| @@ -16,7 +16,6 @@ | |||
| #include "graph/load/new_model_manager/davinci_model.h" | |||
| #include <cce/dnn.h> | |||
| #include <graph/utils/node_utils.h> | |||
| #include <algorithm> | |||
| #include <map> | |||
| @@ -66,7 +66,7 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
| // get opcontext stored in model | |||
| const domi::KernelContext &context = kernel_def.context(); | |||
| // get kernel_type | |||
| kernel_type_ = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| kernel_type_ = static_cast<ccKernelType>(context.kernel_type()); | |||
| // get opdesc | |||
| op_desc_ = davinci_model_->GetOpByIndex(context.op_index()); | |||
| GE_CHECK_NOTNULL(op_desc_); | |||
| @@ -88,13 +88,13 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
| // get bin_file_key | |||
| const char *bin_file_key = davinci_model_->GetRegisterStub(op_desc_->GetName(), session_graph_model_id); | |||
| // new aicpu kernel(rtCpuKernelLaunch) no need to check function | |||
| if (kernel_type_ == cce::ccKernelType::CCE_AI_CORE) { | |||
| if (kernel_type_ == ccKernelType::CCE_AI_CORE) { | |||
| rtError_t rt_ret; | |||
| rt_ret = rtGetFunctionByName(const_cast<char *>(kernel_def.stub_func().c_str()), &stub_func_); | |||
| GE_IF_BOOL_EXEC(rt_ret != RT_ERROR_NONE, GELOGE(RT_FAILED, "execute rtGetFunctionByName failed. stub_func: %s", | |||
| kernel_def.stub_func().c_str()); | |||
| return RT_ERROR_TO_GE_STATUS(rt_ret);); | |||
| } else if (kernel_type_ == cce::ccKernelType::TE) { | |||
| } else if (kernel_type_ == ccKernelType::TE) { | |||
| rtError_t rt_ret; | |||
| rt_ret = rtGetFunctionByName(bin_file_key, &stub_func_); | |||
| GE_IF_BOOL_EXEC(rt_ret != RT_ERROR_NONE, | |||
| @@ -111,7 +111,7 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
| ctx_.opIndex2[i] = context.origin_op_index(i); | |||
| } | |||
| ctx_.opCount = context.origin_op_index_size(); | |||
| if (kernel_type_ == cce::ccKernelType::TE) { | |||
| if (kernel_type_ == ccKernelType::TE) { | |||
| ctx_.opIndex = context.op_index(); | |||
| uint16_t *args_offset_tmp = reinterpret_cast<uint16_t *>(const_cast<char *>(context.args_offset().data())); | |||
| if (context.args_offset().size() / sizeof(uint16_t) < 1) { | |||
| @@ -120,9 +120,9 @@ Status KernelTaskInfo::Init(const domi::TaskDef &task_def, DavinciModel *davinci | |||
| } | |||
| ret = InitTVMTask(args_offset_tmp[0], kernel_def); | |||
| } else if (kernel_type_ == cce::ccKernelType::CUSTOMIZED) { | |||
| } else if (kernel_type_ == ccKernelType::CUSTOMIZED) { | |||
| ret = InitAICPUCustomTask(context.op_index(), kernel_def); | |||
| } else if (kernel_type_ == cce::ccKernelType::AI_CPU || kernel_type_ == cce::ccKernelType::CUST_AI_CPU) { | |||
| } else if (kernel_type_ == ccKernelType::AI_CPU || kernel_type_ == ccKernelType::CUST_AI_CPU) { | |||
| ret = InitAicpuTask(context.op_index(), kernel_def); | |||
| } else { | |||
| if (kernel_def.args().empty() || args_size_ == 0) { | |||
| @@ -373,7 +373,7 @@ Status KernelTaskInfo::Distribute() { | |||
| INT32 res = mmGetEnv("SKT_ENABLE", skt_enable_env, MMPA_MAX_PATH); | |||
| int64_t env_flag = (res == EN_OK) ? strtol(skt_enable_env, nullptr, 10) : 0; | |||
| bool call_skt = ((env_flag != 0) || is_l1_fusion_enable_); | |||
| if (kernel_type_ == cce::ccKernelType::AI_CPU || kernel_type_ == cce::ccKernelType::CUST_AI_CPU) { | |||
