *@par Third-party framework compatibility | |||
| * Compatible with TensorFlow CTCBeamSearchDecoder operator. | |||
| */ | |||
| REG_OP(CTCBeamSearchDecoder) | |||
| .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) | |||
| .INPUT(sequence_length, TensorType({DT_INT32})) | |||
| .REQUIRED_ATTR(beam_width, Int) | |||
| .REQUIRED_ATTR(top_paths, Int) | |||
| .ATTR(merge_repeated, Bool, true) | |||
| .DYNAMIC_OUTPUT(decoded_indices, TensorType({DT_INT64})) | |||
| .DYNAMIC_OUTPUT(decoded_values, TensorType({DT_INT64})) | |||
| .DYNAMIC_OUTPUT(decoded_shape, TensorType({DT_INT64})) | |||
| .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) | |||
| .OP_END_FACTORY_REG(CTCBeamSearchDecoder) | |||
| } // namespace ge | |||
| #endif //GE_OP_CTC_OPS_H | |||
| @@ -483,9 +483,9 @@ REG_OP(Equal) | |||
| *x: A Tensor. Must be one of the following types: float16, float32, double, complex64, complex128. | |||
| *@par Attributes: | |||
| *@li base: An optional attribute of type float32, specifying the base gamma. Defaults to "-1.0". | |||
| *@li scale: An optional attribute of type float32, specifying the scale alpha. Defaults to "1.0". | |||
| *@li shift: An optional attribute of type float32, specifying the shift beta. Defaults to "0.0". | |||
| *@li base: An optional attribute of type float32, specifying the base gamma. Defaults to "-1". | |||
| *@li scale: An optional attribute of type float32, specifying the scale alpha. Defaults to "1". | |||
| *@li shift: An optional attribute of type float32, specifying the shift beta. Defaults to "0". | |||
| *@par Outputs: | |||
| *y: A Tensor of the same type as "x". | |||
| @@ -1016,17 +1016,17 @@ REG_OP(BesselI1e) | |||
| * y = log_base(shift + scale * x), with "base" > 0. | |||
| * @par Inputs: | |||
| * @li x: A Tensor of type complex64, complex128, float16, float32 or double. | |||
| * @li x: A Tensor of type UnaryDataType. | |||
| * @par Attributes: | |||
| * @li base: An optional float32, specifying the base "e". Defaults to "-1.0" | |||
| * @li base: An optional float32, specifying the base "e". Defaults to "-1" | |||
| * @li scale: An optional float32, specifying the scale of input "x". Defaults | |||
| * to "1.0" | |||
| * @li shift: An optional float32, specifying the shift. Defaults to "0.0" | |||
| * to "1" | |||
| * @li shift: An optional float32, specifying the shift. Defaults to "0" | |||
| * @par Outputs: | |||
| * y: A Tensor has same type as "x". | |||
| * y: A Tensor of type UnaryDataType. | |||
| * @attention Constraints: | |||
| * @li "base" is supposed to be greater than 0. Retaining the default | |||
| @@ -2262,7 +2262,7 @@ REG_OP(ArgMinD) | |||
| *dtype: The output type, either "int32" or "int64". Defaults to "int64". | |||
| *@par Outputs: | |||
| *y: A multi-dimensional Tensor of type int32 or int64, specifying the index with the largest value. The dimension is one less than that of "x". | |||
| *y: A multi-dimensional Tensor of type int32, specifying the index with the largest value. The dimension is one less than that of "x". | |||
| *@attention Constraints: | |||
| *@li x: If there are multiple maximum values, the index of the first maximum value is used. | |||
| @@ -2398,8 +2398,8 @@ REG_OP(ArgMinWithValue) | |||
| *y: A Tensor. Has the same type and format as "x". | |||
| *@par Attributes: | |||
| *@li N: A required attribute. the number of input x, max size is 32. Type is int. | |||
| *@li model: An optional attribute. Type is int. Defaults to "1". | |||
| *@li N: A required attribute. the number of input x, max size is 32. | |||
| *@li model: An optional attribute. Defaults to "1". | |||
| * "0": product, "1": sum, "2": max. | |||
| *@li coeff: A required attribute. Must met all of following rules: | |||
| * size of "coeff" must be equal to len("x") or is null. | |||
| @@ -2692,86 +2692,6 @@ REG_OP(AdamApplyOne) | |||
| .OUTPUT(output2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(AdamApplyOne) | |||
| /** | |||
| *@brief A fusion operator for bert lamb. | |||
| *@par Inputs: | |||
| *Eleven inputs, including: | |||
| * @li input0: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input1: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input2: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input3: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input4: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul0_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul1_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul2_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul3_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul4_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li add2_y: A Tensor. Must be one of the following types: float16, float32. | |||
| *@par Outputs: | |||
| *Three outputs, including: | |||
| * @li output0: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li output1: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li output2: A Tensor. Must be one of the following types: float16, float32. | |||
| */ | |||
| REG_OP(AdamApplyOneWithDecayAssign) | |||
| .INPUT(input0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input4, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul2_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul3_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul4_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(add2_y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(AdamApplyOneWithDecayAssign) | |||
| /** | |||
| *@brief A fusion operator for bert lamb. | |||
| *@par Inputs: | |||
| *Ten inputs, including: | |||
| * @li input0: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input1: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input2: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input3: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li input4: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul0_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul1_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul2_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li mul3_x: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li add2_y: A Tensor. Must be one of the following types: float16, float32. | |||
| *@par Outputs: | |||
| *Three outputs, including: | |||
| * @li output0: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li output1: A Tensor. Must be one of the following types: float16, float32. | |||
| * @li output2: A Tensor. Must be one of the following types: float16, float32. | |||
| */ | |||
| REG_OP(AdamApplyOneAssign) | |||
| .INPUT(input0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input3, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(input4, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul0_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul1_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul2_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(mul3_x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(add2_y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output0, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output1, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(output2, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(AdamApplyOneAssign) | |||
| /** | |||
| *@brief Confuse select, maximum, greater and sqrt. | |||
| @@ -3122,22 +3042,6 @@ REG_OP(KLDiv) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OP_END_FACTORY_REG(KLDiv) | |||
| /** | |||
| *@brief copy data from x to y.. | |||
| *@par Inputs: | |||
| *One inputs, including: | |||
| * @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8, int32, bool. | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type as "x". | |||
| *@par Third-party framework compatibility | |||
| */ | |||
| REG_OP(TensorMove) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_BOOL})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_BOOL})) | |||
| .OP_END_FACTORY_REG(TensorMove) | |||
| } // namespace ge | |||
| @@ -934,7 +934,6 @@ REG_OP(EncodeJpeg) | |||
| /** | |||
| *@brief PNG-encode an image. | |||
| *@par Inputs: | |||
| *Input image must be unit8 or uint16 type. Inputs include: \n | |||
| *image: is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] \n | |||
| @@ -1224,6 +1223,16 @@ REG_OP(CombinedNonMaxSuppression) | |||
| .ATTR(clip_boxes, Bool, true) | |||
| .OP_END_FACTORY_REG(CombinedNonMaxSuppression) | |||
| REG_OP(SpatialTransformerD) | |||
| .INPUT(x, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
| .OPTIONAL_INPUT(theta, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT,DT_FLOAT16})) | |||
| .ATTR(output_size, ListInt, {-1, -1}) | |||
| .ATTR(default_theta, ListFloat, {}) | |||
| .ATTR(align_corners, Bool, false) | |||
| .ATTR(use_default_theta, ListBool, {}) | |||
| .OP_END_FACTORY_REG(SpatialTransformerD) | |||
| } // namespace ge | |||
| #endif // GE_OP_MAGE_OPS_H_ | |||
| @@ -29,9 +29,9 @@ namespace ge { | |||
| * x: A Tensor of type float16 or float32. | |||
| *@par Attributes: | |||
| *@li power: Optional. Must be one of the following types: float32. Defaults to 1.0. | |||
| *@li scale: Optional. Must be one of the following types: float32. Defaults to 1.0. | |||
| *@li shift: Optional. Must be one of the following types: float32. Defaults to 0.0. | |||
| *@li power: Optional. Defaults to 1.0. | |||
| *@li scale: Optional. Defaults to 1.0. | |||
| *@li shift: Optional. Defaults to 0.0. | |||
