| @@ -139,7 +139,8 @@ int MemoryDumper::OpenFile(const char *filename) { | |||
| GE_IF_BOOL_EXEC( | |||
| -1 != path_split_pos, string prefix_path = std::string(filename).substr(0, path_split_pos); | |||
| string last_path = std::string(filename).substr(path_split_pos, strlen(filename) - 1); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(prefix_path.length() >= MMPA_MAX_PATH, return kInvalidFd, "Prefix path is too long!"); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(prefix_path.length() >= MMPA_MAX_PATH, return kInvalidFd, | |||
| "Prefix path is too long!"); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(mmRealPath(prefix_path.c_str(), tmp_path, MMPA_MAX_PATH) != EN_OK, return kInvalidFd, | |||
| "Dir %s does not exit.", prefix_path.c_str()); | |||
| real_path = std::string(tmp_path) + last_path;) | |||
| @@ -120,11 +120,11 @@ Status ModelHelper::SaveModelTbeKernel(std::shared_ptr<OmFileSaveHelper> &om_fil | |||
| TBEKernelStore tbe_kernel_store = ge_model->GetTBEKernelStore(); | |||
| GELOGD("TBE_KERNELS size is %zu", tbe_kernel_store.DataSize()); | |||
| if (tbe_kernel_store.DataSize() > 0) { | |||
| GE_CHK_STATUS_RET( | |||
| SaveModelPartition(om_file_save_helper, ModelPartitionType::TBE_KERNELS, | |||
| ge_model->GetTBEKernelStore().Data(), | |||
| ge_model->GetTBEKernelStore().DataSize(), model_index), | |||
| "Add tbe kernel partition failed"); | |||
| GE_CHK_STATUS_RET(SaveModelPartition(om_file_save_helper, | |||
| ModelPartitionType::TBE_KERNELS, | |||
| ge_model->GetTBEKernelStore().Data(), | |||
| ge_model->GetTBEKernelStore().DataSize(), | |||
| model_index), "Add tbe kernel partition failed"); | |||
| } | |||
| // no need to check value, DATA->NetOutput | |||
| (void)tbe_kernel_store.Load(tbe_kernel_store.Data(), tbe_kernel_store.DataSize()); | |||
| @@ -639,7 +639,8 @@ Status GeExecutor::UnloadModel(uint32_t model_id) { | |||
| return ACL_ERROR_GE_INTERNAL_ERROR; | |||
| } | |||
| std::shared_ptr<hybrid::HybridDavinciModel> hybrid_davinci_model = ModelManager::GetInstance()->GetHybridModel(model_id); | |||
| std::shared_ptr<hybrid::HybridDavinciModel> hybrid_davinci_model = | |||
| ModelManager::GetInstance()->GetHybridModel(model_id); | |||
| if (hybrid_davinci_model != nullptr) { | |||
| uint64_t session_id = hybrid_davinci_model->GetSessionId(); | |||
| VarManagerPool::Instance().RemoveVarManager(session_id); | |||
| @@ -21,7 +21,7 @@ | |||
| namespace { | |||
| const uint32_t kRangeCeilInterval = 2; | |||
| const uint32_t kLogBase = 2; | |||
| const int64_t kLargeBlockSize = 8 * 1024 * 1024; | |||
| const int64_t kLargeBlockSize = 8388608; // 8 * 1024 * 1024 | |||
| const int64_t kLargeBlockRangeSize = 2; | |||
| } // namespace | |||
| @@ -1415,8 +1415,8 @@ Status BlockMemAssigner::AssignOutputMemoryWithReuse(const NodePtr &node, vector | |||
| bool reset_zero_copy_flag = false; | |||
| bool no_need_assign_memory = ((size == 0) || CheckIsZeroMemNodeType(node->GetType())); | |||
| if (!no_need_assign_memory) { | |||
| out_node_set_continuous_input = | |||
| IsOutNodeSetContinuousInput(node, i, peer_name, peer_input_index, no_need_assign_memory, reset_zero_copy_flag); | |||
| out_node_set_continuous_input = IsOutNodeSetContinuousInput(node, i, peer_name, peer_input_index, | |||
| no_need_assign_memory, reset_zero_copy_flag); | |||