| if (kernel_type_ == ccKernelType::AI_CPU || kernel_type_ == ccKernelType::CUST_AI_CPU) { | |||
| GELOGI("distribute task info kernel_type %d, flag %d", kernel_type_, dump_flag_); | |||
| // blockDim is reserved parameter, set to 1 | |||
| rt_ret = rtCpuKernelLaunchWithFlag(reinterpret_cast<const void *>(so_name_.c_str()), | |||
| @@ -874,7 +874,7 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k | |||
| return INTERNAL_ERROR; | |||
| } | |||
| if (kernel_type_ == cce::ccKernelType::CUST_AI_CPU) { | |||
| if (kernel_type_ == ccKernelType::CUST_AI_CPU) { | |||
| GE_CHK_STATUS_RET(ModelManager::GetInstance()->LoadCustAicpuSo(op_desc, so_name_), "launch cust aicpu so failed"); | |||
| } | |||
| @@ -946,7 +946,7 @@ Status KernelTaskInfo::InitAicpuTask(uint32_t op_index, const domi::KernelDef &k | |||
| GELOGI("Op debug is open in aicpu task info"); | |||
| dump_args_ = static_cast<char *>(args_) + sizeof(aicpu::AicpuParamHead); | |||
| } | |||
| if (kernel_type_ == cce::ccKernelType::CUST_AI_CPU) { | |||
| if (kernel_type_ == ccKernelType::CUST_AI_CPU) { | |||
| dump_flag_ |= RT_KERNEL_CUSTOM_AICPU; | |||
| } | |||
| @@ -1076,7 +1076,7 @@ Status KernelTaskInfo::StoreInputOutputTensor(const std::vector<void *> &input_d | |||
| Status KernelTaskInfo::SetContext(const domi::KernelDef &kernel_def) { | |||
| const domi::KernelContext &context = kernel_def.context(); | |||
| ctx_.kernelType = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| ctx_.kernelType = static_cast<ccKernelType>(context.kernel_type()); | |||
| ctx_.opId = context.op_id(); | |||
| ctx_.kernelFuncId = context.kernel_func_id(); | |||
| ctx_.isFlowtable = context.is_flowtable(); | |||
| @@ -1163,7 +1163,7 @@ Status KernelTaskInfo::CceUpdateKernelArgs(const domi::KernelContext &context, u | |||
| } | |||
| cce::ccStatus_t cc_ret; | |||
| std::string update_kernel_args = "ccUpdateKernelArgs"; | |||
| auto cceUpdateKernelArgs = (cce::ccStatus_t(*)(cce::ccOpContext &, uint64_t, uint64_t, uint64_t, void *, uint64_t, | |||
| auto cceUpdateKernelArgs = (cce::ccStatus_t(*)(ccOpContext &, uint64_t, uint64_t, uint64_t, void *, uint64_t, | |||
| void *))mmDlsym(handle, const_cast<char *>(update_kernel_args.c_str())); | |||
| if (cceUpdateKernelArgs == nullptr) { | |||
| GELOGE(FAILED, "Failed to invoke function ccUpdateKernelArgs"); | |||
| @@ -43,7 +43,7 @@ class KernelTaskInfo : public TaskInfo { | |||
| stream_id_(0), | |||
| so_name_(""), | |||
| kernel_name_(""), | |||
| kernel_type_(cce::ccKernelType::CCE_AI_CORE), | |||
| kernel_type_(ccKernelType::CCE_AI_CORE), | |||
| dump_flag_(RT_KERNEL_DEFAULT), | |||
| dump_args_(nullptr), | |||
| op_desc_(nullptr), | |||
| @@ -75,7 +75,7 @@ class KernelTaskInfo : public TaskInfo { | |||
| Status Release() override; | |||
| cce::ccOpContext *GetCtx() override { return &ctx_; } | |||
| ccOpContext *GetCtx() override { return &ctx_; } | |||
| FusionOpInfo *GetFusionOpInfo() override { return &fusion_op_info_; } | |||
| @@ -92,7 +92,7 @@ class KernelTaskInfo : public TaskInfo { | |||
| bool CallSaveDumpInfo() override { return call_save_dump_; }; | |||
| cce::ccOpContext ctx_; | |||
| ccOpContext ctx_; | |||
| FusionOpInfo fusion_op_info_; | |||
| private: | |||
| @@ -153,7 +153,7 @@ class KernelTaskInfo : public TaskInfo { | |||
| uint32_t stream_id_; | |||
| std::string so_name_; | |||
| std::string kernel_name_; | |||