| *@par Outputs: | |||
| * y: A Tensor. Has the same type and shape as "x". | |||
| @@ -698,45 +698,6 @@ REG_OP(FullyConnection) | |||
| .ATTR(offset_x, Int, 0) | |||
| .OP_END_FACTORY_REG(FullyConnection) | |||
| /** | |||
| *@brief Also known as a "fully-connected-compress" layer, computes an inner product with a set of learned weights, and (optionally) adds biases. | |||
| *@par Inputs: | |||
| * Four inputs, including: | |||
| *@li x: A Tensor of type uint8, int8. | |||
| *@li w: A weight matrix of type int8, int8. | |||
| *@li w: A compress index matrix of type int8, int8. | |||
| *@li b: A Tensor of type float16, int32, int32. | |||
| *@li offset_w: A Tensor of type int8.i | |||
| *@par Attributes: | |||
| *@li num_output: Reserved. | |||
| *@li transpose: A bool, specifying whether to transpose, either "true" or "false". Defaults to "false". | |||
| *@li axis: Reserved. | |||
| *@li offset_x: Reserved. | |||
| *@par Outputs: | |||
| *y: The result tensor of type int32. | |||
| *@par Third-party framework compatibility | |||
| * Compatible with the Caffe operator InnerProduct. | |||
| *@par Quantization supported or not | |||
| * Yes | |||
| */ | |||
| REG_OP(FullyConnectionCompress) | |||
| .INPUT(x, TensorType({DT_UINT8, DT_INT8})) | |||
| .INPUT(w, TensorType({DT_INT8})) | |||
| .INPUT(comress_index, TensorType({DT_INT8})) | |||
| .OPTIONAL_INPUT(b, TensorType({DT_INT32})) | |||
| .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
| .OUTPUT(y, TensorType({DT_INT32})) | |||
| .REQUIRED_ATTR(num_output, Int) | |||
| .ATTR(transpose, Bool, false) | |||
| .ATTR(axis, Int, 1) | |||
| .ATTR(offset_x, Int, 0) | |||
| .OP_END_FACTORY_REG(FullyConnectionCompress) | |||
| /** | |||
| *@brief Computes the confusion matrix from predictions and labels. | |||
| @@ -33,12 +33,12 @@ namespace ge { | |||
| * @li variance: A Tensor. Must be one of the following types: float32. | |||
| *@par Attributes: | |||
| * @li mode: A Tensor. Must be one of the following types: int. defaults: 1. | |||
| * @li epsilon: A Tensor. Must be one of the following types: float32. Defaults to 0.000001. | |||
| * @li momentum: A Tensor. Must be one of the following types: float32. Defaults to 0.9. | |||
| * @li is_training: A Tensor. Must be one of the following types: bool. Defaults to true. | |||
| * @li is_training_fusion: A Tensor. Must be one of the following types: bool. Defaults to true. | |||
| * @li moving_average_fraction: A Tensor. Must be one of the following types: float32. Defaults to 0.00300002098. | |||
| * @li mode: A Tensor. Must be one of the following types: int. | |||
| * @li epsilon: A Tensor. Must be one of the following types: float32. | |||
| * @li momentum: A Tensor. Must be one of the following types: float32. | |||
| * @li is_training: A Tensor. Must be one of the following types: bool. | |||
| * @li is_training_fusion: A Tensor. Must be one of the following types: bool. | |||
| * @li moving_average_fraction: A Tensor. Must be one of the following types: float32. | |||
| *@par Outputs: | |||
| *Three outputs, including: | |||
| @@ -83,8 +83,8 @@ REG_OP(FusedBatchNorm) | |||
| * @li save_inv_variance1: A Tensor. Must be one of the following types: float32. | |||
| *@par Attributes: | |||
| * @li epsilon: A Tensor. Must be one of the following types: float32. Defaults to 0.0. | |||
| * @li momentum: A Tensor. Must be one of the following types: float32. Defaults to 0.0. | |||
| * @li epsilon: A Tensor. Must be one of the following types: float32. | |||
| * @li momentum: A Tensor. Must be one of the following types: float32. | |||
| *@par Outputs: | |||
| *Three outputs, including: | |||
| @@ -361,14 +361,14 @@ REG_OP(BatchNormGradExt2) | |||
| *@par Inputs: | |||
| *@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||
| *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
| *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
| *@li momentum: A Tensor,represents the mean and the variance's scale factor | |||
| *@li variance: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the variance used for inference. | |||
| *@li momentum: A Tensor of type float32 or float16, represents the mean and the variance's scale factor | |||
| *@li scale: An optional tensor of type float16 or float32, no use | |||
| *@li offset: An optional tensor of type float16 or float32, no use | |||
| *@par Attributes: | |||
| *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||
| *@li use_global_stats: mean inference mode , only can be "True". | |||
| *@li mode: An optional input, not use | |||
| *@li mode: An optional attr, not use | |||
| *@par Outputs:\n | |||
| *@li y: A 4D or 5D Tensor of type float16 or float32 for the normalized "x" | |||
| */ | |||
| @@ -391,11 +391,11 @@ REG_OP(BNInference) | |||
| *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
| *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
| *@li momentum: An optional float, mean and variance's Scale factor | |||
| *@li momentum: A Tensor of type float32 or float16, the mean and the variance's Scale factor | |||
| *@par Attributes: | |||
| *@li epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. Defaults to "0.00001". | |||
| *@li use_global_stats: mean inference mode , only can be "True". | |||
| *@li mode: An optional attr, not use | |||
| *@li mode: An optional inpout, not use | |||
| *@par Outputs: | |||
| *@li alpha: A Tensor of type float16 or float32 for the cpu calculate mean | |||
| *@li beta: A Tensor of type float16 or float32 for the cpu calculate variance | |||
| @@ -418,8 +418,8 @@ REG_OP(BnHost) | |||
| *@par Inputs: | |||
| *@li x: A 4D or 5D Tensor of type float16 or float32, with format NHWC or NCHW for 4D or NC1HWC0 for 5D. | |||
| *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
| *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
| *@li mean: A Tensor of type float32 or float16. Must be 1D if input "x" Specifies the mean used for inference. | |||
| *@li variance: A Tensor of type float32 or float16 . Must be 1D if input "x" Specifies the variance used for inference. | |||
| *@li scale: An optional tensor of type float16 or float32, no use | |||
| *@li offset: An optional tensor of type float16 or float32, no use | |||
| *@par Attributes: | |||
| @@ -143,29 +143,31 @@ REG_OP(DepthwiseConv2DBackpropFilterD) | |||
| * @par Inputs: | |||
| * Three inputs include: \n | |||
| * @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C], | |||
| * support int32, int64 | |||
| * @li filter: 4D filter tensor with shape of [H, W, C, K], support float16. | |||
| * support int32 | |||
| * @li filter: 4D filter tensor with shape of [H, W, C, K], support float16, | |||
| * float32, double | |||
| * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C]. | |||
| * Must be one of the following types: float16. | |||
| * Must be one of the following types: float16, float32, double. | |||
| * @par Attributes: | |||
| * @li strides: A required list or tuple of int32. The stride of the sliding window for | |||
| * @li strides: A required list or tuple. The stride of the sliding window for | |||
| * height and width of input "x" of the convolution. | |||
| * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height, | |||
| * stride_width, 1]. | |||
| * @li dilations: An optional list or tuple of int32. The dilation factor for each | |||
| * dimension of input "x". Defaults to "[1, 1, 1, 1]". | |||
| * @li dilations: An optional list or tuple. The dilation factor for each | |||
| * dimension of input "x". | |||
| * If set to k > 1, there will be k-1 skipped cells between each filter element | |||
| * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | |||
| * or [1, dilation_height, dilation_width, 1]. | |||
| * @li pads: A required list or tuple of int32. Padding added to each dimension of the | |||
| * @li pads: A required list or tuple. Padding added to each dimension of the | |||
| * input. | |||
| * @li data_format: An optional string. Input data format, either "NHWC" or | |||
| * "NCHW". Defaults to "NHWC". | |||
| * "NCHW". | |||
| * @par Outputs: | |||
| * input_grad: Gradient of the deep convolution relative to the input with shape | |||
| * [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16. | |||
| * [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16, | |||
| * float32, double. | |||
| * @attention Constraints:\n | |||
| * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | |||
| @@ -257,8 +259,8 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||
| *@par Inputs: | |||
| *Two required inputs and two optional inputs, including: \n | |||
| * @li x: A 4D tensor of type float16 or int8, with shape [N, C, H, W] or [N, H, W, C] | |||
| * @li filter: A 4D tensor of type float16 or int8, with shape [H, W, C, K] | |||
| * @li x: A 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C] | |||
| * @li filter: A 4D tensor of type float16, with shape [H, W, C, K] | |||
| * @li bias: An optional tensor of type float16 or int32 | |||
| * @li offset_w: An optional float16 or int8, used for quantized inference | |||
| @@ -271,8 +273,8 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||
| * dimension of input "x". | |||
| * If set to k > 1, there will be k-1 skipped cells between each filter element | |||
| * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width] | |||
| * or [1, dilation_height, dilation_width, 1]. Defaults to "[1, 1, 1, 1]". | |||
