You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

subgraph_executor.cc 31 kB

5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/subgraph_executor.h"
  17. #include "graph/ge_context.h"
  18. #include "hybrid/executor/worker/task_compile_engine.h"
  19. #include "hybrid/executor/worker/execution_engine.h"
  20. #include "hybrid/node_executor/node_executor.h"
  21. namespace ge {
  22. namespace hybrid {
  23. namespace {
  24. constexpr int kDefaultThreadNum = 4;
  25. constexpr int kDefaultQueueSize = 16;
  26. constexpr int kDataInputIndex = 0;
  27. }
  28. SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape)
  29. : graph_item_(graph_item),
  30. context_(context),
  31. force_infer_shape_(force_infer_shape),
  32. pre_run_pool_(kDefaultThreadNum),
  33. ready_queue_(kDefaultQueueSize) {
  34. }
  35. SubgraphExecutor::~SubgraphExecutor() {
  36. GELOGD("[%s] SubgraphExecutor destroyed.", graph_item_->GetName().c_str());
  37. }
  38. Status SubgraphExecutor::Init(const std::vector<TensorValue> &inputs,
  39. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  40. subgraph_context_.reset(new(std::nothrow)SubgraphContext(graph_item_, context_));
  41. GE_CHECK_NOTNULL(subgraph_context_);
  42. GE_CHK_STATUS_RET(subgraph_context_->Init(),
  43. "[Init][SubgraphContext][%s] Failed to init subgraph context.", graph_item_->GetName().c_str());
  44. shape_inference_engine_.reset(new(std::nothrow) ShapeInferenceEngine(context_, subgraph_context_.get()));
  45. GE_CHECK_NOTNULL(shape_inference_engine_);
  46. if (graph_item_->IsDynamic()) {
  47. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  48. "[%s] Failed to set inputs.",
  49. graph_item_->GetName().c_str());
  50. } else {
  51. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  52. "[Invoke][InitInputsForKnownShape][%s] Failed to init subgraph executor for known shape subgraph.",
  53. graph_item_->GetName().c_str());
  54. }
  55. return SUCCESS;
  56. }
  57. Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
  58. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  59. // Number of inputs of parent node should be greater or equal than that of subgraph
  60. auto input_nodes = graph_item_->GetInputNodes();
  61. if (inputs.size() < input_nodes.size()) {
  62. GELOGE(INTERNAL_ERROR,
  63. "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  64. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  65. REPORT_INNER_ERROR("E19999",
  66. "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  67. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  68. return INTERNAL_ERROR;
  69. }
  70. for (size_t i = 0; i < input_nodes.size(); ++i) {
  71. auto &input_node = input_nodes[i];
  72. if (input_node == nullptr) {
  73. GELOGD("[%s] Input[%zu] is not needed by subgraph, skip it.", graph_item_->GetName().c_str(), i);
  74. continue;
  75. }
  76. auto &input_tensor = inputs[i];
  77. GELOGD("[%s] Set input tensor[%zu] to inputs with index = %d, tensor = %s",
  78. graph_item_->GetName().c_str(),
  79. i,
  80. input_node->input_start,
  81. input_tensor.DebugString().c_str());
  82. GE_CHK_STATUS_RET(subgraph_context_->SetInput(*input_node, kDataInputIndex, input_tensor),
  83. "[Invoke][SetInput] failed for grap_item[%s] input tensor[%zu]",
  84. graph_item_->GetName().c_str(), i);
  85. if (force_infer_shape_ || input_node->is_dynamic) {
  86. GELOGD("[%s] Start to update input[%zu] for subgraph data node.", graph_item_->GetName().c_str(), i);
  87. GE_CHECK_LE(i + 1, input_desc.size());
  88. const auto &tensor_desc = input_desc[i];
  89. GE_CHECK_NOTNULL(tensor_desc);
  90. auto node_state = subgraph_context_->GetOrCreateNodeState(input_node);
  91. GE_CHECK_NOTNULL(node_state);
  92. node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc);
  93. }
  94. }
