You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

infershape_pass_unittest.cc 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define protected public
  18. #define private public
  19. #include "graph/passes/infershape_pass.h"
  20. #include "graph/utils/tensor_utils.h"
  21. #include "graph/utils/graph_utils.h"
  22. #include "graph/operator_factory.h"
  23. #include "graph/operator_reg.h"
  24. #include "graph_builder_utils.h"
  25. using namespace std;
  26. using namespace testing;
  27. namespace ge {
  28. class UtestGraphInfershapePass : public testing::Test {
  29. protected:
  30. void SetUp() {}
  31. void TearDown() {}
  32. };
  33. static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) {
  34. OpDescPtr op_desc = std::make_shared<OpDesc>(name, type);
  35. op_desc->SetStreamId(0);
  36. static int32_t index = 0;
  37. op_desc->SetId(index++);
  38. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  39. TensorUtils::SetSize(tensor, 512);
  40. vector<int64_t> input_offset;
  41. for (int i = 0; i < in_num; i++) {
  42. op_desc->AddInputDesc(tensor);
  43. input_offset.emplace_back(1024);
  44. }
  45. op_desc->SetInputOffset(input_offset);
  46. vector<int64_t> output_offset;
  47. for (int i = 0; i < out_num; i++) {
  48. op_desc->AddOutputDesc(tensor);
  49. output_offset.emplace_back(1024);
  50. }
  51. op_desc->SetOutputOffset(output_offset);
  52. op_desc->SetWorkspace({});
  53. op_desc->SetWorkspaceBytes({});
  54. op_desc->SetOpKernelLibName("DNN_VM_RTS_OP_STORE");
  55. const auto stub_func = [](Operator &op) { return GRAPH_SUCCESS; };
  56. op_desc->AddInferFunc(stub_func);
  57. op_desc->AddInferFormatFunc(stub_func);
  58. op_desc->AddVerifierFunc(stub_func);
  59. return graph.AddNode(op_desc);
  60. }
  61. TEST_F(UtestGraphInfershapePass, infershape_pass_failed) {
  62. GeTensorDesc ge_tensor_desc(GeShape({-2, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  63. string type = "AddN";
  64. auto addn_op_desc = std::make_shared<OpDesc>("AddN", type);
  65. addn_op_desc->AddInputDesc(ge_tensor_desc);
  66. addn_op_desc->AddOutputDesc(ge_tensor_desc);
  67. auto graph = std::make_shared<ComputeGraph>("test");
  68. auto addn_node = std::make_shared<Node>(addn_op_desc, graph);
  69. addn_node->Init();
  70. InferShapePass infershape_pass;
  71. EXPECT_EQ(infershape_pass.Run(addn_node), GRAPH_FAILED);
  72. }
  73. TEST_F(UtestGraphInfershapePass, stop_node_for_while_loop) {
  74. /*******************************************************************************
  75. * Exit Identify
  76. * \ / \.
  77. * \ / \.