| cce::ccKernelType kernel_type_; | |||
| ccKernelType kernel_type_; | |||
| uint32_t dump_flag_; | |||
| void *dump_args_; | |||
| OpDescPtr op_desc_; | |||
| @@ -20,7 +20,7 @@ | |||
| #include <vector> | |||
| #include "cce/customize.h" | |||
| #include "cce/taskdown_common.hpp" | |||
| #include "framework/common/taskdown_common.h" | |||
| #include "framework/common/ge_inner_error_codes.h" | |||
| #include "graph/load/new_model_manager/ts_mem_mall.h" | |||
| #include "graph/load/new_model_manager/task_info/task_info_factory.h" | |||
| @@ -87,7 +87,7 @@ class TaskInfo { | |||
| virtual Status Release() { return SUCCESS; } | |||
| virtual cce::ccOpContext *GetCtx() { return nullptr; } | |||
| virtual ccOpContext *GetCtx() { return nullptr; } | |||
| virtual uint32_t GetTaskID() { return 0xFFFFFFFF; } | |||
| @@ -15,7 +15,7 @@ | |||
| */ | |||
| #include "aicore_node_executor.h" | |||
| #include "cce/taskdown_common.hpp" | |||
| #include "framework/common/taskdown_common.h" | |||
| #include "hybrid/executor/hybrid_execution_context.h" | |||
| namespace ge { | |||
| @@ -15,7 +15,7 @@ | |||
| */ | |||
| #include "hybrid/node_executor/aicore/aicore_op_task.h" | |||
| #include "cce/taskdown_common.hpp" | |||
| #include "framework/common/taskdown_common.h" | |||
| #include "framework/common/debug/log.h" | |||
| #include "hybrid/executor/hybrid_execution_context.h" | |||
| #include "hybrid/node_executor/aicore/aicore_task_builder.h" | |||
| @@ -151,8 +151,8 @@ Status AiCoreOpTask::ValidateTaskDef(const domi::TaskDef &task_def) { | |||
| const domi::KernelDef &kernel_def = task_def.kernel(); | |||
| const domi::KernelContext &context = kernel_def.context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| if (kernel_type != cce::ccKernelType::TE) { | |||
| auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
| if (kernel_type != ccKernelType::TE) { | |||
| GELOGE(INTERNAL_ERROR, "Invalid kernel type(%d) in AiCore TaskDef.", static_cast<int>(kernel_type)); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| @@ -15,7 +15,7 @@ | |||
| */ | |||
| #include "hybrid/node_executor/aicpu/aicpu_node_executor.h" | |||
| #include "cce/taskdown_common.hpp" | |||
| #include "framework/common/taskdown_common.h" | |||
| #include "common/formats/formats.h" | |||
| #include "aicpu/common/aicpu_task_struct.h" | |||
| #include "graph/load/new_model_manager/model_manager.h" | |||
| @@ -642,8 +642,8 @@ Status AicpuNodeTask::Init(const HybridModel &model) { | |||
| const std::string &so_name = kernel_def.so_name(); | |||
| const OpDescPtr op_desc = node_item_->GetOpDesc(); | |||
| const auto &context = kernel_def.context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == cce::ccKernelType::CUST_AI_CPU) { | |||
| auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == ccKernelType::CUST_AI_CPU) { | |||
| GE_CHK_STATUS_RET(ModelManager::GetInstance()->LoadCustAicpuSo(op_desc, so_name), "load cust aicpu so failed."); | |||
| GE_CHK_STATUS_RET(ModelManager::GetInstance()->LaunchCustAicpuSo(), "Launch cust aicpu so failed."); | |||
| } | |||
| @@ -736,9 +736,9 @@ Status AicpuNodeTask::LaunchTask(TaskContext &context) { | |||
| const auto &so_name = task_def_.kernel().so_name(); | |||
| const auto &kernel_name = task_def_.kernel().kernel_name(); | |||
