You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_async_executor.cc 21 kB

5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/hybrid_model_async_executor.h"
  17. #include "graph/load/model_manager/model_utils.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/type_utils.h"
  20. #include "graph/ge_context.h"
  21. #include "omm/csa_interact.h"
  22. namespace ge {
  23. namespace hybrid {
  24. namespace {
  25. const int kDataOutputIndex = 0;
  26. const size_t kMinimumPiplineStages = 2;
  27. const int kDefaultLoopCount = 10;
  28. }
  29. HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
  30. : model_(model), run_flag_(false) {
  31. }
  32. HybridModelAsyncExecutor::~HybridModelAsyncExecutor() {
  33. if (stream_ != nullptr) {
  34. GE_CHK_RT(rtStreamDestroy(stream_));
  35. }
  36. }
  37. void HybridModelAsyncExecutor::SetDeviceId(uint32_t device_id) {
  38. device_id_ = device_id;
  39. }
  40. void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) {
  41. model_id_ = model_id;
  42. }
  43. Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
  44. GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL,
  45. "Data queue is full, please call again later, model_id %u ", model_id_);
  46. GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index);
  47. return SUCCESS;
  48. }
  49. Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &listener) {
  50. GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr);
  51. std::lock_guard<std::mutex> lk(mu_);
  52. GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started.");
  53. run_flag_ = true;
  54. listener_ = listener;
  55. future_ = std::async(std::launch::async, [&]() -> Status {
  56. GetThreadLocalContext() = *executor_->GetContext()->ge_context;
  57. GetContext().SetSessionId(executor_->GetContext()->session_id);
  58. return RunInternal();
  59. });
  60. GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start.");
  61. GELOGD("HybridModelExecutor::Start successfully");
  62. return SUCCESS;
  63. }
  64. Status HybridModelAsyncExecutor::Stop() {
  65. std::lock_guard<std::mutex> lk(mu_);
  66. run_flag_ = false;
  67. data_inputer_->Stop();
  68. Status ret = SUCCESS;
  69. if (future_.valid()) {
  70. ret = future_.get();
  71. }
  72. if (stream_ != nullptr) {
  73. GE_CHK_RT(rtStreamDestroy(stream_));
  74. stream_ = nullptr;
  75. }
  76. return ret;
  77. }
  78. Status HybridModelAsyncExecutor::Init() {
  79. data_inputer_ = std::unique_ptr<DataInputer>(new(std::nothrow) DataInputer());
  80. GE_CHECK_NOTNULL(data_inputer_);
  81. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  82. executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
  83. GE_CHECK_NOTNULL(executor_);
  84. GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine");
  85. GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
  86. if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
  87. pipe_executor_ =
  88. std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
  89. GE_CHECK_NOTNULL(pipe_executor_);
  90. GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine");
  91. }
  92. GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors");
  93. return SUCCESS;
  94. }
  95. Status HybridModelAsyncExecutor::PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  96. GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data");
  97. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End");
  98. GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model");
  99. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End");
  100. return SUCCESS;
  101. }
  102. Status HybridModelAsyncExecutor::RunInternal() {
  103. auto device_id = static_cast<int32_t>(device_id_);
  104. GELOGD("Hybrid model start. model_id = %u, device_id = %u", model_id_, device_id_);
  105. GE_CHK_RT_RET(rtSetDevice(device_id));
  106. // DeviceReset before thread run finished!