| GE_IF_BOOL_EXEC(!no_need_assign_memory, | |||
| no_need_assign_memory = IsAtomicOutputMemory(node, i, is_atomic, out_node_set_continuous_input);); | |||
| } | |||
| @@ -1499,7 +1499,7 @@ void BlockMemAssigner::AssignMemoryWithReuse(vector<int64_t> &ranges) { | |||
| bool workspace_skip_flag = false; | |||
| if (has_tvm_workspace_mem_type_attr && tvm_workspace_memory_type[i] == RT_MEMORY_L1) { | |||
| GELOGI( | |||
| "fusion: node[%s]workspace index[%zu] is not hbm type, add to zero_memory_list, workspace memory type [%ld]", | |||
| "fusion: node[%s]workspace idx[%zu] is not hbm type, add to zero_memory_list, workspace memory type [%ld]", | |||
| node_op_desc->GetName().c_str(), i, tvm_workspace_memory_type[i]); | |||
| workspace_skip_flag = true; | |||
| } | |||
| @@ -49,7 +49,8 @@ inline bool HasContinuousStreamLabel(const ge::OpDescPtr &op_desc, std::string & | |||
| } | |||
| bool IsHcclOp(const string &op_type) { | |||
| const set<string> hccl_op_types({ge::HCOMBROADCAST, ge::HCOMALLGATHER, ge::HCOMALLREDUCE, ge::HCOMREDUCESCATTER, ge::HCOMREDUCE}); | |||
| const set<string> hccl_op_types({ge::HCOMBROADCAST, ge::HCOMALLGATHER, ge::HCOMALLREDUCE, ge::HCOMREDUCESCATTER, | |||
| ge::HCOMREDUCE}); | |||
| return hccl_op_types.find(op_type) != hccl_op_types.end(); | |||
| } | |||
| } // namespace | |||
| @@ -83,7 +83,7 @@ const uint32_t kAddrLen = sizeof(void *); | |||
| const int kDecimal = 10; | |||
| const int kBytes = 8; | |||
| const uint32_t kDataMemAlignSizeCompare = 64; | |||
| const uint32_t kDumpL1FusionOpMByteSize = 2 * 1024 * 1024; | |||
| const uint32_t kDumpL1FusionOpMByteSize = 2097152; // 2 * 1024 * 1024 | |||
| const uint32_t kDumpFlagOfL1Fusion = 0; | |||
| const char *const kDefaultBatchLable = "Batch_default"; | |||
| const char *const kGetDynamicDimsName = "ascend_mbatch_get_dynamic_dims_node"; | |||
| @@ -330,8 +330,8 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) { | |||
| GELOGE(GE_EXEC_ALLOC_FEATURE_MAP_MEM_FAILED, "Alloc feature map memory failed. size: %zu", data_size); | |||
| return GE_EXEC_ALLOC_FEATURE_MAP_MEM_FAILED; | |||
| } | |||
| GEEVENT("[IMAS]InitFeatureMapAndP2PMem graph_%u MallocMemory type[F] memaddr[%p] mem_size[%zu]", runtime_param_.graph_id, | |||
| mem_base_, data_size); | |||
| GEEVENT("[IMAS]InitFeatureMapAndP2PMem graph_%u MallocMemory type[F] memaddr[%p] mem_size[%zu]", | |||
| runtime_param_.graph_id, mem_base_, data_size); | |||
| if (!is_inner_weight_base_) { | |||
| weights_mem_base_ = mem_base_; | |||
| @@ -1543,7 +1543,8 @@ Status DavinciModel::LoadWithQueue() { | |||
| } | |||
| if (output_queue_ids_.size() != new_output_data_info_.size()) { | |||
| GELOGE(ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID, "Output queue ids not match model: output_queue=%zu output_data=%zu", | |||
| GELOGE(ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID, | |||
| "Output queue ids not match model: output_queue=%zu output_data=%zu", | |||
| output_queue_ids_.size(), new_output_data_info_.size()); | |||
| return ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID; | |||
| } | |||
| @@ -4061,7 +4062,7 @@ void DavinciModel::SetDataDumperArgs(const ComputeGraphPtr &compute_graph) { | |||
| data_dumper_.SetDeviceId(device_id); | |||
| // set loop count addr | |||
