You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_pipeline_executor.cc 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. #include "hybrid_model_pipeline_executor.h"
  2. #include "common/math/math_util.h"
  3. #include "graph/ge_context.h"
  4. #include "graph/runtime_inference_context.h"
  5. namespace ge {
  6. namespace hybrid {
  7. namespace {
  8. constexpr int kNumExecutors = 2;
  9. const int kMinLoopCount = 2;
  10. const int kIntBase = 10;
  11. const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
  12. }
  13. StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
  14. : id_(id), model_(model), pipe_config_(config) {}
  15. StageExecutor::~StageExecutor() { GELOGD("~StageExecutor(), id = %d", id_); }
  16. Status StageExecutor::Init() {
  17. GELOGD("[Executor: %d] Start to init StateExecutor", id_);
  18. context_.rt_context = pipe_config_->rt_context;
  19. GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
  20. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  21. context_.stream = stream_;
  22. root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
  23. GE_CHECK_NOTNULL(root_graph_executor_);
  24. GELOGD("[Executor: %d] Init stage executor successfully", id_);
  25. return SUCCESS;
  26. }
  27. Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
  28. GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
  29. string ctx_id = std::to_string(context.context_id);
  30. RuntimeInferenceContext::DestroyContext(ctx_id);
  31. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
  32. return SUCCESS;
  33. }
  34. Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
  35. int iteration_count) {
  36. GELOGD("Start");
  37. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  38. int num_loops = iteration_count / pipe_config_->num_executors;
  39. if (id_ < iteration_count % iteration_count) {
  40. num_loops += 1;
  41. }
  42. FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
  43. num_loops *= pipe_config_->num_stages;
  44. GELOGD("[Executor: %d] loop count = %d", id_, num_loops);
  45. for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
  46. GELOGD("[Executor: %d] Start to wait for task.", id_);
  47. StageTask task_info;
  48. task_queue_.Pop(task_info);
  49. GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
  50. if (task_info.iteration >= pipe_config_->iteration_end) {
  51. GELOGE(INTERNAL_ERROR, "[Executor: %d] Unexpected iteration: %d", id_, task_info.iteration);
  52. return INTERNAL_ERROR;
  53. }
  54. if (task_info.event != nullptr) {
  55. GELOGD("[%d] Add StreamWaitEvent", id_);
  56. GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
  57. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration - 1,
  58. task_info.stage);
  59. }
  60. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] Start", task_info.iteration,
  61. task_info.stage);
  62. if (task_info.stage == 0) {
  63. GELOGD("[Executor: %d] To ResetExecutionContext", id_);
  64. GE_CHK_STATUS_RET(ResetExecutionContext(context_), "[Executor: %d] Failed to reset context", id_);
  65. context_.iteration = task_info.iteration;
  66. GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
  67. }
  68. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
  69. GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
  70. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
  71. GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);
  72. // notify next execution unit
  73. StageTask next_task;
  74. next_task.stage = task_info.stage;
  75. next_task.iteration = task_info.iteration + 1;
  76. auto sync_result = Synchronize();
  77. if (sync_result != SUCCESS) {
  78. GELOGE(sync_result, "[Executor: %d] Failed to sync result. iteration = %d", id_, task_info.iteration);
  79. context_.profiler->Dump(std::cout);
  80. context_.callback_manager->Destroy();
  81. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  82. return sync_result;
  83. }
  84. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration, task_info.stage);
  85. // if not end stage
  86. if (task_info.stage >= pipe_config_->num_stages - 1) {
  87. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] Schedule End", task_info.iteration);
  88. GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
  89. context_.callback_manager->Destroy();
  90. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  91. }
  92. next_executor_->ExecuteAsync(next_task);
  93. GELOGD("[Executor: %d] Push item successfully.", id_);
  94. }
  95. GELOGD("[Executor: %d] Process task ended.", id_);
  96. return SUCCESS;
  97. }
  98. Status StageExecutor::ExecuteAsync(const StageTask &args) {
  99. (void)task_queue_.Push(args);
  100. return SUCCESS;
  101. }
  102. Status StageExecutor::Synchronize() {
  103. auto ret = root_graph_executor_->Synchronize();
  104. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
  105. return ret;
  106. }
  107. HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
  108. : model_(model), device_id_(device_id) {
  109. config_.num_executors = kNumExecutors;
  110. config_.num_stages = model_->GetRootGraphItem()->NumGroups();
  111. config_.device_id = device_id_;
  112. }
  113. Status StageExecutor::InitExecutionContext() {