  107. GE_MAKE_GUARD(not_used_var, [&] { GE_CHK_RT(rtDeviceReset(device_id)); });
  108. while (run_flag_) {
  109. std::shared_ptr<InputDataWrapper> data_wrapper;
  110. Status ret = data_inputer_->Pop(data_wrapper);
  111. if (data_wrapper == nullptr || ret != SUCCESS) {
  112. GELOGI("data_wrapper is null!, ret = %u", ret);
  113. continue;
  114. }
  115. GELOGI("Getting the input data, model_id:%u", model_id_);
  116. GE_IF_BOOL_EXEC(!run_flag_, break);
  117. InputData current_data = data_wrapper->GetInput();
  118. GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index);
  119. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_);
  120. HybridModelExecutor::ExecuteArgs args;
  121. ret = PreRun(current_data, args);
  122. GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
  123. ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  124. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  125. continue, "PreRun failed."); // [No need to check value]
  126. if (pipe_executor_ != nullptr) {
  127. GELOGI("HybridModel will execute in pipeline mode");
  128. auto iter_per_run = std::getenv("ITER_NUM");
  129. if (iter_per_run) {
  130. args.num_loops = static_cast<int>(strtol(iter_per_run, nullptr, kDefaultLoopCount));
  131. }
  132. ret = pipe_executor_->Execute(args);
  133. } else {
  134. GELOGI("HybridModel will execute in singleline mode");
  135. ge::GetContext().SetSessionId(executor_->GetContext()->session_id);
  136. ret = executor_->Execute(args);
  137. }
  138. ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  139. if (ret != SUCCESS) {
  140. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC);
  141. continue;
  142. }
  143. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] End", iterator_count_);
  144. iterator_count_++;
  145. GELOGI("run iterator count is %lu", iterator_count_);
  146. }
  147. CsaInteract::GetInstance().WriteInternalErrorCode();
  148. GELOGI("Model run end, model id:%u", model_id_);
  149. return SUCCESS;
  150. }
  151. Status HybridModelAsyncExecutor::HandleResult(Status exec_ret,
  152. uint32_t data_id,
  153. HybridModelExecutor::ExecuteArgs &args,
  154. OutputData *output_data) {
  155. GELOGD("Start to handle result. model id = %u, data index = %u, execution ret = %u", model_id_, data_id, exec_ret);
  156. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  157. if (args.is_eos) {
  158. GELOGI("End of sequence, model id = %u", model_id_);
  159. GE_CHK_STATUS_RET_NOLOG(OnComputeDone(data_id, END_OF_SEQUENCE, output_tensor_info_list));
  160. return SUCCESS;
  161. }
  162. if (exec_ret != SUCCESS) {
  163. GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_);
  164. return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  165. }
  166. GE_CHECK_NOTNULL(output_data);
  167. auto ret = CopyOutputs(args, output_data, output_tensor_info_list);
  168. if (ret != SUCCESS) {
  169. OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  170. return INTERNAL_ERROR;
  171. }
  172. GELOGD("Executed graph successfully, model id = %u, data_index = %u", model_id_, data_id);
  173. return OnComputeDone(data_id, SUCCESS, output_tensor_info_list);
  174. }
  175. Status HybridModelAsyncExecutor::SyncVarData() {
  176. GELOGI("Sync var data, model id:%u", model_id_);
  177. TensorValue *global_step_var = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  178. if (global_step_var != nullptr) {
  179. std::vector<uint64_t> v_step;
  180. v_step.push_back(iterator_count_);
  181. GE_CHK_RT_RET(rtMemcpy(global_step_var->MutableData(),
  182. global_step_var->GetSize(),
  183. v_step.data(),
  184. v_step.size() * sizeof(uint64_t),
  185. RT_MEMCPY_HOST_TO_DEVICE));
  186. } else {
  187. GELOGD("No GLOBAL_STEP variable was found.");
  188. }
  189. return SUCCESS;
  190. }