| auto get_var_addr = [](const OpDescPtr &op, const RuntimeParam &runtime_param) -> void * { | |||
| auto get_var_addr = [](const OpDescPtr &op, const RuntimeParam &runtime_param) -> void* { | |||
| if (op != nullptr) { | |||
| auto v_output_size = ModelUtils::GetOutputSize(op); | |||
| auto v_output_addr = ModelUtils::GetOutputDataAddrs(runtime_param, op); | |||
| @@ -550,7 +550,8 @@ Status GraphManager::OptimizeSubGraphWithMultiThreads(ComputeGraphPtr compute_gr | |||
| (void) AttrUtils::SetStr(subgraph->GetSubGraph(), ATTR_NAME_OP_COMPILE_STRATEGY, op_compile_strategy); | |||
| } | |||
| std::future<Status> f = executor.commit(GraphManager::ProcessSubGraphWithMultiThreads, this, | |||
| compute_graph->GetGraphID(), subgraph, compute_graph, session_id, GetThreadLocalContext()); | |||
| compute_graph->GetGraphID(), subgraph, compute_graph, | |||
| session_id, GetThreadLocalContext()); | |||
| if (!f.valid()) { | |||
| GELOGE(FAILED, "Future is invalid"); | |||
| return FAILED; | |||
| @@ -32,7 +32,8 @@ Debug::~Debug() = default; | |||
| void Debug::DumpProto(const Message &proto, const char *file) { | |||
| std::string file_path = RealPath(file); | |||
| int fd = mmOpen2(file_path.c_str(), M_WRONLY | M_CREAT | O_TRUNC, M_IRUSR | M_IWUSR | M_UMASK_GRPREAD | M_UMASK_OTHREAD); | |||
| int fd = mmOpen2(file_path.c_str(), M_WRONLY | M_CREAT | O_TRUNC, M_IRUSR | M_IWUSR | M_UMASK_GRPREAD | | |||
| M_UMASK_OTHREAD); | |||
| if (fd == -1) { | |||
| GELOGW("Write %s failed", file_path.c_str()); | |||
| return; | |||
| @@ -150,7 +150,8 @@ Status SubgraphPass::SubgraphOutputNode(const ComputeGraphPtr &graph, const Node | |||
| std::string op_type; | |||
| bool insert_flag = NodeUtils::GetConstOpType(in_node, op_type) || | |||
| IsAtomicRequired(in_node, peer_out_anchor->GetIdx()) || IsOutputContinuesRequired(in_node) || | |||
| ((in_node->GetType() == DATA) && (kWhileOpTypes.count(graph->GetParentNode()->GetType()) == 0)) || | |||
| ((in_node->GetType() == DATA) && | |||
| (kWhileOpTypes.count(graph->GetParentNode()->GetType()) == 0)) || | |||
| (!graph->GetGraphUnknownFlag() && NodeUtils::IsDynamicShape(node) && | |||
| (kWhileOpTypes.count(in_node->GetType()) != 0)); | |||
| if (insert_flag) { | |||
| @@ -1621,7 +1621,8 @@ Status GraphPrepare::CheckUserInput(const std::vector<GeTensor> &user_input) { | |||
| for (size_t i = 0; i < desc.GetShape().GetDimNum(); ++i) { | |||
| if (desc.GetShape().GetDim(i) < 0) { | |||
| std::string situation = "data dim[" + std::to_string(i) + "][" + std::to_string(desc.GetShape().GetDim(i)) + "]" ; | |||
| std::string situation = "data dim[" + std::to_string(i) + "][" + std::to_string(desc.GetShape().GetDim(i)) + | |||
| "]"; | |||
| std::string reason = "it need >= 0"; | |||
| ErrorManager::GetInstance().ATCReportErrMessage("E19025", {"situation", "reason"}, {situation, reason}); | |||
| GELOGE(GE_GRAPH_INIT_FAILED, "data dim %zu is not supported, need >= 0, real:%ld.", i, | |||
| @@ -180,9 +180,9 @@ Status SsdPriorboxKernel::SetVariance(const vector<float> &variance, const int d | |||
| return SUCCESS; | |||
| } | |||
| Status SsdPriorboxKernel::GetNumPriorAndDimSize(uint32_t aspect_ratios_size, uint32_t min_sizes_size, uint32_t max_sizes_size, | |||
| int layer_width, int layer_height, int &num_priors, | |||
| int &dim_size) const { | |||