| * @li pads: A required list or tuple of int32. Padding added to each dimension of the | |||
| * or [1, dilation_height, dilation_width, 1]. | |||
| * @li pads: A required list or tuple. Padding added to each dimension of the | |||
| * input. | |||
| * @li data_format: An optional string. Input data format, either "NHWC" or | |||
| * "NCHW". Defaults to "NHWC". | |||
| @@ -280,7 +282,7 @@ REG_OP(DepthwiseConv2DBackpropInputD) | |||
| * Defaults to 0. | |||
| * @par Outputs: | |||
| * y: 4D tensor of type float16 or int32, with shape [N, C, H, W] or [N, H, W, C] | |||
| * y: 4D tensor of type float16, with shape [N, C, H, W] or [N, H, W, C] | |||
| * @attention Constraints:\n | |||
| * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but | |||
| @@ -460,24 +462,24 @@ REG_OP(Conv2DBackpropInputD) | |||
| * @li x: A Tensor. Must have the same type as "filter". 4D with shape | |||
| * [batch, out_channels, out_height, out_width]. Gradients with respect | |||
| * to the output of the convolution. | |||
| * @li filter: A Tensor of type float16, float32, double or int8. | |||
| * @li filter: A Tensor of type float16. | |||
| * 4D with shape [out_channels, in_channel, filter_height, filter_width].\n | |||
| * Two optional inputs: | |||
| * @li bias: An optional tensor of type float16, float32, int32 or int64. | |||
| * @li offset_w: An optional 1D tensor for quantized deconvolution. Type is int8. Reserved.\n | |||
| * @li bias: An optional tensor of type float16 | |||
| * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved.\n | |||
| *@par Attributes: | |||
| * Six attributes: | |||
| * @li strides: A tuple or list of 2 integers. The stride of the sliding window | |||
| * for H/W dimension. Defaults to [1, 1, 1, 1]. | |||
| * for H/W dimension. | |||
| * @li pads: A tuple or list of 4 integers. The [top, bottom, left, right] | |||
| * padding on the feature map. Defaults to [0, 0, 0, 0]. | |||
| * padding on the feature map | |||
| * @li dilations: A tuple or list of 4 integers. The dilation factor for each | |||
| * dimension of input. Must be [1, 1, 1, 1]. | |||
| * @li groups: Number of blocked connections from input channels to | |||
| output channels. Defaults to "1". | |||
| * @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n | |||
| * output channels. | |||
| * @li data_format: An optional string from: "NCHW". Defaults to "NCHW".\n | |||
| Specify the data format of the input and output data. | |||
| * @li offset_x: An optional integer for quantized deconvolution. Defaults to "0". | |||
| * @li offset_x: An optional integer for quantized deconvolution. | |||
| *@par Outputs: | |||
| * y: A Tensor. Has the same type as "filter". 4D tensor with shape | |||
| * [batch, channels, height, width]. | |||
| @@ -575,19 +577,17 @@ REG_OP(Conv2DBackpropFilterD) | |||
| * | |||
| * The input and output tensor attributes are listed as follows: | |||
| * @verbatim | |||
| |Tensor | x | filter | bias | offset_w | y | |||
| Tensor | x | filter | bias | offset_w | y | |||
| -----------|---------|---------|---------|----------|-------- | |||
| |Data Type | float16 | float16 | float16 | _ | float16 | |||
| | |---------|---------|---------|----------|-------- | |||
| | | float32 | float32 | float32 | _ | float32 | |||
| | |---------|---------|---------|----------|-------- | |||
| | | float64 | float64 | float64 | _ | float64 | |||
| | |---------|---------|---------|----------|-------- | |||
| | | int8 | int8 | int32 | int8 | int32 | |||
| Data Type | float16 | float16 | float16 | _ | float16 | |||
| |---------|---------|---------|----------|-------- | |||
| | float32 | float32 | float32 | _ | float32 | |||
| |---------|---------|---------|----------|-------- | |||
| | int8 | int8 | int32 | int8 | int32 | |||
| -----------|---------|---------|---------|----------|-------- | |||
| |Format | NCHW | NCHW | ND | ND | NCHW | |||
| | | NHWC | NHWC | | | NHWC | |||
| | | | HWCN | | | | |||
| Format | NCHW | NCHW | ND | ND | NCHW | |||
| | NHWC | NHWC | | | NHWC | |||
| | | HWCN | | | | |||
| @endverbatim | |||
| * It should be noted that the data types must correspond to each other, but the | |||
| * format does not need to. | |||
| @@ -602,10 +602,10 @@ REG_OP(Conv2DBackpropFilterD) | |||
| * for dilated convolution. Has the same dimension order and value as "strides". | |||
| * @li groups: Number of blocked connections from input channels to output | |||
| * channels. Input channels and output channels must both be divisible by | |||
| * "groups".Type is int32. Must be set to 1. | |||
| * @li offset_x: An optional integer for quantized convolution. Type is int32. Defaults to "0". | |||
| * "groups". | |||
| * @li offset_x: An optional integer for quantized convolution. | |||
| * @li data_format: An optional string from: "NHWC", "NCHW". Specifying the | |||
| * data format of the input and output images. Type is string. Defaults to "NHWC". Reserved. | |||
| * data format of the input and output images. Reserved. | |||
| *@par Outputs: | |||
| * @li y: A 4D Tensor of output images. | |||
| @@ -613,23 +613,23 @@ REG_OP(Conv2DBackpropFilterD) | |||
| *@attention | |||
| * @li The parameter scope is listed as follows: | |||
| * @verbatim | |||
| |Name | Field | Scope | |||
| Name | Field | Scope | |||
| ------------------|--------------|---------- | |||
| |Input Image Size | H dimension | [1, 4096] | |||
| | | W dimension | [1, 4096] | |||
| Input Image Size | H dimension | [1, 4096] | |||
| | W dimension | [1, 4096] | |||
| ------------------|--------------|---------- | |||
| |Filter Size | H dimension | [1, 255] | |||
| | | W dimension | [1, 255] | |||
| Filter Size | H dimension | [1, 255] | |||
| | W dimension | [1, 255] | |||
| ------------------|--------------|---------- | |||
| |Stride Size | H dimension | [1, 63] | |||
| | | W dimension | [1, 63] | |||
| Stride Size | H dimension | [1, 63] | |||
| | W dimension | [1, 63] | |||
| ------------------|--------------|---------- | |||
| |Padding Size | top side | [0, 255] | |||
| | | bottom side | [0, 255] | |||
| | | left side | [0, 255] | |||
| | | right side | [0, 255] | |||
| Padding Size | top side | [0, 255] | |||
| | bottom side | [0, 255] | |||
| | left side | [0, 255] | |||
| | right side | [0, 255] | |||
| ------------------|--------------|---------- | |||
| |Dilation Size | H dimension | [1, 255] | |||
| Dilation Size | H dimension | [1, 255] | |||
| | W dimension | [1, 255] | |||
| @endverbatim | |||
| @@ -654,11 +654,11 @@ REG_OP(Conv2DBackpropFilterD) | |||
| *@li Compatible with the Caffe operator 2D "Convolution". | |||
| */ | |||
| REG_OP(Conv2D) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
| .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8})) | |||
| .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||
| .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8})) | |||
| .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||
| .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32})) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(dilations, ListInt, {1, 1, 1, 1}) | |||
| @@ -710,8 +710,8 @@ REG_OP(Conv3D) | |||
| .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(strides, ListInt, {1, 1, 1, 1, 1}) | |||
| .ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | |||
| .OP_END_FACTORY_REG(Conv3D) | |||
| @@ -742,7 +742,7 @@ REG_OP(Conv3DBackpropInput) | |||
| .INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | |||
| .OP_END_FACTORY_REG(Conv3DBackpropInput) | |||
| @@ -771,7 +771,7 @@ REG_OP(Conv3DBackpropInputD) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||
| .REQUIRED_ATTR(input_size, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(pads, ListInt, {0, 0, 0, 0, 0, 0}) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .ATTR(dilations, ListInt, {1, 1, 1, 1, 1}) | |||
| .OP_END_FACTORY_REG(Conv3DBackpropInputD) | |||
| @@ -187,15 +187,14 @@ REG_OP(ROIAlignGrad) | |||
| *@li features: A 5HD Tensor of type float32 or float16. | |||
| *@li rois: ROI position. A 2D Tensor of float32 or float16 with shape (N, 5). "N" indicates the number of ROIs, the value "5" indicates the indexes of images where the ROIs are located, | |||
| * "x0", "y0", "x1", and "y1". | |||
| *@li rois_n: An optional input of type int32, specifying the number of valid ROIs. This parameter is reserved. | |||
| *@li rois_n: An optional input, specifying the number of valid ROIs. This parameter is reserved. | |||
| *@par Attributes: | |||
| *@li spatial_scale: A required attribute of type float32, specifying the scaling ratio of "features" to the original image. | |||
| *@li pooled_height: A required attribute of type int32, specifying the H dimension. | |||
| *@li pooled_width: A required attribute of type int32, specifying the W dimension. | |||
| *@li sample_num: An optional attribute of type int32, specifying the horizontal and vertical sampling frequency of each output. If this attribute is set to "0", | |||
| *@li spatial_scale: A required attribute of type float, specifying the scaling ratio of "features" to the original image. | |||
| *@li pooled_height: A required attribute of type int, specifying the H dimension. | |||
| *@li pooled_width: A required attribute of type int, specifying the W dimension. | |||
| *@li sample_num: An optional attribute of type int, specifying the horizontal and vertical sampling frequency of each output. If this attribute is set to "0", | |||