  78. * Switch Add
  79. * / | |
  80. * / | |
  81. * / | |
  82. * LoopCond | |
  83. * \ | |
  84. * \ | |
  85. * \ | |
  86. * Less | |
  87. * \ | NextIteration
  88. * \ | |
  89. * \ | |
  90. * Merge <---------|
  91. * |
  92. * |
  93. * Enter
  94. ******************************************************************************/
  95. auto graph = std::make_shared<ComputeGraph>("test_infer_shape");
  96. auto data1 = CreateNode(*graph, "data", DATA, 1, 1);
  97. auto enter1 = CreateNode(*graph, "enter", ENTER, 1, 1);
  98. auto merge1 = CreateNode(*graph, "merge", MERGE, 2, 2);
  99. auto less1 = CreateNode(*graph, "less", LESS, 2, 1);
  100. auto loop1 = CreateNode(*graph, "loopcond", LOOPCOND, 1, 1);
  101. auto switch1 = CreateNode(*graph, "switch", SWITCH, 2, 2);
  102. auto ident1 = CreateNode(*graph, "identity", IDENTITY, 1, 1);
  103. auto add1 = CreateNode(*graph, "add", ADD, 2, 1);
  104. auto next1 = CreateNode(*graph, "next", NEXTITERATION, 1, 1);
  105. auto exit1 = CreateNode(*graph, "exit", EXIT, 1, 1);
  106. auto value0 = CreateNode(*graph, "const", CONSTANT, 0, 1);
  107. auto value1 = CreateNode(*graph, "const", CONSTANT, 0, 1);
  108. auto output1 = CreateNode(*graph, "net_output", NETOUTPUT, 1, 1);
  109. GraphUtils::AddEdge(data1->GetOutDataAnchor(0), enter1->GetInDataAnchor(0));
  110. GraphUtils::AddEdge(enter1->GetOutDataAnchor(0), merge1->GetInDataAnchor(0));
  111. GraphUtils::AddEdge(merge1->GetOutDataAnchor(0), less1->GetInDataAnchor(0));
  112. GraphUtils::AddEdge(value1->GetOutDataAnchor(0), less1->GetInDataAnchor(1));
  113. GraphUtils::AddEdge(less1->GetOutDataAnchor(0), loop1->GetInDataAnchor(0));
  114. GraphUtils::AddEdge(loop1->GetOutDataAnchor(0), switch1->GetInDataAnchor(1));
  115. GraphUtils::AddEdge(merge1->GetOutDataAnchor(0), switch1->GetInDataAnchor(0));
  116. GraphUtils::AddEdge(switch1->GetOutDataAnchor(0), exit1->GetInDataAnchor(0));
  117. GraphUtils::AddEdge(switch1->GetOutDataAnchor(1), ident1->GetInDataAnchor(0));
  118. GraphUtils::AddEdge(ident1->GetOutDataAnchor(0), add1->GetInDataAnchor(0));
  119. GraphUtils::AddEdge(value1->GetOutDataAnchor(0), add1->GetInDataAnchor(1));
  120. GraphUtils::AddEdge(add1->GetOutDataAnchor(0), next1->GetInDataAnchor(0));
  121. GraphUtils::AddEdge(next1->GetOutDataAnchor(0), merge1->GetInDataAnchor(1));
  122. GraphUtils::AddEdge(exit1->GetOutDataAnchor(0), output1->GetInDataAnchor(0));
  123. GEPass ge_passes(graph);
  124. NamesToPass names_to_passes;
  125. InferShapePass infer_shape_pass;
  126. names_to_passes.emplace_back("InferShapePass", &infer_shape_pass);
  127. EXPECT_EQ(infer_shape_pass.Run(switch1), SUCCESS);
  128. auto suspend_nodes = infer_shape_pass.GetNodesSuspend();
  129. auto exit_node = graph->FindNode("exit");
  130. EXPECT_EQ(suspend_nodes.count(exit_node), 1);
  131. infer_shape_pass.OnSuspendNodesLeaked();
  132. auto resume_nodes = infer_shape_pass.GetNodesResume();
  133. EXPECT_EQ(resume_nodes.count(exit_node), 1);
  134. }
  135. TEST_F(UtestGraphInfershapePass, update_tensordesc_when_changed) {
  136. GeTensorDesc src_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  137. GeTensorDesc dst_ge_tensor_desc(GeShape({2, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  138. GeTensorDescPtr src_tensor_desc_ptr = std::make_shared<GeTensorDesc>(src_ge_tensor_desc);
  139. GeTensorDescPtr dst_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  140. InferShapePass infershape_pass;
  141. bool changed = false;
  142. infershape_pass.UpdateTensorDesc(src_tensor_desc_ptr, dst_tensor_desc_ptr, changed);
  143. EXPECT_EQ(changed, true);
  144. EXPECT_EQ(dst_tensor_desc_ptr->GetShape().GetDims(), std::vector<int64_t>({1, 2, 3, 4}));
  145. }
  146. TEST_F(UtestGraphInfershapePass, update_tensordesc_when_not_changed) {
  147. GeTensorDesc src_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  148. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  149. GeTensorDescPtr src_tensor_desc_ptr = std::make_shared<GeTensorDesc>(src_ge_tensor_desc);
  150. GeTensorDescPtr dst_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  151. InferShapePass infershape_pass;
  152. bool changed = false;
  153. infershape_pass.UpdateTensorDesc(src_tensor_desc_ptr, dst_tensor_desc_ptr, changed);
  154. EXPECT_EQ(changed, false);
  155. }
  156. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_failed) {
  157. // ref output has different dtype
  158. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  159. GeTensorDesc ge_tensor_desc2(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  160. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  161. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  162. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  163. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  164. InferShapePass infershape_pass;