  191. Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  192. if (current_data.blobs.size() < input_tensor_desc_.size()) {
  193. GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu",
  194. input_tensor_desc_.size(), current_data.blobs.size());
  195. return PARAM_INVALID;
  196. }
  197. auto allocator = NpuMemoryAllocator::GetAllocator(device_id_);
  198. GE_CHECK_NOTNULL(allocator);
  199. args.input_desc.resize(input_tensor_desc_.size());
  200. const std::vector<DataBuffer> &blobs = current_data.blobs;
  201. for (size_t input_index = 0; input_index < input_tensor_desc_.size(); ++input_index) {
  202. auto tensor_size = input_sizes_[input_index];
  203. if (is_input_dynamic_[input_index]) {
  204. if (input_index >= current_data.shapes.size()) {
  205. GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu",
  206. input_index, current_data.shapes.size());
  207. return PARAM_INVALID;
  208. }
  209. auto &tensor_desc = input_tensor_desc_[input_index];
  210. GeShape shape(current_data.shapes[input_index]);
  211. std::vector<std::pair<int64_t, int64_t>> range;
  212. auto range_ret = tensor_desc->GetShapeRange(range);
  213. GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR,
  214. "Get shape range failed, ret=%u.", range_ret);
  215. for (size_t k = 0; k < range.size(); ++k) {
  216. if (k >= shape.GetDimNum()) {
  217. break;
  218. }
  219. if (shape.GetDim(k) < range[k].first || shape.GetDim(k) > range[k].second) {
  220. GELOGE(PARAM_INVALID, "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
  221. input_index, k, shape.GetDim(k), range[k].first, range[k].second);
  222. return PARAM_INVALID;
  223. }
  224. }
  225. tensor_desc->SetShape(shape);
  226. args.input_desc[input_index] = tensor_desc;
  227. GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str());
  228. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size),
  229. "Failed to calc tensor size, index = %zu, shape = [%s]",
  230. input_index,
  231. tensor_desc->GetShape().ToString().c_str());
  232. GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size);
  233. }
  234. GE_CHECK_GE(tensor_size, 0);
  235. AllocationAttr attr;
  236. if (GetContext().GetHostExecFlag()) {
  237. attr.SetMemType(HOST_DDR);
  238. }
  239. auto tensor_buffer = TensorBuffer::Create(allocator, tensor_size, &attr);
  240. GE_CHECK_NOTNULL(tensor_buffer);
  241. args.inputs.emplace_back(std::shared_ptr<TensorBuffer>(tensor_buffer.release()));
  242. GELOGD("To copy input data for input[%zu]", input_index);
  243. const DataBuffer &data_buf = blobs[input_index];
  244. auto mem_size = static_cast<uint64_t>(tensor_size);
  245. GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length,
  246. PARAM_INVALID,
  247. "input data size(%lu) does not match model required size(%lu), ret failed.",
  248. data_buf.length,
  249. mem_size);
  250. GELOGI("[IMAS]CopyPlainData memcpy graph_%u type[F] output[%zu] memaddr[%p] mem_size[%zu] datasize[%lu]",
  251. model_->root_runtime_param_.graph_id,
  252. input_index,
  253. args.inputs[input_index].GetData(),
  254. mem_size,
  255. data_buf.length);
  256. GE_CHK_RT_RET(rtMemcpy(args.inputs[input_index].MutableData(),
  257. mem_size,
  258. data_buf.data,
  259. data_buf.length,
  260. RT_MEMCPY_HOST_TO_DEVICE));
  261. }
  262. return SUCCESS;
  263. }
  264. Status HybridModelAsyncExecutor::InitInputDesc() {
  265. int input_index = 0;
  266. for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) {
  267. GELOGD("Init input[%u], node = %s, is_dynamic = %d",
  268. input_index,
  269. input_node->NodeName().c_str(),
  270. input_node->is_dynamic);
  271. auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex);
  272. GE_CHECK_NOTNULL(output_desc);
  273. int64_t tensor_size = -1;
  274. if (!input_node->is_dynamic) {
  275. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*output_desc, tensor_size),