| * the sampling frequency is equal to the rounded up value of "rois", which is a floating point number. Defaults to "2". | |||
| *@li roi_end_mode: An optional attribute of type int32. Defaults to "1". | |||
| *@par Outputs: | |||
| * output: Outputs the feature sample of each ROI position. The format is 5HD Tensor of type float32 or float16. The axis N is the number of input ROIs. Axes H, W, and C are consistent | |||
| @@ -363,15 +362,15 @@ REG_OP(PSROIPooling) | |||
| *@li im_info: An ND tensor of type float16 or float32, specifying the Image information. | |||
| *@li actual_rois_num: An optional NCHW tensor of type int32, specifying the number of valid boxes per batch. | |||
| *@par Attributes: | |||
| *@li batch_rois: An optional int32, specifying the number of images to be predicted. Defaults to "1". | |||
| *@li batch_rois: An optional int32, specifying the number of images to be predicted. | |||
| *@li num_classes: An required int32, specifying the number of classes to be predicted. The value must be greater than 0. | |||
| *@li score_threshold: An required float32, specifying the threshold for box filtering. The value range is [0.0, 1.0]. | |||
| *@li iou_threshold: An required float32, specifying the confidence threshold for box filtering, which is the output "obj" of operator Region. The value range is (0.0, 1.0). | |||
| *@par Outputs: | |||
| *@li box: A tensor of type float16 or float32 for proposal of actual output, with output shape [batch, numBoxes,8]. | |||
| * 8 means [x1, y1, x2, y2, score, label, batchID, NULL], the maximum value of numBoxes is 1024. | |||
| *@li box: An NCHW tensor of type float16 or float32, describing the information of each output box, including the coordinates, class, and confidence. | |||
| Proposal of actual output, with output shape [batch, numBoxes,8], 8 means [x1, y1, x2, y2, score, label, batchID, NULL], the maximum value of numBoxes is 1024. | |||
| That is, take min (the maximum number of input boxes, 1024) | |||
| *@li actual_bbox_num: A tensor of type int32 With shape [bacth, num_classes], specifying the number of output boxes. | |||
| *@li actual_bbox_num: An NCHW tensor of type int32 With shape [bacth, num_classes], specifying the number of output boxes. | |||
| *@attention Constraints:\n | |||
| *@li totalnum < max_rois_num * batch_rois. | |||
| @@ -415,9 +414,9 @@ REG_OP(FSRDetectionOutput) | |||
| *@li confidence_threshold: An optional float32, specify the topk filter threshold. Only consider detections with confidence greater than the threshold | |||
| *@li kernel_name: An optional string, specifying the operator name. Defaults to "ssd_detection_output". | |||
| *@par Outputs: | |||
| *@li out_boxnum: A tensor of type int32, specifying the number of output boxes. | |||
| *@li y: A tensor of type float16 or float32 with shape [batch,keep_top_k, 8], describing the information of each output box. | |||
| * In output shape, 8 means (batchID, label(classID), score (class probability), xmin, ymin, xmax, ymax, null) | |||
| *@li out_boxnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||
| *@li y: An NCHW tensor of type float16 or float32 with shape [batch,keep_top_k, 8], describing the information of each output box, including the coordinates, | |||
| * class, and confidence. In output shape, 8 means (batchID, label(classID), score (class probability), xmin, ymin, xmax, ymax, null) | |||
| * It is a custom operator. It has no corresponding operator in Caffe. | |||
| */ | |||
| REG_OP(SSDDetectionOutput) | |||
| @@ -448,10 +447,10 @@ REG_OP(SSDDetectionOutput) | |||
| *@li boxes: A required int32, specifying the number of anchor boxes. Defaults to "5" for V2 or "3" for V3. | |||
| *@li coords: An int32, specifying the number of parameters required for locating an object. The value is fixed at "4", corresponding to (x,y,w,h). | |||
| *@li classes: An int32, specifying the number of prediction classes. Defaults to "80". The value range is [1, 1024]. | |||
| *@li yolo_version: A string, specifying the YOLO version, either "V2" or "V3".Defaults to "V3" | |||
| *@li softmax: A bool, specifying whether to perform softmax, valid only when "yolo_version = V2". Defaults to "false". | |||
| *@li background: A bool, specifying the operation types of the obj and classes, used in conjunction with "softmax" and valid only when "yolo_version = V2". Defaults to "false". | |||
| *@li softmaxtree: A bool, Fixed to False, defined in Lite, but not used. Defaults to "false". | |||
| *@li yolo_version: A string, specifying the YOLO version, either "V2" or "V3". | |||
| *@li softmax: A bool, specifying whether to perform softmax, valid only when "yolo_version = V2". | |||
| *@li background: A bool, specifying the operation types of the obj and classes, used in conjunction with "softmax" and valid only when "yolo_version = V2". | |||
| *@li softmaxtree: A bool, Fixed to False, defined in Lite, but not used. | |||
| *@par Outputs: | |||
| *@li coord_data: A float16 or float32 with shape [N, boxes*coords, ceilx(height*width*2+32, 32)/2], where "ceil" indicates that a detected box is aligned upwards with the second parameter. Specifies the coordinates of a detected box. | |||
| @@ -502,10 +501,10 @@ and the actual image height and width. | |||
| *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | |||
| * | |||
| *@par Outputs: | |||
| *@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, | |||
| * In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||
| * the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| *@li boxout: An NCHW tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, including the coordinates, class, | |||
| and confidence. In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: An NCHW tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||
| the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| * | |||
| *@attention Constraints:\n | |||
| *@li This operator applies only to the YOLO v2 network. | |||
| @@ -562,10 +561,10 @@ and the actual image height and width. | |||
| *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | |||
| * | |||
| *@par Outputs: | |||
| *@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn]. describing the information of each output box, | |||
| * In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. It means only the first one of the 8 numbers is valid, | |||
| * the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| *@li boxout: An NCHW tensor of type float16, describing the information of each output box, including the coordinates, class, and confidence. | |||
| With shape [batch,6,post_nms_topn], 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||
| With shape [batch,8,1,1], means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| * | |||
| *@attention Constraints:\n | |||
| *@li This operator applies only to the YOLO v2 network. | |||
| @@ -622,11 +621,11 @@ and the actual image height and width. | |||
| *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | |||
| * | |||
| *@par Outputs: | |||
| *@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box. | |||
| * In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||
| * The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| * | |||
| *@li boxout: An NCHW tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box, including the coordinates, class, and confidence. | |||
| In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: An NCHW tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||
| The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| *@attention Constraints:\n | |||
| *@li This operator applies only to the YOLO v3 network. | |||
| *@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | |||
| @@ -689,11 +688,12 @@ and the actual image height and width. | |||
| *@li pre_nms_topn: An optional int, specifying the number of boxes for non-maximum suppression (NMS). Defaults to "512". | |||
| * | |||
| *@par Outputs: | |||
| *@li boxout: A tensor of type float16 or float32 with shape [batch,6,post_nms_topn], describing the information of each output box. | |||
| * In output shape, 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: A tensor of type int32 with shape [batch,8,1,1], specifying the number of output boxes. | |||
| * The output shape means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| *@li boxout: An NCHW tensor of type float16, describing the information of each output box, including the coordinates, class, and confidence. | |||
| With shape [batch,6,post_nms_topn], 6 means x1, y1, x2, y2, score, label(class). Output by the number of box_out_num. | |||
| *@li boxoutnum: An NCHW tensor of type int32, specifying the number of output boxes. | |||
| With shape [batch,8,1,1], means only the first one of the 8 numbers is valid, the number of valid boxes in each batch, the maximum number of valid boxes in each batch is 1024 | |||
| * | |||
| *@attention Constraints:\n | |||
| *@li This operator applies only to the YOLO v3 network. | |||
| *@li The preceding layer of operator Yolov3DetectionOutput must be three Yolo operators. | |||
| @@ -291,8 +291,8 @@ REG_OP(BinaryCrossEntropyGrad) | |||
| * double. Should be a Variable Tensor. | |||
| *@par Attributes: | |||
| *axes: A list of int. The dimension softmax would be performed on. Defaults | |||
| * to "[-1]". | |||