| const auto &kcontext = task_def_.kernel().context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(kcontext.kernel_type()); | |||
| auto kernel_type = static_cast<ccKernelType>(kcontext.kernel_type()); | |||
| uint32_t flag = RT_KERNEL_DEFAULT; | |||
| if (kernel_type == cce::ccKernelType::CUST_AI_CPU) { | |||
| if (kernel_type == ccKernelType::CUST_AI_CPU) { | |||
| flag |= static_cast<uint32_t>(RT_KERNEL_CUSTOM_AICPU); | |||
| } | |||
| auto rt_ret = rtCpuKernelLaunchWithFlag(reinterpret_cast<const void *>(so_name.c_str()), | |||
| @@ -237,8 +237,8 @@ Status SingleOpModel::BuildTaskList(SingleOp &single_op) { | |||
| if (task_type == RT_MODEL_TASK_KERNEL) { | |||
| const domi::KernelDef &kernel_def = task_def.kernel(); | |||
| const auto &context = kernel_def.context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == cce::ccKernelType::TE) { | |||
| auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == ccKernelType::TE) { | |||
| GELOGD("Building TBE task"); | |||
| TbeOpTask *tbe_task = nullptr; | |||
| auto ret = BuildKernelTask(task_def.kernel(), &tbe_task); | |||
| @@ -249,7 +249,7 @@ Status SingleOpModel::BuildTaskList(SingleOp &single_op) { | |||
| single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size()); | |||
| ParseArgTable(tbe_task, single_op); | |||
| single_op.tasks_.emplace_back(tbe_task); | |||
| } else if (kernel_type == cce::ccKernelType::AI_CPU || kernel_type == cce::ccKernelType::CUST_AI_CPU) { | |||
| } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) { | |||
| GELOGD("Building AICPU_CC task"); | |||
| OpTask *task = nullptr; | |||
| uint64_t singleop_kernel_id = aicpu_kernel_id++; | |||
| @@ -388,13 +388,13 @@ Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) { | |||
| Status SingleOpModel::BuildModelTaskKernel(const TaskDef &task_def, DynamicSingleOp &single_op) { | |||
| const domi::KernelDef &kernel_def = task_def.kernel(); | |||
| const auto &context = kernel_def.context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == cce::ccKernelType::TE) { | |||
| auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == ccKernelType::TE) { | |||
| GELOGD("Building TBE task"); | |||
| TbeOpTask *tbe_task = nullptr; | |||
| GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def.kernel(), &tbe_task)); | |||
| single_op.op_task_.reset(tbe_task); | |||
| } else if (kernel_type == cce::ccKernelType::AI_CPU || kernel_type == cce::ccKernelType::CUST_AI_CPU) { | |||
| } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) { | |||
| GELOGD("Building AICPU_CC task"); | |||
| OpTask *task = nullptr; | |||
| uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++; | |||
| @@ -15,7 +15,7 @@ | |||
| */ | |||
| #include "single_op/task/aicpu_kernel_task_builder.h" | |||
| #include "cce/taskdown_common.hpp" | |||
| #include "framework/common/taskdown_common.h" | |||
| #include "graph/load/new_model_manager/model_manager.h" | |||
| namespace ge { | |||
| @@ -58,8 +58,8 @@ Status AiCpuCCTaskBuilder::BuildTask(AiCpuCCTask &task, uint64_t kernel_id) { | |||
| task.op_desc_ = op_desc_; | |||
| const auto &context = kernel_def_.context(); | |||
| auto kernel_type = static_cast<cce::ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == cce::ccKernelType::CUST_AI_CPU) { | |||
| auto kernel_type = static_cast<ccKernelType>(context.kernel_type()); | |||
| if (kernel_type == ccKernelType::CUST_AI_CPU) { | |||