  165. auto ret = infershape_pass.UpdateOutputFromSubgraphs({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr}, dst_ge_tensor_desc_ptr);
  166. EXPECT_EQ(ret, GRAPH_FAILED);
  167. }
  168. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_get_unknown_rank) {
  169. // ref output has different dtype
  170. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3}), ge::FORMAT_NCHW, DT_FLOAT);
  171. GeTensorDesc ge_tensor_desc2(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  172. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  173. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  174. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  175. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  176. InferShapePass infershape_pass;
  177. auto ret = infershape_pass.UpdateOutputFromSubgraphs({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr}, dst_ge_tensor_desc_ptr);
  178. EXPECT_EQ(ret, SUCCESS);
  179. EXPECT_EQ(dst_ge_tensor_desc_ptr->GetShape().GetDims(), UNKNOWN_RANK);
  180. }
  181. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_get_unknown_shape) {
  182. // ref output has different dtype
  183. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  184. GeTensorDesc ge_tensor_desc2(GeShape({2, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  185. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  186. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  187. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  188. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  189. InferShapePass infershape_pass;
  190. auto ret = infershape_pass.UpdateOutputFromSubgraphs({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr}, dst_ge_tensor_desc_ptr);
  191. EXPECT_EQ(ret, SUCCESS);
  192. EXPECT_EQ(dst_ge_tensor_desc_ptr->GetShape().GetDims(), std::vector<int64_t>({-1,2,3,4}));
  193. // todo shape range?
  194. }
  195. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_for_multiDims_failed) {
  196. // ref output has different dtype
  197. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT16);
  198. GeTensorDesc ge_tensor_desc2(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  199. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  200. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  201. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  202. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  203. InferShapePass infershape_pass;
  204. auto ret = infershape_pass.UpdateOutputFromSubgraphsForMultiDims({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr},
  205. dst_ge_tensor_desc_ptr);
  206. EXPECT_EQ(ret, GRAPH_FAILED);
  207. }
  208. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_for_multiDims_failed_shape_size_overflow) {
  209. // ref output has different dtype
  210. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  211. GeTensorDesc ge_tensor_desc2(GeShape({INT64_MAX, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  212. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  213. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  214. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  215. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  216. InferShapePass infershape_pass;
  217. auto ret = infershape_pass.UpdateOutputFromSubgraphsForMultiDims({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr},
  218. dst_ge_tensor_desc_ptr);
  219. EXPECT_EQ(ret, PARAM_INVALID);
  220. }
  221. TEST_F(UtestGraphInfershapePass, update_output_from_subgraphs_for_multiDims_success) {
  222. // ref output has different dtype
  223. GeTensorDesc ge_tensor_desc1(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  224. GeTensorDesc ge_tensor_desc2(GeShape({2, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  225. GeTensorDesc dst_ge_tensor_desc(GeShape({1, 2, 3, 4}), ge::FORMAT_NCHW, DT_FLOAT);
  226. GeTensorDescPtr ge_tensor_desc1_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc1);
  227. GeTensorDescPtr ge_tensor_desc2_ptr = std::make_shared<GeTensorDesc>(ge_tensor_desc2);
  228. GeTensorDescPtr dst_ge_tensor_desc_ptr = std::make_shared<GeTensorDesc>(dst_ge_tensor_desc);
  229. InferShapePass infershape_pass;
  230. auto ret = infershape_pass.UpdateOutputFromSubgraphsForMultiDims({ge_tensor_desc1_ptr, ge_tensor_desc2_ptr},
  231. dst_ge_tensor_desc_ptr);
  232. EXPECT_EQ(ret, SUCCESS);
  233. EXPECT_EQ(dst_ge_tensor_desc_ptr->GetShape().GetDims(), std::vector<int64_t>({2,2,3,4}));
  234. }
  235. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示