| *axes: A list of ints. The dimension softmax would be performed on. Defaults | |||
| * to "{-1}". | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same dimensionality and shape as the "x" with values in | |||
| @@ -632,7 +632,7 @@ REG_OP(DropOutDoMask) | |||
| * Three inputs, including: | |||
| *@li x: An ND tensor of type float16 or float32. | |||
| *@li scale: An ND tensor of type float16 or float32. | |||
| *@li bias: An optional ND tensor of type float16 or float32. | |||
| *@li bias: An ND tensor of type float16 or float32. | |||
| *@par Attributes: | |||
| *@li axis: An optional int32 used to compute the shape of scale and bias input from the online bottoms. Defaults to "1". | |||
| @@ -679,9 +679,9 @@ REG_OP(Scale) | |||
| * depth_radius = (local_size - 1) / 2. local_size is the number of channels to sum over (for ACROSS_CHANNELS) | |||
| * or the side length of the square region to sum over (for WITHIN_CHANNEL). | |||
| *@li bias: An optional float32. An offset, usually > 0 to avoid dividing by 0. | |||
| * Defaults to "1.0". | |||
| * Defaults to "1". | |||
| *@li alpha: An optional float32. A scaling factor, usually positive. | |||
| * Defaults to "1.0". | |||
| * Defaults to "1". | |||
| *@li beta: An optional float32. An exponent. Defaults to "0.75" for the caffe framework, Defaults to "0.5" for others. | |||
| *@li norm_region: An optional string. A mode option. "ACROSS_CHANNELS":0, "WITHIN_CHANNEL":1. Defaults to "ACROSS_CHANNELS". | |||
| @@ -836,56 +836,6 @@ REG_OP(GroupNorm) | |||
| .ATTR(num_groups, Int, 2) | |||
| .OP_END_FACTORY_REG(GroupNorm) | |||
| /** | |||
| *@brief Performs instance normalization. | |||
| *@par Inputs:\n | |||
| * Five inputs, including: (NC1HWC0, supported) | |||
| *@li x: A 5D Tensor of type float16 or float32, NC1HWC0. | |||
| *@li gamma: A Tensor of type float32. | |||
| A 5D Tensor for scaling factor, to scale the normalized x. | |||
| *@li beta: A Tensor of type float32. | |||
| A 5D Tensor for offset, to shift to the normalized x. | |||
| *@li mean: A Tensor of type float32. | |||
| A 5D Tensor Specifies the mean used for inference. Reserved. | |||
| *@li variance: A Tensor of type float32. | |||
| A 5D Tensor Specifies the variance used for inference. Reserved. | |||
| *@par Attributes: | |||
| *@li is_training: An optional bool, specifying if the operation is used for \n | |||
| training or inference. Defaults to "True". | |||
| *@li momentum: An optional float32, \n | |||
| the value used for the running_mean and running_var computation. Default: "0.1". | |||
| *@li epsilon: An optional float32, specifying the small value added to \n | |||
| variance to avoid dividing by zero. Defaults to "0.00001". | |||
| *@par Outputs:\n | |||
| * Three outputs, including: (NHWC, NCHW NC1HWC0 supported) | |||
| *@li y: A 5D tensor of type float16 or float32 for the normalized "x", \n | |||
| *@li batch_mean: A Tensor of type float32. | |||
| Specifies the mean of "x". | |||
| *@li batch_variance: A Tensor of type float32. | |||
| Specifies the variance of "x". | |||
| *@par Third-party framework compatibility | |||
| *@li Compatible with the PyTorch operator InstanceNorm. | |||
| */ | |||
| REG_OP(InstanceNormV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
| .OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) | |||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||
| .ATTR(is_training, Bool, true) | |||
| .ATTR(momentum, Float, 0.1) | |||
| .ATTR(epsilon, Float, 0.00001) | |||
| .OP_END_FACTORY_REG(InstanceNormV2) | |||
| } // namespace ge | |||
| #endif //GE_OP_NN_NORM_OPS_H | |||
| @@ -101,42 +101,6 @@ REG_OP(AvgPool) | |||
| .ATTR(data_format, String, "NHWC") | |||
| .OP_END_FACTORY_REG(AvgPool) | |||
| /** | |||
| *@brief Performs average pooling on the input. | |||
| *@par Inputs: | |||
| *x: A 5-D Tensor of shape [batch, depth, height, width, channels] and type float16, float32, double. | |||
| *@par Attributes: | |||
| *@li ksize: List of ints that has length 1, 3 or 5. The size of the window for each dimension of the input tensor. | |||
| *@li strides:List of ints that has length 1, 3 or 5. The stride of the sliding window for each dimension of the input tensor. | |||
| *@li pads: List of ints, implicit zero paddings on both sides of the input. | |||
| *@li ceil_mode: When true, will use ceil instead of floor in the formula to compute the output shape. | |||
| *@li count_include_pad: When true, will include the zero-padding in the averaging calculation. | |||
| *@li divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. | |||
| *@li data_format: A string, format of input data. | |||
| *@par Outputs: | |||
| *y: The average pooled output tensor. | |||
| *@attention Constraints: | |||
| *@li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63] | |||
| *@par Third-party framework compatibility | |||
| * Compatible with the TensorFlow operator AvgPool3D. | |||
| */ | |||
| REG_OP(AvgPool3D) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(ceil_mode, Bool, false) | |||
| .ATTR(count_include_pad, Bool, true) | |||
| .ATTR(divisor_override, Int, 0) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .OP_END_FACTORY_REG(AvgPool3D) | |||
| /** | |||
| *@brief Performs max_pool_ext2 on the input. | |||
| @@ -220,62 +184,17 @@ REG_OP(MaxPool) | |||
| .OP_END_FACTORY_REG(MaxPool) | |||
| REG_OP(MaxPool3D) | |||
| .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT32, DT_DOUBLE})) | |||
| .INPUT(x, TensorType({DT_FLOAT16})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(padding, String) | |||
| .ATTR(pads, ListInt, {0,0,0}) | |||
| .ATTR(dilation, ListInt, {1,1,1}) | |||
| .ATTR(dilation, ListInt, {0,0,0}) | |||
| .ATTR(ceil_mode, Int, 0) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .OP_END_FACTORY_REG(MaxPool3D) | |||
| /** | |||
| * @brief Computes second-order gradients of the maxpooling3d function. | |||
| * @par Inputs: | |||
| * @li orig_x: Original forward input tensor(NDC1HWC0) of type float16 | |||
| * @li orig_y: Original forward output tensor(NDC1HWC0) of type float16 | |||
| * @li grads: Gradient tensor(NDC1HWC0) of type float16 | |||
| * @li assist: Assist tensor(NDC1HWC0) of type float16 | |||
| * @par Attributes: | |||
| * @li ksize: A required list or tuple, | |||
| * specifying the size of the sliding window. | |||
| * @li strides: A required list or tuple, | |||
| * specifying the stride of the sliding window. | |||
| * @li pads: A required list or tuple | |||
| * @li padding: A required string, window sliding mode. Either SAME or VALID. | |||
| * @li data_format: An optional string. | |||
| * Format of the original input, either NCDHW or NDHWC. Defaults to NDHWC. | |||
| * @attention Constraints: | |||
| * @li Only the Ascend 910 platform is supported. | |||
| * @li "orig_x" and "grads" must have the same shape. | |||
| * @li "orig_y" and "y" must have the same shape. Otherwise, an error is reported. | |||
| * @li "orig_x", "orig_y", "grads", and "y" must be NDC1HWC0 tensors. | |||
| * @par Outputs: | |||
| * @li y: Result tensor of type float16 | |||
| * @par Third-party framework compatibility | |||
| * @li Compatible with the TensorFlow operator MaxPool3DGradGrad. | |||
| */ | |||
| REG_OP(MaxPool3DGradGrad) | |||
| .INPUT(orig_x, TensorType::RealNumberType()) | |||
| .INPUT(orig_y, TensorType::RealNumberType()) | |||
| .INPUT(grads, TensorType::RealNumberType()) | |||
| .OUTPUT(y, TensorType::RealNumberType()) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .OP_END_FACTORY_REG(MaxPool3DGradGrad) | |||
| /** | |||
| * @brief Computes gradients of the maxpooling function. | |||
| @@ -320,10 +239,9 @@ REG_OP(MaxPoolGrad) | |||
| * @brief Computes second-order gradients of the maxpooling function. | |||
| * @par Inputs: | |||
| * @li x1: Original forward input tensor. Supported type:float, double, int32, | |||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
| * @li x2: Has the same type and format as input "x1". | |||
| * @li grad:Has the same type and format as input "x1". | |||
| * @li x1: Original forward input tensor of type RealNumberType | |||
| * @li x2: Original forward output tensor of type RealNumberType | |||
| * @li grad: Gradient tensor of type RealNumberType | |||
| * @par Attributes: | |||
| * @li ksize: A required list or tuple, | |||
| @@ -344,7 +262,7 @@ REG_OP(MaxPoolGrad) | |||
| * @li Other dimensions of ksize and strides is 1. | |||
| * @par Outputs: | |||
| * @li y: Has the same type and format as input "x1". | |||
| * @li y: Result tensor of type RealNumberType | |||
| * @par Third-party framework compatibility | |||
| * @li Compatible with the TensorFlow operator MaxPoolGradGrad. | |||
| @@ -479,56 +397,19 @@ REG_OP(MaxPoolGradWithArgmax) | |||
| .REQUIRED_ATTR(padding, String) | |||
| .OP_END_FACTORY_REG(MaxPoolGradWithArgmax) | |||
| /** | |||
| *@brief Performs transform mask to argmax. | |||
| *@par Inputs: | |||
| * Two input: | |||
| *x: An NC1HWC0 Tensor of type float16. | |||
| *mask: An NC1HWC0 Tensor of type uint16. | |||
| *@par Attributes: | |||
| *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for each dimension of the input tensor. No default value. | |||
| *@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for each dimension of the input tensor. No default value. | |||
| *@li padding: A required string. No default value. | |||
| *@par Outputs: | |||