| task.is_custom_ = true; | |||
| task.dump_flag_ |= RT_KERNEL_CUSTOM_AICPU; | |||
| GE_CHK_STATUS_RET(ModelManager::GetInstance()->LoadCustAicpuSo(op_desc_, so_name), "launch cust aicpu so failed"); | |||
| @@ -369,6 +369,7 @@ static const char *const OP_BANK_PATH = ge::OP_BANK_PATH_FLAG.c_str(); | |||
| static const char *const OP_DEBUG_LEVEL = ge::OP_DEBUG_LEVEL.c_str(); | |||
| // for interface: aclgrphBuildModel | |||
| #ifdef __GNUC__ | |||
| const std::set<std::string> ir_builder_suppported_options = {INPUT_FORMAT, | |||
| INPUT_SHAPE, | |||
| OP_NAME_MAP, | |||
| @@ -424,6 +425,7 @@ const std::set<std::string> global_options = {CORE_TYPE, | |||
| DEBUG_DIR, | |||
| OP_COMPILER_CACHE_DIR, | |||
| OP_COMPILER_CACHE_MODE}; | |||
| #endif | |||
| } // namespace ir_option | |||
| } // namespace ge | |||
| @@ -17,7 +17,6 @@ | |||
| #ifndef INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_ | |||
| #define INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_ | |||
| #include <cce/dnn.h> | |||
| #include <memory> | |||
| #include <vector> | |||
| @@ -32,7 +31,6 @@ | |||
| #include "proto/insert_op.pb.h" | |||
| namespace ge { | |||
| using namespace cce; | |||
| using domi::Status; | |||
| // Add Sub Mul | |||
| @@ -76,18 +74,7 @@ class OpUtils { | |||
| static inline bool CheckEnumValid(int32_t check_value, int32_t min_enum_value, int32_t max_enum_value) { | |||
| return check_value < min_enum_value ? false : (check_value >= max_enum_value ? false : true); | |||
| } | |||
| /// | |||
| /// @ingroup domi_omg | |||
| /// @brief Convert the dimension of array according to different format | |||
| /// @param [in] src_format src_shape format | |||
| /// @param [in] src Dimension array to be converted | |||
| /// @param [in] dst_format Target format after conversion | |||
| /// @param [out] dst Dimension array after conversion | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| static bool ConvertDim(ccTensorFormat_t src_format, const std::vector<int64_t> &src, ccTensorFormat_t dst_format, | |||
| std::vector<int64_t> &dst); | |||
| /// | |||
| /// @ingroup domi_omg | |||
| /// @brief Determine whether to manually calculate the tensor size based on the values of format and dim | |||
| @@ -97,73 +84,6 @@ class OpUtils { | |||
| /// @return false skip | |||
| /// | |||
| static bool IsComputDimsSize(const int32_t format, const uint32_t real_dim_cnt); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Initialize the tensor description, which is used for input and output. | |||
| /// @param [in] model_tensor Tensor information defined by the offline model | |||
| /// @param [out] cc_tensor Tensor definition used by CC | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| static Status InitTensorDescriptor(const ge::GeTensorDesc &model_tensor, ccTensorDescriptor_t &cc_tensor); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Initialize the tensor description, which is used for input and output. | |||
| /// @param [in] model_tensor Tensor information defined by the offline model | |||
| /// @param [in] dst_data_type data_type of the target cc_tensor | |||
| /// @param [out] cc_tensor Tensor definition used by CC | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| static Status InitTensorDescriptor(const ge::GeTensorDesc &model_tensor, int32_t dst_data_type, | |||