| Status SsdPriorboxKernel::GetNumPriorAndDimSize(uint32_t aspect_ratios_size, uint32_t min_sizes_size, | |||
| uint32_t max_sizes_size, int layer_width, int layer_height, | |||
| int &num_priors, int &dim_size) const { | |||
| if (ge::CheckUint32MulOverflow(min_sizes_size, aspect_ratios_size) != SUCCESS) { | |||
| return PARAM_INVALID; | |||
| } | |||
| @@ -379,11 +379,13 @@ Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs, | |||
| } | |||
| if (output_real_size > 0) { | |||
| if (outputs[i].length < static_cast<uint64_t>(output_real_size)) { | |||
| GELOGE(FAILED, "output idx[%zu], the memory size of output[%lu] given by user should be greater than or equal to the real size of output[%ld]", | |||
| GELOGE(FAILED, | |||
| "output idx[%zu], the memory size of output[%lu] given by user should >= the real size of output[%ld]", | |||
| i, outputs[i].length, output_real_size); | |||
| return FAILED; | |||
| } | |||
| GE_CHK_RT_RET(rtMemcpy(outputs[i].data, outputs[i].length, args.outputs[i].GetData(), output_real_size, RT_MEMCPY_DEVICE_TO_DEVICE)); | |||
| GE_CHK_RT_RET(rtMemcpy(outputs[i].data, outputs[i].length, args.outputs[i].GetData(), output_real_size, | |||
| RT_MEMCPY_DEVICE_TO_DEVICE)); | |||
| } | |||
| outputs[i].length = output_real_size; | |||
| } | |||
| @@ -62,7 +62,8 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) { | |||
| { | |||
| std::lock_guard<std::mutex> lk(mu_); | |||
| RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start"); | |||
| GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true), "Invoke InferShapeAndType failed."); | |||
| GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true), | |||
| "Invoke InferShapeAndType failed."); | |||
| RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End"); | |||
| } | |||
| // Check again to make sure shape is valid after shape inference | |||
| @@ -176,7 +176,8 @@ Status HybridModel::GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_de | |||
| return SUCCESS; | |||
| } | |||
| void HybridModel::SetInputDimsAndShapeRangesInfo(const vector<int64_t> &model_input_dims, std::vector<std::pair<int64_t,int64_t>> &shape_ranges, | |||
| void HybridModel::SetInputDimsAndShapeRangesInfo(const vector<int64_t> &model_input_dims, | |||
| std::vector<std::pair<int64_t, int64_t>> &shape_ranges, | |||
| InputOutputDescInfo &input) { | |||
| for (auto model_input_dim : model_input_dims) { | |||
| input.shape_info.dims.push_back(model_input_dim); | |||
| @@ -245,7 +246,9 @@ Status HybridModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, st | |||
| return SUCCESS; | |||
| } | |||
| void HybridModel::CreateOutput(ConstGeTensorDescPtr &output_desc, InputOutputDescInfo &output_desc_info, uint32_t &format_result) { | |||
| void HybridModel::CreateOutput(ConstGeTensorDescPtr &output_desc, | |||
| InputOutputDescInfo &output_desc_info, | |||
| uint32_t &format_result) { | |||
| GE_IF_BOOL_EXEC(output_desc == nullptr, GELOGE(FAILED, "output desc ptr is nullptr"); return ); | |||
| Format format = output_desc->GetFormat(); | |||
| GeShape shape = output_desc->GetShape(); | |||
| @@ -283,7 +286,8 @@ void HybridModel::CreateOutput(ConstGeTensorDescPtr &output_desc, InputOutputDes | |||
| Status HybridModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &formats) { | |||
| std::vector<ConstGeTensorDescPtr> output_desc_list; | |||