| *argmax: An NC1HWC0 Tensor of type int32. | |||
| *@attention Constraints: | |||
| *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||
| *@li "stride is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, strides[2] <= 63, strides[2] >= 1. | |||
| *@li "padding" is either "SAME" or "VALID". | |||
| *@par Third-party framework compatibility | |||
| * Compatible with the TensorFlow operator Mask2Argmax. | |||
| */ | |||
| REG_OP(Mask2Argmax) | |||
| .INPUT(x, TensorType::RealNumberType()) | |||
| .INPUT(mask, TensorType::IndexNumberType()) | |||
| .OUTPUT(argmax, TensorType::IndexNumberType()) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(padding, String) | |||
| .REQUIRED_ATTR(originshape, ListInt) | |||
| .OP_END_FACTORY_REG(Mask2Argmax) | |||
| /** | |||
| * @brief Computes second-order gradients of the maxpooling function. | |||
| * @par Inputs: | |||
| * @li x: Original forward input tensor. Supported type: float, double, int32, | |||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
| * @li grad: Gradient tensor. Supported type: float, double, int32, | |||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64. | |||
| * @li argmax: An tensor of type int32 or int64. | |||
| * @li x: Original forward input tensor of type RealNumberType | |||
| * @li grad: Gradient tensor of type RealNumberType | |||
| * @li argmax: An tensor of type IndexNumberType | |||
| * @par Attributes: | |||
| * @li ksize: A required list, specifying the size of the sliding window. | |||
| * @li strides: A required list, specifying the stride of the sliding window. | |||
| * @li padding: A required string, window sliding mode. Either SAME or VALID. | |||
| * @par Outputs: | |||
| * @li y:Result tensor. Supported type: float, double, int32, | |||
| * uint8, int16, int8, int64, uint16, half, uint32, uint64 | |||
| * @li y:Result tensor of type RealNumberType | |||
| * @attention Constraints: | |||
| * @li Only the cloud platform is supported. | |||
| @@ -650,7 +531,7 @@ REG_OP(MaxPoolGradWithArgmaxCCE) | |||
| * one input, including: | |||
| *@li x: A tensor of type float16 or float32. | |||
| *@par Attributes: | |||
| *@li scale: A optional float32, scale factor of x. Defaults to "1.0". | |||
| *@li scale: A optional float, scale factor of x. Defaults to "1.0". | |||
| *@li stride_h: An optional int32, broadcast the axis of h. Defaults to "2". | |||
| *@li stride_w: An optional int32, broadcast the axis of w. Defaults to "2". | |||
| *@par Outputs: | |||
| @@ -868,186 +749,7 @@ REG_OP(DataFormatVecPermute) | |||
| .ATTR(dst_format, String, "NCHW") | |||
| .OP_END_FACTORY_REG(DataFormatVecPermute) | |||
| /** | |||
| * @brief Computes gradients of the MaxPool3D function. | |||
| * @par Inputs: | |||
| * @li orig_x: A mutable NDC1HWC0 tensor of type float16. | |||
| * @li orig_y: A mutable NDC1HWC0 tensor of type float16. | |||
| * @li grads: A mutable NDC1HWC0 tensor of type float16. | |||
| * @par Attributes: | |||
| * @li ksize: A required tuple or list, specifying the size of the window for | |||
| * each dimension of the input tensor. | |||
| * @li strides: A required tuple or list, specifying the stride of the sliding | |||
| * window for each dimension of the input tensor. | |||
| * @li pads: A list of 6 ints. Supports only padding along the D, | |||
| * H and W dimensions in sequence of head, tail, top, bottom, left and right. | |||
| * to use. | |||
| * @li data_format: An optional string, Specify the data format of the input and | |||
| * output data. With the default format "NDHWC". | |||
| * @par Outputs: | |||
| * y: A mutable tensor. Has the same shape as "orig_x", but type is float32. | |||
| * @par Third-party framework compatibility | |||
| * Compatible with the TensorFlow operator MaxPool3DGrad. | |||
| */ | |||
| REG_OP(MaxPool3DGrad) | |||
| .INPUT(orig_x, TensorType::RealNumberType()) | |||
| .INPUT(orig_y, TensorType::RealNumberType()) | |||
| .INPUT(grads, TensorType::RealNumberType()) | |||
| .OUTPUT(y, TensorType::RealNumberType()) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(data_format, String, "NDHWC") | |||
| .OP_END_FACTORY_REG(MaxPool3DGrad) | |||
| /** | |||
| *@brief Performs AvgPool1D on the input. | |||
| *@par Inputs: | |||
| *x: A Tensor. Must be one of the following types: int8, uint8, int16, int32, int64, float16, float32, float64. | |||
| *@par Attributes: | |||
| *@li ksize: An required int, specifying the size of the window. | |||
| *@li strides: An required int. | |||
| *@li pads: A required tuple or list. | |||
| *@li ceil_mode: An optional bool. Defaults to False. | |||
| *@li count_include_pad: An optional bool. Defaults to False. | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type as x. | |||
| *@par Third-party framework compatibility | |||
| *@li compatible with pytorch AvgPool1D operator. | |||
| */ | |||
| REG_OP(AvgPool1D) | |||
| .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .REQUIRED_ATTR(ksize, Int) | |||
| .REQUIRED_ATTR(strides, Int) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(ceil_mode, Bool, false) | |||
| .ATTR(count_include_pad, Bool, false) | |||
| .OP_END_FACTORY_REG(AvgPool1D) | |||
| /** | |||
| *@brief Performs AvgPool1D on the input. | |||
| *@par Inputs: | |||
| *x: A Tensor. Must be one of the following types: int8, uint8, int16, int32, int64, float16, float32, float64. | |||
| *@par Attributes: | |||
| *@li ksize: An required int, specifying the size of the window. | |||
| *@li strides: An required int. | |||
| *@li pads: A required tuple or list. | |||
| *@li ceil_mode: An optional bool. Defaults to False. | |||
| *@li count_include_pad: An optional bool. Defaults to False. | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type as x. | |||
| *@par Third-party framework compatibility | |||
| *@li compatible with pytorch AvgPool1D operator. | |||
| */ | |||
| REG_OP(AvgPool1DD) | |||
| .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .INPUT(assist_matrix, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) | |||
| .REQUIRED_ATTR(ksize, Int) | |||
| .REQUIRED_ATTR(strides, Int) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(ceil_mode, Bool, false) | |||
| .ATTR(count_include_pad, Bool, false) | |||
| .OP_END_FACTORY_REG(AvgPool1DD) | |||
| /** | |||
| *@brief Performs max pooling on the input and outputs both max values and indices. | |||
| *@par Inputs: | |||
| * One input: | |||
| *x: An NC1HWC0 Tensor of type float16. | |||
| *@par Attributes: | |||
| *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||
| * each dimension of the input tensor. No default value. | |||
| *@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||
| * each dimension of the input tensor. No default value. | |||
| *@li pads: A required string. No default value. | |||
| *@li dtype: A optional int. default value is 3. | |||
| *@li dilation: A optional list of int8, int16, int32, or int64 values. | |||
| *@li ceil_mode: A optional bool. default value is false. | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type and format as input "x". | |||
| *argmax: A Tensor. type:uint16, format:NC1HWC0. | |||
| *@attention Constraints: | |||
| *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||
| *@li "strides is a list that has length 4: strides[0] = 1 or strides[3] = 1, strides[1] <= 63, strides[0] >= 1, | |||
| * strides[2] <= 63, strides[2] >= 1. | |||
| *@li "dilation" is a list that has length 4. | |||
| *@li "ceil_mode" is a bool, default is false. | |||
| *@par Third-party framework compatibility | |||
| * Compatible with the TensorFlow operator MaxPoolWithArgmax. | |||
| */ | |||
| REG_OP(MaxPoolWithArgmaxV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||
| .OUTPUT(argmax, TensorType({DT_UINT16})) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(dtype, Int, 3) | |||
| .ATTR(dilation, ListInt, {1, 1, 1, 1}) | |||
| .ATTR(ceil_mode, Bool, false) | |||
| .OP_END_FACTORY_REG(MaxPoolWithArgmaxV2) | |||
| /** | |||
| *@brief Performs the backpropagation of MaxPoolWithArgmaxV2. | |||
| *@par Inputs: | |||
| * Three inputs, including: | |||
| *@li x: An NC1HWC0 tensor of type float16. | |||
| *@li grad: An NC1HWC0 tensor of type float16. | |||
| *@li argmx: An NC1HWC0 tensor of type uint16 or int64. | |||
| *@par Attributes: | |||
| *@li ksize: A required list of int8, int16, int32, or int64 values, specifying the size of the window for | |||
| * each dimension of the input tensor. No default value. | |||
| *@li strides: A required list of int8, int16, int32, or int64 values, specifying the stride of the sliding window for | |||
| * each dimension of the input tensor. No default value. | |||
| *@li pads: A required string. No default value. | |||
| *@li dtype: A optional int. default value is 3. | |||
| *@li dilation: A optional list of int8, int16, int32, or int64 values. | |||
| *@li ceil_mode: A optional bool. default value is false. | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type and format as input "x". | |||
| *@attention Constraints: | |||
| *@li "ksize" is a list that has length 4: ksize[0] = 1 or ksize[3] = 1, ksize[1] * ksize[2] <= 255. | |||
| *@li "strides" is a list that has length 4: strides[0] = 1 or strides[3] = 1 | |||
| *@li "dilation" is a list that has length 4. | |||
| *@li "ceil_mode" is a bool, default is false. | |||
| *@see max_pool_grad_with_argmaxv2 | |||
| *@par Third-party framework compatibility | |||