  95. GELOGD("[%s] Done setting inputs.", graph_item_->GetName().c_str());
  96. return SUCCESS;
  97. }
  98. Status SubgraphExecutor::InitInputsForKnownShape(const std::vector<TensorValue> &inputs) {
  99. auto &input_index_mapping = graph_item_->GetInputIndexMapping();
  100. for (size_t i = 0; i < input_index_mapping.size(); ++i) {
  101. auto &parent_input_index = input_index_mapping[i];
  102. if (static_cast<size_t>(parent_input_index) >= inputs.size()) {
  103. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph"
  104. "which needs at lease [%d] inputs", graph_item_->GetName().c_str(), inputs.size(),
  105. parent_input_index + 1);
  106. REPORT_INNER_ERROR("E19999", "[%s] Number of inputs [%zu] is not sufficient for subgraph"
  107. "which needs at lease [%d] inputs",
  108. graph_item_->GetName().c_str(), inputs.size(), parent_input_index + 1);
  109. return INTERNAL_ERROR;
  110. }
  111. auto &input_tensor = inputs[parent_input_index];
  112. subgraph_context_->SetInput(static_cast<int>(i), input_tensor);
  113. GELOGD("[%s] Set input tensor[%zu] with inputs with index = %d, tensor = %s",
  114. graph_item_->GetName().c_str(),
  115. i,
  116. parent_input_index,
  117. input_tensor.DebugString().c_str());
  118. }
  119. return SUCCESS;
  120. }
  121. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  122. const std::vector<ConstGeTensorDescPtr> &input_desc,
  123. const std::vector<TensorValue> &outputs) {
  124. GELOGD("[%s] is dynamic = %s", graph_item_->GetName().c_str(), graph_item_->IsDynamic() ? "true" : "false");
  125. GE_CHK_STATUS_RET(Init(inputs, input_desc), "[Invoke][Init]failed for [%s].", graph_item_->GetName().c_str());
  126. if (!outputs.empty()) {
  127. GE_CHK_STATUS_RET(EnableOutputZeroCopy(outputs),
  128. "[Invoke][EnableOutputZeroCopy] Failed by user provided outputs.");
  129. }
  130. if (!graph_item_->IsDynamic()) {
  131. return ExecuteAsyncForKnownShape(inputs);
  132. }
  133. HYBRID_CHK_STATUS_RET(ScheduleTasks(), "[%s] Failed to execute tasks.", graph_item_->GetName().c_str());
  134. GELOGD("[%s] Done executing subgraph successfully.", graph_item_->GetName().c_str());
  135. return SUCCESS;
  136. }
  137. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  138. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  139. return ExecuteAsync(inputs, input_desc, {});
  140. }
  141. Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs) {
  142. GELOGD("[%s] subgraph is not dynamic.", graph_item_->GetName().c_str());
  143. if (graph_item_->GetAllNodes().size() != 1) {
  144. REPORT_INNER_ERROR("E19999", "[%s] Invalid known shape subgraph. node size = %zu",
  145. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  146. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Invalid known shape subgraph. node size = %zu",
  147. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  148. return INTERNAL_ERROR;
  149. }
  150. auto node_item = graph_item_->GetAllNodes()[0];
  151. GE_CHECK_NOTNULL(node_item);
  152. auto node_state = subgraph_context_->GetOrCreateNodeState(node_item);
  153. GE_CHECK_NOTNULL(node_state);
  154. node_state->SetKernelTask(node_item->kernel_task);
  155. known_shape_task_context_ = TaskContext::Create(node_state.get(), context_, subgraph_context_.get());
  156. GE_CHECK_NOTNULL(known_shape_task_context_);
  157. node_state->SetTaskContext(known_shape_task_context_);
  158. std::function<void()> callback;
  159. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state.get(), callback));
  160. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, known_shape_task_context_, *context_, callback),
  161. "[%s] Failed to execute node [%s] for known subgraph.",
  162. graph_item_->GetName().c_str(),
  163. known_shape_task_context_->GetNodeName());
  164. GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str());