| ccTensorDescriptor_t &cc_tensor); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Initialize the tensor description for bias. | |||
| /// @param [in] model_tensor Tensor information defined by the offline model | |||
| /// @param [out] cc_tensor Tensor definition used by CC | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| /// | |||
| static Status InitTensorDescriptor(const ge::GeTensor &model_tensor, ccTensorDescriptor_t &cc_tensor); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Initialize the tensor description for bias. | |||
| /// @param [in] model_tensor Tensor information defined by the offline model | |||
| /// @param [in] dst_data_type data_type of the target cc_tensor | |||
| /// @param [out] cc_tensor Tensor definition used by CC | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| static Status InitTensorDescriptor(const ge::GeTensor &model_tensor, int32_t dst_data_type, | |||
| ccTensorDescriptor_t &cc_tensor); | |||
| static Status InitTensorDescriptor(int32_t format, int32_t data_type, const std::vector<int64_t> &dim, | |||
| ccTensorDescriptor_t &cc_tensor, uint32_t real_dim_cnt = 4); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Destroys a tensor | |||
| /// @param [inout] cc_tensor Tensor definition used by CC | |||
| /// | |||
| static void DestroyTensorDescriptor(ccTensorDescriptor_t &cc_tensor) noexcept; | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Destroys a tensor | |||
| /// @param [inout] cc_filter cc_filter Definition of the filter used by CC | |||
| /// | |||
| static void DestroyFilterDescriptor(ccFilterDescriptor_t &cc_filter); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Initializing Filter Description | |||
| /// @param [in] model_filter Filter information defined in the offline model | |||
| /// @param [out] cc_filter Definition of the filter used by CC | |||
| /// @return SUCCESS success | |||
| /// @return FAILED fail | |||
| /// | |||
| static Status InitFilterDescriptor(const ge::GeTensor &model_filter, ccFilterDescriptor_t &cc_filter); | |||
| /// | |||
| /// @brief Extract AIPP parameters from AttrDefMap and splice them | |||
| @@ -209,16 +129,7 @@ class OpUtils { | |||
| /// @param [out] output Data pointer after conversion. The format is HWCK | |||
| /// | |||
| static void TransDataKCHW2HWCK(const void *input, int64_t K, int64_t C, int64_t H, int64_t W, void *output); | |||
| /// | |||
| /// @ingroup domi_omg | |||
| /// @brief Initialize the input and output description of the data node which is applied to filter weight in the | |||
| /// training network | |||
| /// @param [in] model_tensor input and output tensor information | |||
| /// @param [out] cc_tensor Tensor in CCE format after conversion | |||
| /// | |||
| static Status InitFilterTensorDescriptor(const ge::GeTensorDesc &model_tensor, ccFilterDescriptor_t &cc_tensor); | |||
| static void SetTensorDescriptorAllOffsetQuantizeInfo(const GeTensorDesc &tensor, ccTensorDescriptor_t cc_tensor); | |||
| static vector<ConstGeTensorPtr> GetWeights(const ge::Node &node); | |||
| static vector<ConstGeTensorPtr> GetWeights(ge::ConstNodePtr node); | |||
| static vector<GeTensorPtr> MutableWeights(const ge::Node &node); | |||
| @@ -228,69 +139,7 @@ class OpUtils { | |||
| static Status GetShapeDataFromConstTensor(const ConstGeTensorPtr &tensor, DataType type, std::vector<int64_t> &dims); | |||