| * Compatible with the TensorFlow operator MaxPoolGradWithArgmaxV2. | |||
| */ | |||
| REG_OP(MaxPoolGradWithArgmaxV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16})) | |||
| .INPUT(grad, TensorType({DT_FLOAT16})) | |||
| .INPUT(argmax, TensorType({DT_UINT16})) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16})) | |||
| .REQUIRED_ATTR(ksize, ListInt) | |||
| .REQUIRED_ATTR(strides, ListInt) | |||
| .REQUIRED_ATTR(pads, ListInt) | |||
| .ATTR(dtype, Int, 3) | |||
| .ATTR(dilation, ListInt, {1,1,1,1}) | |||
| .ATTR(ceil_mode, Bool, false) | |||
| .OP_END_FACTORY_REG(MaxPoolGradWithArgmaxV2) | |||
| } // namespace ge | |||
| #endif // GE_OP_NN_POOLING_OPS_H | |||
| @@ -1508,7 +1508,7 @@ REG_OP(ApplyProximalAdagradD) | |||
| *@par Attributes: | |||
| *use_locking: An optional bool. Defaults to "False".\n | |||
| * If "True", updating of the var and accum tensors will be protected by a lock; \n | |||
| * If "False", the behavior is undefined, but may exhibit less contention. | |||
| * If "False", the behavior is undefined, but may exhibit less contention. | |||
| *@par Outputs: | |||
| *var: A mutable Tensor. Has the same type as "var". | |||
| @@ -83,7 +83,7 @@ REG_OP(TanhGrad) | |||
| *@par Inputs: | |||
| *One input: | |||
| *x: A Tensor. Must be one of the following types: float16, float32, complex64, complex128, double. | |||
| *x: A Tensor. Must be one of the following types: float16, float32, complex64, complex128, int32, int64 | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type as "x". | |||
| @@ -184,7 +184,7 @@ REG_OP(Relu6Grad) | |||
| * @brief Compute sigmoid of "x" element-wise. | |||
| * @par Inputs: | |||
| * A Tensor of type complex64, complex128, float16, float32 or double. | |||
| * A Tensor of type UnaryDataType. | |||
| * @par Outputs: | |||
| * A Tensor. Has the same type as "x". | |||
| @@ -220,7 +220,7 @@ REG_OP(SigmoidGrad) | |||
| *if x>0, x+log(1+exp(-x)); otherwise log(1+exp(x)). | |||
| *@par Inputs: | |||
| *x: A Tensor of type double, float16 or float32. | |||
| *x: A Tensor of type float16 or float32. | |||
| *@par Outputs: | |||
| *y: A tensor. Has the same type and format as input "x". | |||
| @@ -442,7 +442,7 @@ REG_OP(PReluGrad) | |||
| *x: A float16, float32 or double, for the input data type. | |||
| *@par Attributes: | |||
| *alpha: A float32. Defines at which negative value the ELU saturates. Defaults to "1.0". | |||
| *alpha: A float. Defines at which negative value the ELU saturates. Defaults to "1.0". | |||
| *@par Outputs: | |||
| *y: A float16, float32 or double, for the normalized result. | |||
| @@ -673,7 +673,7 @@ REG_OP(ReduceAnyD) | |||
| *@par Attributes: | |||
| *@li operation: An optional int32 from 1(SUM), 2(ASUM), 3(SUMSQ), and 4(MEAN), | |||
| *specifying the reduction algorithm. Defaults to "1". | |||
| *specifying the reduction algorithm. Defaults to 1. | |||
| *@li axis: An optional int32, specifying the first axis to reduce. Defaults to "0". | |||
| *The value range is [-N, N-1], where N is the input tensor rank. | |||
| *@li coeff: An optional float32, specifying the scale coefficient. Defaults to "1.0". | |||
| @@ -745,190 +745,7 @@ REG_OP(EuclideanNormD) | |||
| .ATTR(keep_dims, Bool, false) | |||
| .OP_END_FACTORY_REG(EuclideanNormD) | |||
| /** | |||
| *@brief Performs instance normalization for inference. | |||
| *@par Inputs:\n | |||
| * Five inputs, including: (NC1HWC0 supported) | |||
| *@li x: A Tensor of type float16 or float32. | |||
| *@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma. | |||
| *@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta. | |||
| *@li mean: A [N, C1, 1, 1, C0] ensor of type float32, for the mean. | |||
| *@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the variance. | |||
| *@par Attributes: | |||
| *epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero. | |||
| Defaults to "0.00001". | |||
| *@par Outputs:\n | |||
| *y: A Tensor of type float16 or float32 for the normalized "x". | |||
| *batch_mean: A Tensor of type float32 for the result mean. | |||
| *batch_ variance: A Tensor of type float32 for the result variance. | |||
| *@attention Constraints: | |||
| *For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||
| */ | |||
| REG_OP(INInferV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||
| .ATTR(epsilon, Float, 0.00001) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(INInferV2) | |||
| /** | |||
| *@brief Performs reduced instance normalization. | |||
| *@par Inputs:\n | |||
| *x: A Tensor of type float16 or float32, with format NC1HWC0. | |||
| *@par Outputs: | |||
| *@li sum: A Tensor of type float32 for SUM reduced "x". | |||
| *@li square_sum: A Tensor of type float32 for SUMSQ reduced "x". | |||
| *@attention Constraints:\n | |||
| * This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||
| * This operator is used in conjunction with INTrainingUpdateV2. | |||
| */ | |||
| REG_OP(INTrainingReduceV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(sum, TensorType({DT_FLOAT})) | |||
| .OUTPUT(square_sum, TensorType({DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(INTrainingReduceV2) | |||
| /** | |||
| *@brief Performs update instance normalization. | |||
| *@par Inputs:\n | |||
| * Seven inputs, including: (NC1HWC0supported) | |||
| *@li x: A Tensor of type float16 or float32. | |||
| *@li sum: A T [N, C1, 1, 1, C0] ensor of type float32 for the output of operator INTrainingReduceV2. | |||
| *@li square_sum: A [N, C1, 1, 1, C0] Tensor of type float32 for the output of operator INTrainingReduceV2. | |||
| *@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma. | |||
| *@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta. | |||
| *@li mean: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated mean. | |||
| *@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated variance. | |||
| *@par Attributes: | |||
| *@li momentum: A required float32, specifying the momentum to update mean and var. | |||
| *@li epsilon: A required float32, specifying the small value added to variance to avoid dividing by zero. | |||
| *@par Outputs:\n | |||
| * Three outputs, including: (NC1HWC0 supported) | |||
| *@li y: A Tensor of type float16 or float32, for normalized "x". | |||
| *@li batch_mean: A Tensor of type float32, for the updated mean. | |||
| *@li batch_variance: A Tensor of type float32, for the updated variance. | |||
| *@attention Constraints: | |||
| *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||
| * This operator is used in conjunction with INTrainingReduceV2. | |||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||
| */ | |||
| REG_OP(INTrainingUpdateV2) | |||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(sum, TensorType({DT_FLOAT})) | |||
| .INPUT(square_sum, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(beta, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||
| .ATTR(momentum, Float, 0.1) | |||
| .ATTR(epsilon, Float, 0.00001) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(INTrainingUpdateV2) | |||
| /** | |||
| *@brief Performs reduced group normalization. | |||
| *@par Inputs:\n | |||
| *x: A Tensor of type float16 or float32, with format NCHW NHWC. | |||
| *@par Outputs: | |||
| *@li sum: A Tensor of type float32 for SUM reduced "x". | |||
| *@li square_sum: A Tensor of type float32 for SUMSQ reduced "x". | |||
| *@par Attributes: | |||
| *@li num_groups: Int, specifying the num of groups. required, same to GNTrainingUpdate. | |||
| *@attention Constraints:\n | |||
| * This operator is a GroupNorm fusion operator for updating the moving averages for training. \n | |||
| * This operator is used in conjunction with GNTrainingUpdate. | |||
| */ | |||
| REG_OP(GNTrainingReduce) | |||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(sum, TensorType({DT_FLOAT})) | |||
| .OUTPUT(square_sum, TensorType({DT_FLOAT})) | |||
| .ATTR(num_groups, Int, 2) | |||
| .OP_END_FACTORY_REG(GNTrainingReduce) | |||
| /** | |||
| *@brief Performs update group normalization. | |||
| *@par Inputs:\n | |||
| * Eight inputs, including: (NCHW NHWC supported) | |||
| *@li x: A Tensor of type float16 or float32. | |||
| *@li sum: A 5D Tensor of type float32, | |||
| shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||
| for the output of operator GNTrainingReduce. | |||
| *@li square_sum: A 5D Tensor of type float32, | |||
| shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||
| for the output of operator GNTrainingReduce. | |||
| *@li scale: A 5D Tensor of type float32, | |||
| shape is [1, G, D, 1, 1] for NCHW, [1, 1, 1, G, D] for NHWC | |||
| is for the scaling gamma. | |||
| *@li offset: A 5D Tensor of type float32, | |||
| shape is [1, G, D, 1, 1] for NCHW, [1, 1, 1, G, D] for NHWC | |||
| for the scaling beta. | |||
| *@li mean: A 5D Tensor of type float32, | |||
| shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||
| for the updated mean. | |||
| *@li variance: A 5D Tensor of type float32, | |||
| shape is [N, G, D, 1, 1] for NCHW, [N, 1, 1, G, D] for NHWC | |||
| for the updated variance. | |||
| *@par Attributes: | |||
| *@li epsilon: A float32, specifying the small value added to variance to avoid dividing by zero. | |||
| *@li num_groups: Int, specifying the num of groups. required, same to GNTrainingReduce | |||
| *@par Outputs:\n | |||
| * Three outputs, including: (NC1HWC0 supported) | |||
