| @@ -24,6 +24,7 @@ namespace ge { | |||||
| class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY GeOptInfo { | class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY GeOptInfo { | ||||
| public: | public: | ||||
| GeOptInfo() = default; | GeOptInfo() = default; | ||||
| ~GeOptInfo() = default; | |||||
| static Status SetOptInfo(); | static Status SetOptInfo(); | ||||
| }; | }; | ||||
| } // namespace ge | } // namespace ge | ||||
| @@ -570,6 +570,7 @@ Status ModelManager::DataInputTensor(uint32_t model_id, const std::vector<ge::Te | |||||
| uint32_t length = static_cast<uint32_t>(cur_dynamic_dims.size() * sizeof(int32_t)); | uint32_t length = static_cast<uint32_t>(cur_dynamic_dims.size() * sizeof(int32_t)); | ||||
| GE_CHK_BOOL_EXEC(memcpy_s(data.data, length, cur_dynamic_dims.data(), length) == EOK, | GE_CHK_BOOL_EXEC(memcpy_s(data.data, length, cur_dynamic_dims.data(), length) == EOK, | ||||
| REPORT_CALL_ERROR("E19999", "memcpy data failed, size:%u", length); | REPORT_CALL_ERROR("E19999", "memcpy data failed, size:%u", length); | ||||
| delete[] reinterpret_cast<int32_t *>(data.data); | |||||
| return INTERNAL_ERROR, "[Memcpy][Data] failed, size:%u.", length); | return INTERNAL_ERROR, "[Memcpy][Data] failed, size:%u.", length); | ||||
| data.length = length; | data.length = length; | ||||
| input_data.blobs.push_back(data); | input_data.blobs.push_back(data); | ||||
| @@ -47,7 +47,7 @@ class MemcpyAsyncTaskInfo : public TaskInfo { | |||||
| uint64_t count_; | uint64_t count_; | ||||
| uint32_t kind_; | uint32_t kind_; | ||||
| vector<void *> io_addrs_; | vector<void *> io_addrs_; | ||||
| int64_t fixed_addr_offset_; | |||||
| int64_t fixed_addr_offset_ = 0; | |||||
| DavinciModel *davinci_model_ = nullptr; | DavinciModel *davinci_model_ = nullptr; | ||||
| uint32_t args_offset_ = 0; | uint32_t args_offset_ = 0; | ||||
| }; | }; | ||||
| @@ -1755,8 +1755,8 @@ Status GraphPrepare::CtrlFlowPreProcess() { | |||||
| PassManager graph_pass; | PassManager graph_pass; | ||||
| // After InferShape Mark v1 control flow for unknown shape. | // After InferShape Mark v1 control flow for unknown shape. | ||||
| auto mark_force_unknown_pass = new (std::nothrow) MarkForceUnknownForCondPass; | |||||
| GE_CHK_STATUS_RET(graph_pass.AddPass("PreRun::MarkForceUnknownForCondPass", mark_force_unknown_pass)); | |||||
| GE_CHK_STATUS_RET(graph_pass.AddPass("PreRun::MarkForceUnknownForCondPass", | |||||
| new (std::nothrow) MarkForceUnknownForCondPass)); | |||||
| GE_CHK_STATUS_RET(graph_pass.Run(compute_graph_)); | GE_CHK_STATUS_RET(graph_pass.Run(compute_graph_)); | ||||
| return SUCCESS; | return SUCCESS; | ||||
| @@ -172,6 +172,7 @@ HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uin | |||||
| config_.num_executors = kNumExecutors; | config_.num_executors = kNumExecutors; | ||||
| config_.num_stages = model_->GetRootGraphItem()->NumGroups(); | config_.num_stages = model_->GetRootGraphItem()->NumGroups(); | ||||
| config_.device_id = device_id_; | config_.device_id = device_id_; | ||||
| config_.iteration_end = 0; | |||||
| } | } | ||||
| Status StageExecutor::InitExecutionContext() { | Status StageExecutor::InitExecutionContext() { | ||||
| @@ -945,7 +945,7 @@ Status HybridModelBuilder::VarNodeToTensor(const NodePtr &var_node, std::unique_ | |||||
| } | } | ||||
| int64_t var_size = CalcVarSizeInBytes(*tensor_desc); | int64_t var_size = CalcVarSizeInBytes(*tensor_desc); | ||||
| // var size is only for checking, will not allocate any memory by it | |||||
| GE_CHECK_GE(var_size, 0); | |||||
| tensor.reset(new(std::nothrow)TensorValue(dev_mem, static_cast<size_t>(var_size))); | tensor.reset(new(std::nothrow)TensorValue(dev_mem, static_cast<size_t>(var_size))); | ||||
| GE_CHECK_NOTNULL(tensor); | GE_CHECK_NOTNULL(tensor); | ||||
| GELOGI("Get var memory addr %p for node %s, size = %ld, mem_type=%u", dev_mem, var_name.c_str(), var_size, mem_type); | GELOGI("Get var memory addr %p for node %s, size = %ld, mem_type=%u", dev_mem, var_name.c_str(), var_size, mem_type); | ||||
| @@ -181,7 +181,7 @@ Status KnownNodeExecutor::PrepareTask(NodeTask &task, TaskContext &context) cons | |||||
| } | } | ||||
| Status KnownNodeExecutor::SetDavinciModel(const HybridModel &model, const NodePtr &node, | Status KnownNodeExecutor::SetDavinciModel(const HybridModel &model, const NodePtr &node, | ||||
| std::shared_ptr<DavinciModel> &davinci_model) const { | |||||
| std::shared_ptr<DavinciModel> &davinci_model) const { | |||||
| // set known node flag as true | // set known node flag as true | ||||
| davinci_model->SetKnownNode(true); | davinci_model->SetKnownNode(true); | ||||
| davinci_model->SetId(model.GetModelId()); | davinci_model->SetId(model.GetModelId()); | ||||
| @@ -62,7 +62,7 @@ class RdmaNodeTask : public NodeTask { | |||||
| int32_t local_index_ = 0; | int32_t local_index_ = 0; | ||||
| std::mutex hccl_mutex_; | std::mutex hccl_mutex_; | ||||
| std::condition_variable cond_; | std::condition_variable cond_; | ||||
| bool skip_flag_; | |||||
| bool skip_flag_ = false; | |||||
| }; | }; | ||||