  276. "Failed to get size from %s",
  277. input_node->NodeName().c_str());
  278. if (tensor_size == 0) {
  279. GELOGW("[%s] Tensor size == 0", input_node->NodeName().c_str());
  280. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*output_desc, tensor_size),
  281. "Failed to calc tensor size");
  282. GELOGD("[%s] Tensor size updated to %ld", input_node->NodeName().c_str(), tensor_size);
  283. }
  284. }
  285. input_sizes_.emplace(input_index, tensor_size);
  286. input_tensor_desc_.emplace(input_index, output_desc);
  287. is_input_dynamic_.push_back(input_node->is_dynamic);
  288. input_index += 1;
  289. }
  290. return SUCCESS;
  291. }
  292. Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t result_code,
  293. std::vector<ge::OutputTensorInfo> &outputs) {
  294. GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code);
  295. if (listener_ != nullptr) {
  296. GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs),
  297. "OnComputeDone failed");
  298. }
  299. return result_code;
  300. }
  301. Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &args,
  302. OutputData *output_data,
  303. std::vector<ge::OutputTensorInfo> &outputs) {
  304. // copy output data from op to designated position
  305. std::vector<ConstGeTensorDescPtr> &output_tensor_desc_list = args.output_desc;
  306. std::vector<TensorValue> &output_tensors = args.outputs;
  307. if (output_tensor_desc_list.size() != output_tensors.size()) {
  308. GELOGE(INTERNAL_ERROR,
  309. "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu",
  310. output_tensor_desc_list.size(),
  311. output_tensors.size());
  312. return INTERNAL_ERROR;
  313. }
  314. GELOGD("Number of outputs = %zu", output_tensor_desc_list.size());
  315. for (size_t i = 0; i < output_tensors.size(); ++i) {
  316. GELOGD("Start to process output[%zu]", i);
  317. auto &output_tensor = output_tensors[i];
  318. auto &tensor_desc = output_tensor_desc_list.at(i);
  319. GE_CHECK_NOTNULL(tensor_desc);
  320. int64_t output_size = -1;
  321. GE_CHK_GRAPH_STATUS_RET(TensorUtils::CalcTensorMemSize(tensor_desc->GetShape(),
  322. tensor_desc->GetFormat(),
  323. tensor_desc->GetDataType(),
  324. output_size),
  325. "Failed to calc tensor size for output[%zu]. shape = [%s], type = %s, format = %s",
  326. i,
  327. tensor_desc->GetShape().ToString().c_str(),
  328. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  329. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str());
  330. GELOGD("Got tensor size for output[%zu] successfully. shape = [%s], type = %s, format = %s, size = %ld",
  331. i,
  332. tensor_desc->GetShape().ToString().c_str(),
  333. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  334. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str(),
  335. output_size);
  336. GE_CHECK_GE(output_size, 0);
  337. GE_CHECK_LE(output_size, UINT32_MAX);
  338. if (output_tensor.GetSize() < static_cast<size_t>(output_size)) {
  339. GELOGE(INTERNAL_ERROR,
  340. "output[%zu] tensor size(%zu) is not enough for output shape [%s]",
  341. i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
  342. return INTERNAL_ERROR;
  343. }
  344. ge::OutputTensorInfo output;
  345. output.data_type = static_cast<uint32_t>(tensor_desc->GetDataType());
  346. output.dims = tensor_desc->GetShape().GetDims();
  347. output.length = output_size;
  348. if (output_size > 0) {
  349. std::unique_ptr<uint8_t[]> data_buf(new(std::nothrow) uint8_t[output_size]);
  350. GE_CHECK_NOTNULL(data_buf);
  351. GE_CHK_RT_RET(rtMemcpy(data_buf.get(),
  352. output_size,
  353. output_tensor.GetData(),
  354. output_size,
  355. RT_MEMCPY_DEVICE_TO_HOST));
  356. output.data = std::move(data_buf);
  357. output_data->blobs.emplace_back(data_buf.get(), static_cast<uint32_t>(output_size), false);