| *@li y: A Tensor of type float16 or float32, for normalized "x". | |||
| *@li batch_mean: A Tensor of type float32, for the updated mean. | |||
| *@li batch_variance: A Tensor of type float32, for the updated variance. | |||
| *@attention Constraints: | |||
| *@li This operator is a InstanceNorm fusion operator for updating the moving averages for training. \n | |||
| * This operator is used in conjunction with GNTrainingUpdate. | |||
| *@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. | |||
| */ | |||
| REG_OP(GNTrainingUpdate) | |||
| .INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .INPUT(sum, TensorType({DT_FLOAT})) | |||
| .INPUT(square_sum, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(scale, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(offset, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(mean, TensorType({DT_FLOAT})) | |||
| .OPTIONAL_INPUT(variance, TensorType({DT_FLOAT})) | |||
| .ATTR(num_groups, Int, 2) | |||
| .ATTR(epsilon, Float, 0.0001) | |||
| .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT})) | |||
| .OUTPUT(batch_mean, TensorType({DT_FLOAT})) | |||
| .OUTPUT(batch_variance, TensorType({DT_FLOAT})) | |||
| .OP_END_FACTORY_REG(GNTrainingUpdate) | |||
| } //namespace ge | |||
| #endif /* GE_OP_REDUCE_OPS_H */ | |||
| @@ -67,13 +67,6 @@ REG_OP(BasicLSTMCell) | |||
| .ATTR(activation, String, "tanh") | |||
| .OP_END_FACTORY_REG(BasicLSTMCell) | |||
| REG_OP(DynamicLSTM) | |||
| .INPUT(x, TensorType({DT_FLOAT32})) | |||
| .INPUT(w, TensorType({DT_FLOAT32})) | |||
| .INPUT(b, TensorType({DT_FLOAT32})) | |||
| .OUTPUT(output_h, TensorType({DT_FLOAT32})) | |||
| .OP_END_FACTORY_REG(DynamicLSTM) | |||
| /** | |||
| *@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state. | |||
| *@par Inputs: | |||
| @@ -94,7 +87,7 @@ REG_OP(BasicLSTMCellInputGrad) | |||
| .INPUT(dgate, TensorType({DT_FLOAT16})) | |||
| .INPUT(w, TensorType({DT_FLOAT16})) | |||
| .OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8})) | |||
| .OUTPUT(dxt, TensorType({DT_FLOAT16, DT_FLOAT32})) | |||
| .OUTPUT(dxt, TensorType({DT_FLOAT16})) | |||
| .OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32})) | |||
| .ATTR(keep_prob, Float, 1.0) | |||
| .OP_END_FACTORY_REG(BasicLSTMCellInputGrad) | |||
| @@ -89,8 +89,7 @@ REG_OP(RangeD) | |||
| *@par Inputs: | |||
| *Two inputs, including: | |||
| * @li x: A Tensor. | |||
| * Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||
| * @li x: A Tensor of type TensorType::BasicType(). | |||
| * @li multiples: A 1D Tensor of type int32 or int64. | |||
| * The length must be the same as the number of dimensions in "input" | |||
| @@ -497,7 +496,7 @@ REG_OP(UnsortedSegmentSumD) | |||
| *@par Inputs: | |||
| * Two inputs, including:\n | |||
| *@li x: An ND Tensor (up to 8D). \n | |||
| *Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float16, float32, double, complex64, complex128, string. | |||
| *Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float32, double | |||
| *@li axis: A 1D Tensor.\n | |||
| *Must be one of the following types: int32, int64 | |||
| @@ -1560,14 +1559,14 @@ REG_OP(ProposalD) | |||
| * If reverse=false: (N, H, W, C)->(N, H/stride, W/stride, C*(stride*stride)) | |||
| *@par Inputs: | |||
| *x: An (N, H, W, C) tensor. Type is float16, float32, int8, uint8, int16, uint16, int32, uint32, int64 or uint64.. | |||
| *x: An (N, H, W, C) tensor. All types except double are supported. | |||
| *@par Attributes: | |||
| *@li stride: An optional int32, specifying the plane or channel scaling factor. Defaults to "2". | |||
| *@li reverse: An optional bool, specifying the conversion mode. If "true", depth to space conversion is performed. If "false", space to depth conversion is performed. Defaults to "false". | |||
| *@par Outputs: | |||
| *y: An (N, H, W, C) tensor. Has same type as "x". | |||
| *y: An (N, H, W, C) tensor. All types except double are supported. | |||
| *@attention Constraints: | |||
| *@li If reverse=true: C/(stride*stride) yields an integer result. If reverse=false: W/stride and H/stride yield integer results. | |||
| @@ -1594,7 +1593,7 @@ REG_OP(PassThrough) | |||
| * @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32,int64, uint64. | |||
| * @li size: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | |||
| *@par Attributes: | |||
| *@li axis: A required int32, specifying the first dimension to crop. Defaults to "2". | |||
| *@li axis: A required int32, specifying the first dimension to crop. | |||
| *@li offset: A required array, specifying the shift for all/each dimension to align the cropped bottom with the reference bottom. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64. | |||
| *@par Outputs: | |||
| *y: A required Tensor. Has the same type and shape as "size". | |||
| @@ -25,11 +25,11 @@ namespace ge { | |||
| *@par Inputs: | |||
| * Two inputs, including: | |||
| *@li x: An ND Tensor. | |||
| *Must be one of the types:float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||
| *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | |||
| *@li split_dim: Must be the following type:int32. Specifies the dimension along which to split. | |||
| *@par Attributes: | |||
| *num_split: A required int32. Specifies the number of output tensors. No default value. | |||
| *num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value. | |||
| *@par Outputs: | |||
| *y: Dynamic output.A list of output tensors. Has the same type and format as "x". | |||
| @@ -186,7 +186,6 @@ REG_OP(ParallelConcat) | |||
| *@par Attributes: | |||
| *concat_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to concatenate. No default value. | |||
| *N: An attribute int8, int16, int32, or int64. Specifies the number of elements in "x". Defaults to "1". | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type and format as "x". | |||
| @@ -268,9 +267,7 @@ REG_OP(ConcatD) | |||
| *@par Inputs: | |||
| * Two inputs, including: | |||
| *@li x: Dynamic input.An NC1HWC0 or ND Tensor. | |||
| *Must be one of the following types: float16, float32, double, int32, | |||
| * uint8, int16, int8, complex64, int64, qint8, quint8, qint32, uint16, | |||
| * complex128, uint32, uint64, qint16, quint16. | |||
| *Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64 | |||
| *@li concat_dim: An int32, or int64. Specifies the dimension along which to concatenate. | |||
| *@par Attributes: | |||
| @@ -94,13 +94,6 @@ REG_OP(Transpose) | |||
| .OUTPUT(y, TensorType::BasicType()) | |||
| .OP_END_FACTORY_REG(Transpose) | |||
| REG_OP(TransData) | |||
| .INPUT(src, TensorType::BasicType()) | |||
| .OUTPUT(dst, TensorType::BasicType()) | |||
| .REQUIRED_ATTR(src_format, String) | |||
| .REQUIRED_ATTR(dst_format, String) | |||
| .OP_END_FACTORY_REG(TransData) | |||
| /** | |||
| *@brief Permutes the dimensions according to order.\n | |||
| The returned tensor's dimension i will correspond to the input dimension order[i]. | |||
| @@ -109,7 +102,7 @@ REG_OP(TransData) | |||
| *x: A Tensor. Must be one of the following types: float16, float32. | |||
| *@par Attributes: | |||
| *order: A permutation of the dimensions of "x".Type is int32.support any axis transformation.Defaults to "{0}" | |||
| *order: A permutation of the dimensions of "x".support any axis transformation | |||
| *@par Outputs: | |||
| *y: A Tensor. Has the same type as "x". | |||
| @@ -298,7 +291,7 @@ REG_OP(DepthToSpace) | |||
| *@brief Permutes data into spatial data blocks and then prunes them. | |||
| *@par Inputs: | |||
| *@li x: A 4D Tensor with format NHWC. | |||
| *@li x: A 4D Tensor with format NC1HWC0. | |||
| *@li crops: A 1D list or tuple of int32 or int64. | |||
| *Must be one of the following types: float16, float32 | |||
| @@ -307,7 +300,7 @@ REG_OP(DepthToSpace) | |||
| *block_size: A required int8, int16, int32, or int64. No default value. | |||
| *@par Outputs: | |||
| *y: A 4D Tensor with format NHWC, | |||
| *y: A 4D Tensor with format NC1HWC0, | |||
| * of type float16 or float32. | |||
| @@ -372,7 +365,7 @@ REG_OP(BatchToSpaceD) | |||
| *@par Inputs: | |||
| * Two inputs, including: | |||
| *@li x: An NHWC Tensor. Must be one of the following types: | |||
| *@li x: An NC1HWC0 Tensor. Must be one of the following types: | |||
| * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, | |||
| * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||
| *@li paddings: A 2D tensor of type int, specifying the input. | |||
| @@ -396,7 +389,7 @@ REG_OP(SpaceToBatch) | |||
| *@brief Outputs a copy of the input tensor where values from the "height" and "width" dimensions are padded and rearranged to the "batch" dimension. | |||
| *@par Inputs: | |||
| *x: An NHWC Tensor. Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||
| *x: An NC1HWC0 Tensor. Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32. | |||
| *@par Attributes: | |||
| @@ -605,13 +598,6 @@ REG_OP(Compress) | |||
| .OUTPUT(compress_index, TensorType({DT_INT8})) | |||
| .REQUIRED_ATTR(compress_parameters, ListInt) | |||
| .OP_END_FACTORY_REG(Compress) | |||
| REG_OP(CompressFcOp) | |||
| .INPUT(weight, TensorType({DT_INT8})) | |||
| .OUTPUT(weight_compress, TensorType({DT_INT8})) | |||
| .OUTPUT(compress_index, TensorType({DT_INT8})) | |||
| .REQUIRED_ATTR(compress_parameters, ListInt) | |||
| .OP_END_FACTORY_REG(CompressFcOp) | |||
| } // namespace ge | |||
| #endif // GE_OP_TRANSFORMATION_OPS_H | |||