  114. GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
  115. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  116. context_.model = model_;
  117. context_.session_id = ::ge::GetContext().SessionId();
  118. GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
  119. context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
  120. GE_CHECK_NOTNULL(context_.allocator);
  121. context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
  122. GE_CHECK_NOTNULL(context_.callback_manager);
  123. context_.dump_properties = PropertiesManager::Instance().GetDumpProperties(context_.session_id);
  124. if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
  125. context_.trace_enabled = true;
  126. }
  127. return SUCCESS;
  128. }
  129. Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
  130. root_graph_executor_->InitForPartialExecution(inputs, input_desc);
  131. return SUCCESS;
  132. }
  133. Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
  134. return root_graph_executor_->GetOutputs(outputs, output_desc);
  135. }
  136. void StageExecutor::Reset() {
  137. task_queue_.Stop();
  138. task_queue_.Clear();
  139. task_queue_.Restart();
  140. }
  141. Status HybridModelPipelineExecutor::Init() {
  142. const char *profiling_level = std::getenv(kEnvProfilingLevel);
  143. if (profiling_level != nullptr) {
  144. context_.profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
  145. GELOGD("Got profiling level = %ld", context_.profiling_level);
  146. if (context_.profiling_level > 0) {
  147. context_.profiler.reset(new (std::nothrow) HybridProfiler());
  148. GE_CHECK_NOTNULL(context_.profiler);
  149. }
  150. }
  151. GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
  152. GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
  153. GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
  154. return SUCCESS;
  155. }
  156. Status HybridModelPipelineExecutor::InitStageExecutors() {
  157. for (int i = 0; i < config_.num_executors; ++i) {
  158. auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
  159. GE_CHECK_NOTNULL(stage_executor);
  160. GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());
  161. if (context_.profiler != nullptr) {
  162. // will call unique_ptr::release later
  163. stage_executor->context_.profiler.reset(context_.profiler.get());
  164. stage_executor->context_.profiling_level = context_.profiling_level;
  165. }
  166. stage_executors_.emplace_back(std::move(stage_executor));
  167. }
  168. // build propagation loop
  169. for (int i = 0; i < config_.num_executors - 1; ++i) {
  170. stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
  171. }
  172. stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
  173. return SUCCESS;
  174. }
  175. Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
  176. int loop_count = args.num_loops;
  177. GE_CHECK_GE(loop_count, kMinLoopCount);
  178. auto &inputs = args.inputs;
  179. auto &input_desc = args.input_desc;
  180. // Start schedulers
  181. std::vector<std::future<Status>> futures;
  182. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  183. GELOGD("Starting executor %zu", i);
  184. auto executor = stage_executors_[i].get();
  185. executor->Reset();
  186. auto future = std::async(
  187. [loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });
  188. futures.emplace_back(std::move(future));
  189. }
  190. // Push initial tasks
  191. GELOGD("Start to execute with loops, loop count = %d", loop_count);
  192. config_.iteration_end = iteration_ + loop_count;
  193. for (int i = 0; i < config_.num_stages; ++i) {
  194. StageExecutor::StageTask task_info;
  195. task_info.stage = i;
  196. task_info.iteration = iteration_;
  197. stage_executors_[0]->ExecuteAsync(task_info);
  198. }
  199. // Wait for end of iterations
  200. bool has_error = false;
  201. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  202. GELOGD("Start to sync result of executor[%zu]", i);
  203. auto ret = futures[i].get();
  204. if (ret != SUCCESS) {
  205. GELOGE(ret, "[Executor: %zu] Failed to schedule tasks.", i);
  206. has_error = true;
  207. continue;
  208. }
  209. ret = stage_executors_[i]->Synchronize();
  210. if (ret != SUCCESS) {
  211. GELOGE(ret, "[Executor: %zu] Failed to synchronize result.", i);
  212. has_error = true;
  213. continue;
  214. }
  215. }
  216. // record for profiling analyzer
  217. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");
  218. if (context_.profiler != nullptr) {
  219. context_.profiler->Dump(std::cout);
  220. }
  221. iteration_ = config_.iteration_end;
  222. if (has_error) {
  223. GELOGE(FAILED, "Error occurred while execution");
  224. return FAILED;
  225. }
  226. auto last_iter_executor_idx = loop_count % stage_executors_.size();
  227. GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
  228. "Failed to get output from executor[%zu]", last_iter_executor_idx);
  229. return SUCCESS;
  230. }
  231. HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
  232. GELOGD("~HybridModelPipelineExecutor()");
  233. for (auto &executor : stage_executors_) {
  234. (void)executor->context_.profiler.release();
  235. }
  236. }
  237. } // namespace hybrid
  238. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示