| GE_CHK_STATUS_RET(root_graph_item_->GetOutputDescList(output_desc_list), "get output desc info failed"); // output_desc_list contains vaild input desc | |||
| GE_CHK_STATUS_RET(root_graph_item_->GetOutputDescList(output_desc_list), | |||
| "get output desc info failed"); // output_desc_list contains vaild input desc | |||
| vector<std::string> out_node_names; | |||
| (void)ge::AttrUtils::GetListStr(ge_root_model_->GetRootGraph(), ATTR_MODEL_OUT_NODES_NAME, out_node_names); | |||
| @@ -293,7 +297,8 @@ Status HybridModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| auto out_size = static_cast<uint32_t>(op_desc->GetInputsSize()); | |||
| GE_CHK_BOOL_RET_STATUS(out_size == output_desc_list.size(), FAILED, "output size[%u] not match output_desc_list size[%zu]", out_size, output_desc_list.size()); | |||
| GE_CHK_BOOL_RET_STATUS(out_size == output_desc_list.size(), FAILED, | |||
| "output size[%u] not match output_desc_list size[%zu]", out_size, output_desc_list.size()); | |||
| for (uint32_t index = 0; index < out_size; ++index) { | |||
| string output_name; | |||
| @@ -301,9 +306,11 @@ Status HybridModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<int64_t> src_index = op_desc->GetSrcIndex(); | |||
| if (out_size == out_node_names.size()) { | |||
| bool contains_colon = out_node_names[index].find(":") != std::string::npos; | |||
| output_name = contains_colon ? out_node_names[index] : out_node_names[index] + ":" + std::to_string(src_index[index]); | |||
| output_name = contains_colon ? out_node_names[index] : out_node_names[index] + ":" + | |||
| std::to_string(src_index[index]); | |||
| } else { | |||
| output_name = std::string("output_") + std::to_string(index) + "_" + src_name[index] + "_" + std::to_string(src_index[index]); | |||
| output_name = std::string("output_") + std::to_string(index) + "_" + src_name[index] + "_" + | |||
| std::to_string(src_index[index]); | |||
| } | |||
| InputOutputDescInfo output_desc_info; | |||
| @@ -175,8 +175,8 @@ Status OpsKernelManager::ParsePluginOptions(const map<string, string> &options, | |||
| } else if (flag == 1) { | |||
| enable_flag = true; | |||
| } else { | |||
| GELOGE(GE_GRAPH_OPTIONS_INVALID, "option_key:%s, its value %s is invalid, it must be 0 or 1.", plugin_name.c_str(), | |||
| iter->second.c_str()); | |||
| GELOGE(GE_GRAPH_OPTIONS_INVALID, "option_key:%s, its value %s is invalid, it must be 0 or 1.", | |||
| plugin_name.c_str(), iter->second.c_str()); | |||
| return GE_GRAPH_OPTIONS_INVALID; | |||
| } | |||
| } catch (std::invalid_argument &) { | |||
| @@ -188,7 +188,8 @@ Status OpsKernelManager::ParsePluginOptions(const map<string, string> &options, | |||
| iter->second.c_str()); | |||
| return GE_GRAPH_OPTIONS_INVALID; | |||
| } catch (...) { | |||
| GELOGE(GE_GRAPH_OPTIONS_INVALID, "option_key:%s, its value %s is invalid, it must be 0 or 1.", plugin_name.c_str(), | |||
| GELOGE(GE_GRAPH_OPTIONS_INVALID, "option_key:%s, its value %s is invalid, it must be 0 or 1.", | |||
| plugin_name.c_str(), | |||
| iter->second.c_str()); | |||
| return GE_GRAPH_OPTIONS_INVALID; | |||
| } | |||
| @@ -644,7 +644,8 @@ Status ParseOutNodes(const string &out_nodes) { | |||
| if (!domi::GetContext().user_out_nodes_top_vec.empty()) { | |||
| ErrorManager::GetInstance().ATCReportErrMessage("E10001", {"parameter", "value", "reason"}, | |||