  358. } else {
  359. GELOGW("Output[%zu] is empty. shape = [%s]", i, tensor_desc->GetShape().ToString().c_str());
  360. output.data = nullptr;
  361. output_data->blobs.emplace_back(nullptr, 0U, false);
  362. }
  363. outputs.emplace_back(std::move(output));
  364. GELOGD("Output[%zu] added, type = %s, shape = [%s], size = %ld",
  365. i,
  366. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  367. tensor_desc->GetShape().ToString().c_str(),
  368. output_size);
  369. }
  370. return SUCCESS;
  371. }
  372. Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
  373. const std::vector<GeTensorDesc> &input_desc,
  374. std::vector<DataBuffer> &outputs,
  375. std::vector<GeTensorDesc> &output_desc) {
  376. GELOGI("Start to execute model.");
  377. HybridModelExecutor::ExecuteArgs args;
  378. args.inputs.resize(inputs.size());
  379. for (size_t i = 0; i < inputs.size(); ++i) {
  380. TensorValue tensor_value(inputs[i].data, inputs[i].length);
  381. args.inputs[i] = tensor_value;
  382. }
  383. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  384. for (const auto &output_tensor_desc : args.output_desc) {
  385. output_desc.emplace_back(*output_tensor_desc);
  386. }
  387. for (size_t i = 0; i < args.outputs.size(); ++i) {
  388. int64_t output_real_size = 0;
  389. ge::graphStatus graph_status = TensorUtils::GetTensorSizeInBytes(output_desc[i], output_real_size);
  390. if (graph_status != GRAPH_SUCCESS) {
  391. GELOGE(FAILED, "Get tensor size in bytes failed.");
  392. return FAILED;
  393. }
  394. if (output_real_size > 0) {
  395. if (outputs[i].length < static_cast<uint64_t>(output_real_size)) {
  396. GELOGE(FAILED, "output idx[%zu], the memory size of output[%lu] given by "
  397. "user should be greater than or equal to the real size of output[%ld]",
  398. i, outputs[i].length, output_real_size);
  399. return FAILED;
  400. }
  401. GE_CHK_RT_RET(rtMemcpy(outputs[i].data, outputs[i].length, args.outputs[i].GetData(), output_real_size,
  402. RT_MEMCPY_DEVICE_TO_DEVICE));
  403. }
  404. outputs[i].length = output_real_size;
  405. }
  406. return SUCCESS;
  407. }
  408. Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  409. GELOGD("Start to execute model.");
  410. // prepare inputs
  411. InputData input_data;
  412. for (auto &tensor : inputs) {
  413. DataBuffer buffer;
  414. buffer.data = const_cast<uint8_t *>(tensor.GetData().GetData());
  415. buffer.length = tensor.GetData().size();
  416. input_data.blobs.emplace_back(buffer);
  417. input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims());
  418. }
  419. HybridModelExecutor::ExecuteArgs args;
  420. GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model");
  421. GELOGD("Done copying input data successfully.");
  422. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  423. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  424. OutputData output_data;
  425. GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs.");
  426. GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size());
  427. int out_index = 0;
  428. outputs.resize(output_tensor_info_list.size());
  429. for (auto &out_tensor_info : output_tensor_info_list) {
  430. auto &ge_tensor = outputs[out_index];
  431. if (out_tensor_info.length > 0) {
  432. GE_CHK_GRAPH_STATUS_RET(ge_tensor.SetData(out_tensor_info.data.get(), out_tensor_info.length),
  433. "Failed to set output[%d].", out_index);
  434. }
  435. ge_tensor.MutableTensorDesc() = *args.output_desc[out_index];
  436. GELOGD("Set output[%d], tensor size = %ld, shape = [%s]",
  437. out_index,
  438. out_tensor_info.length,
  439. ge_tensor.MutableTensorDesc().MutableShape().ToString().c_str());
  440. ++out_index;
  441. }
  442. return SUCCESS;
  443. }
  444. } // namespace hybrid
  445. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示