| private: | |||
| friend class CceTensorDescriptor; | |||
| static uint32_t GetRealDimCnt(const GeTensorDesc &tensor_desc); | |||
| }; | |||
| class CceTensorDescriptor; | |||
| using CceTensorDescriptorPtr = std::shared_ptr<CceTensorDescriptor>; | |||
| class CceTensorDescriptor { | |||
| public: | |||
| explicit CceTensorDescriptor(ccTensorDescriptor_t cc_tensor); | |||
| CceTensorDescriptor(const CceTensorDescriptor &) = delete; | |||
| CceTensorDescriptor &operator=(const CceTensorDescriptor &) = delete; | |||
| ~CceTensorDescriptor(); | |||
| ccTensorDescriptor_t GetPtr() { return cc_tensor_; } | |||
| /// | |||
| /// @brief Initializes the tensor based on shape information. | |||
| /// @param[in] format data permutation format | |||
| /// @param[in] data_type Data Type | |||
| /// @param[in] dim dim information | |||
| /// @return return code | |||
| /// | |||
| Status InitTensor(int32_t format, int32_t data_type, const std::vector<int64_t> &dims); | |||
| Status InitTensor(int32_t format, int32_t data_type, const ge::GeShape &shape); | |||
| /// | |||
| /// @brief get format of tensor | |||
| /// @param[out] format format of the tensor | |||
| /// @return return code | |||
| /// | |||
| Status GetFormat(ccTensorFormat_t *format); | |||
| /// | |||
| /// @brief Obtains the size of the tensor. | |||
| /// @param[out] size size of Tensor | |||
| /// @return return code | |||
| /// | |||
| Status GetTensorSizeInBytes(uint32_t *size); | |||
| /// | |||
| /// @brief transform tensor between 4d(NCHW) and 5d(NC1HWC0) | |||
| /// @param [in] xDesc descriptor of input tensor | |||
| /// @param [in] x point to input data in host memory | |||
| /// @param [in] dataTypeTransmode mode of data type transform | |||
| /// @param [in] yDesc descriptor of output tensor | |||
| /// @param [in|out] y point to output data in host memory | |||
| /// @param [in] ySizeInBytes size of outputData | |||
| /// @return return code | |||
| /// | |||
| static Status TransTensor(const ccTensorDescriptor_t xDesc, const void *x, const CceTensorDescriptorPtr &yDesc, | |||
| void *y, uint32_t ySizeInBytes); | |||
| /// | |||
| /// @brief CceTensorDescriptor Static Constructor | |||
| /// @return CceTensorDescriptor smart pointer | |||
| /// | |||
| static CceTensorDescriptorPtr Create(); | |||
| ccTensorDescriptor_t cc_tensor_ = nullptr; | |||
| }; | |||
| } // namespace ge | |||
| #endif // INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_ | |||
| @@ -17,7 +17,6 @@ | |||
| #ifndef INC_FRAMEWORK_COMMON_OP_OP_PARSER_UTIL_H_ | |||
| #define INC_FRAMEWORK_COMMON_OP_OP_PARSER_UTIL_H_ | |||
| #include <cce/dnn.h> | |||
| #include <limits.h> | |||
| #include <math.h> | |||
| #include <stdint.h> | |||
| @@ -31,10 +30,7 @@ const uint32_t NORMAL_OUTPUT_NUM = 1; | |||
| const uint32_t NORMAL_WORKSPACE_NUM = 0; | |||
| const int32_t NORMAL_1D_DIM_NUM = 1; | |||
| const int32_t NORMAL_SCALE_DIM_NUM = 0; | |||
| const int NORMAL_TENSOR_FORMAT = static_cast<const int>(cce::CC_TENSOR_NC1HWC0); | |||
| const int NORMAL_TENSOR_SIZE = 4; | |||
| const int NORMAL_DEVICE_DATA_TYPE = static_cast<const int>(cce::CC_DATA_HALF); | |||
| const int DEFAULT_POOLING_MODE = static_cast<const int>(cce::CC_POOLING_MAX); | |||
| const uint32_t DEFAULT_REAL_DIM_CNT = 4; | |||
| // const | |||
| @@ -183,7 +179,6 @@ const int32_t SSD_DETECTIONOUTPUT_BACKGROUND_LABEL_ID_DEFAULT_VALUE = 0; | |||