| {"--out_nodes", out_nodes, "is not all index or top_name"}); | |||
| GELOGE(PARAM_INVALID, "This out_nodes str must be all index or top_name, while the actual input is %s", out_nodes.c_str()); | |||
| GELOGE(PARAM_INVALID, "This out_nodes str must be all index or top_name, while the actual input is %s", | |||
| out_nodes.c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| // stoi: The method may throw an exception: invalid_argument/out_of_range | |||
| @@ -109,7 +109,8 @@ Status SingleOp::ValidateArgs(const std::vector<DataBuffer> &inputs, const std:: | |||
| auto num_outputs = outputs.size(); | |||
| if (num_outputs != output_sizes_.size()) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "output num mismatch. model expect %zu, but given %zu", output_sizes_.size(), outputs.size()); | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "output num mismatch. model expect %zu, but given %zu", | |||
| output_sizes_.size(), outputs.size()); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| @@ -248,12 +249,14 @@ Status DynamicSingleOp::ValidateParams(const vector<GeTensorDesc> &input_desc, | |||
| } | |||
| if (input_desc.size() != num_inputs_) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Input number mismatches. expect %zu, but given %zu", num_inputs_, input_desc.size()); | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Input number mismatches. expect %zu, but given %zu", num_inputs_, | |||
| input_desc.size()); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| if (output_desc.size() != num_outputs_) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Output number mismatches. expect %zu, but given %zu", num_outputs_, output_desc.size()); | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Output number mismatches. expect %zu, but given %zu", num_outputs_, | |||
| output_desc.size()); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| @@ -263,7 +263,8 @@ Status SingleOpModel::BuildTaskList(SingleOp &single_op) { | |||
| task->SetModelArgs(model_name_, model_id_); | |||
| single_op.tasks_.emplace_back(task); | |||
| } else { | |||
| GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID, "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", context.kernel_type()); | |||
| GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID, "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", | |||
| context.kernel_type()); | |||
| return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID; | |||
| } | |||
| } else if (task_type == RT_MODEL_TASK_KERNEL_EX) { | |||
| @@ -173,7 +173,8 @@ Status TbeTaskBuilder::RegisterKernel(TbeOpTask &task, const SingleOpModelParam | |||
| auto tbe_kernel = GetTbeKernel(op_desc_); | |||
| if (tbe_kernel == nullptr) { | |||
| GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "OP EXT ATTR NAME TBE_KERNEL not found. op = %s", op_desc_->GetName().c_str()); | |||
| GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "OP EXT ATTR NAME TBE_KERNEL not found. op = %s", | |||
| op_desc_->GetName().c_str()); | |||
| return ACL_ERROR_GE_INTERNAL_ERROR; | |||
| } | |||
| @@ -21,7 +21,7 @@ | |||
| namespace ge { | |||
| #define CC_FUSION_OP_MAX 32 | |||
| const int CC_FUSION_OP_MAX = 32; | |||
| typedef enum tagCcStatus { | |||
| CC_STATUS_SUCCESS = 0, /**< succ */ | |||