| const float SSD_DETECTIONOUTPUT_NMS_THRESHOLD_DEFAULT_VALUE = 0.3; | |||
| const int32_t SSD_DETECTIONOUTPUT_TOP_K_DEFAULT_VALUE = 200; | |||
| const float SSD_DETECTIONOUTPUT_ETA_DEFAULT_VALUE = 1.0; | |||
| const int SSD_DETECTIONOUTPUT_CODE_TYPE_DEFAULT_VALUE = static_cast<const int>(cce::CC_BOX_CENTER_SIZE); | |||
| const int32_t SSD_DETECTIONOUTPUT_KEEP_TOP_K_DEFAULT_VALUE = 200; | |||
| const bool SSD_DETECTIONOUTPUT_VARIANCE_ENCODED_IN_TARGET_DEFAULT_VALUE = false; | |||
| const float SSD_DETECTIONOUTPUT_CONFIDENCE_THRESHOLD_DEFAULT_VALUE = 0.1; | |||
| @@ -200,7 +195,6 @@ const float REFINEDET_DETECTIONOUTPUT_NMS_THRESHOLD_DEFAULT_VALUE = 0.3; | |||
| const int32_t REFINEDET_DETECTIONOUTPUT_TOP_K_DEFAULT_VALUE = 200; | |||
| const float REFINEDET_DETECTIONOUTPUT_ETA_DEFAULT_VALUE = 1.0; | |||
| const bool REFINEDET_DETECTIONOUTPUT_VARIANCE_ENCODED_IN_TARGET_DEFAULT_VALUE = false; | |||
| const int REFINEDET_DETECTIONOUTPUT_CODE_TYPE_DEFAULT_VALUE = static_cast<const int>(cce::CC_BOX_CENTER_SIZE); | |||
| const int32_t REFINEDET_DETECTIONOUTPUT_KEEP_TOP_K_DEFAULT_VALUE = 200; | |||
| const float REFINEDET_DETECTIONOUTPUT_CONFIDENCE_THRESHOLD_DEFAULT_VALUE = 0.1; | |||
| const float REFINEDET_DETECTIONOUTPUT_OBJECTNESS_SCORE_DEFAULT_VALUE = 0; | |||
| @@ -0,0 +1,73 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef INC_FRAMEWORK_COMMON_TASKDOWN_COMMON_H_ | |||
| #define INC_FRAMEWORK_COMMON_TASKDOWN_COMMON_H_ | |||
| #include "runtime/rt.h" | |||
| using namespace std; | |||
| namespace ge { | |||
| #define CC_FUSION_OP_MAX 32 | |||
| typedef enum tagCcStatus { | |||
| CC_STATUS_SUCCESS = 0, /**< succ */ | |||
| CC_STATUS_NOT_INITIALIZED = 1, /**< not init */ | |||
| CC_STATUS_ALLOC_FAILED = 2, /**< alloc mem failed */ | |||
| CC_STATUS_BAD_PARAM = 3, /**< para check failed */ | |||
| CC_STATUS_INTERNAL_ERROR = 4, /**< internal error */ | |||
| CC_STATUS_KERNEL_ERROR = 5, /**< kernel error */ | |||
| CC_STATUS_RUNTIME_ERROR = 6, /**< runtime error */ | |||
| CC_STATUS_NOT_SUPPORTED = 7, /**< unsupport error */ | |||
| CC_STATUS_INVALID_VALUE = 7, /**< invalid value error for blas*/ | |||
| CC_STATUS_RESERVED /**< just for check */ | |||
| } ccStatus_t; | |||
| typedef enum tagccKernelType { | |||
| CCE_AI_CORE = 0, /* cce aicore */ | |||
| CCE_AI_CPU = 1, /* cce aicpu */ | |||
| TE = 2, /* te operator*/ | |||
| CUSTOMIZED = 3, /* customized operator */ | |||
| TE_AI_CORE = 4, /* te aicore operator*/ | |||
| TE_AI_CPU = 5, /* te aicpu operator */ | |||
| AI_CPU = 6, /* aicpu */ | |||
| CUST_AI_CPU = 7, /* custom aicpu*/ | |||
| INVALID = 8, /* unknown kernel type */ | |||
| } ccKernelType; | |||
| typedef struct tagOpContext { | |||
| ccKernelType kernelType; | |||
| uint32_t opId; | |||
| uint32_t kernelFuncId; | |||
| uint32_t opIndex; | |||
| uint32_t opCount; | |||
| uint32_t opIndex2[CC_FUSION_OP_MAX]; | |||
| bool isFlowtable; | |||
| uint16_t *argsOffset; | |||
| uint32_t argsCount; | |||
| uint64_t genDataBaseAddr; | |||
| uint64_t genDataBaseSize; | |||
| uint64_t genWeightBaseAddr; | |||
| uint64_t genWeightBaseSize; | |||
| uint64_t genVariableBaseAddr; | |||
| uint64_t genVariableBaseSize; | |||
| uint64_t l2ctrlSize; | |||
| } ccOpContext; | |||
| } // namespace ge | |||
| #endif // INC_FRAMEWORK_COMMON_TASKDOWN_COMMON_H_ | |||