  165. return SUCCESS;
  166. }
  167. Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
  168. std::vector<TensorValue> inputs;
  169. std::vector<ConstGeTensorDescPtr> input_desc;
  170. for (int i = 0; i < task_context.NumInputs(); ++i) {
  171. auto tensor = task_context.GetInput(i);
  172. GE_CHECK_NOTNULL(tensor);
  173. inputs.emplace_back(*tensor);
  174. input_desc.emplace_back(task_context.GetInputDesc(i));
  175. }
  176. GE_CHK_STATUS_RET(ExecuteAsync(inputs, input_desc), "[Invoke][ExecuteAsync] failed for [%s].",
  177. graph_item_->GetName().c_str());
  178. GE_CHK_STATUS_RET(SetOutputsToParentNode(task_context),
  179. "[Invoke][SetOutputsToParentNode][%s] Failed to set output shapes to parent node.",
  180. graph_item_->GetName().c_str());
  181. return SUCCESS;
  182. }
  183. BlockingQueue<const NodeItem *> &SubgraphExecutor::GetPrepareQueue(int group) {
  184. std::lock_guard<std::mutex> lk(mu_);
  185. return prepare_queues_[group];
  186. }
  187. Status SubgraphExecutor::NodeEnqueue(NodeState *node_state) {
  188. if (!ready_queue_.Push(node_state)) {
  189. if (context_->is_eos_) {
  190. GELOGD("Got end of sequence");
  191. return SUCCESS;
  192. }
  193. GELOGE(INTERNAL_ERROR, "[Check][State][%s] Error occurs while launching tasks. quit from preparing nodes.",
  194. graph_item_->GetName().c_str());
  195. REPORT_INNER_ERROR("E19999", "[%s] Error occurs while launching tasks. quit from preparing nodes.",
  196. graph_item_->GetName().c_str());
  197. return INTERNAL_ERROR;
  198. }
  199. GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_state->GetName().c_str());
  200. return SUCCESS;
  201. }
  202. Status SubgraphExecutor::PrepareNode(const NodeItem &node_item, int group) {
  203. GELOGD("[%s] Start to prepare node [%s].", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
  204. // for while op
  205. if (force_infer_shape_ && !node_item.is_dynamic) {
  206. GELOGD("[%s] Force infer shape is set, updating node to dynamic.", node_item.NodeName().c_str());
  207. auto &mutable_node_item = const_cast<NodeItem &>(node_item);
  208. mutable_node_item.SetToDynamic();
  209. }
  210. auto node_state = subgraph_context_->GetOrCreateNodeState(&node_item);
  211. GE_CHECK_NOTNULL(node_state);
  212. node_state->ResetContext(group);
  213. auto p_node_state = node_state.get();
  214. if (node_item.node_type == NETOUTPUT) {
  215. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  216. return AfterPrepared(p_node_state);
  217. }
  218. // only do shape inference and compilation for nodes with dynamic shapes.
  219. if (node_item.is_dynamic) {
  220. auto prepare_future = pre_run_pool_.commit([this, p_node_state]() -> Status {
  221. GetContext().SetSessionId(context_->session_id);
  222. GetContext().SetContextId(context_->context_id);
  223. GE_CHK_STATUS_RET_NOLOG(InferShape(shape_inference_engine_.get(), *p_node_state));
  224. GE_CHK_STATUS_RET_NOLOG(PrepareForExecution(context_, *p_node_state));
  225. return AfterPrepared(p_node_state);
  226. });
  227. p_node_state->SetPrepareFuture(std::move(prepare_future));
  228. return NodeEnqueue(p_node_state);
  229. } else {
  230. GELOGD("[%s] Skipping shape inference and compilation for node with static shape.",
  231. node_item.NodeName().c_str());
  232. if (node_item.kernel_task == nullptr) {
  233. GELOGW("[%s] Node of static shape got no task.", node_item.NodeName().c_str());
  234. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(*p_node_state, context_),
  235. "[Invoke][Compile] failed for [%s].", p_node_state->GetName().c_str());
  236. } else {
  237. node_state->SetKernelTask(node_item.kernel_task);
  238. }
  239. auto unique_task_context = TaskContext::Create(node_state.get(), context_, subgraph_context_.get());
  240. GE_CHECK_NOTNULL(unique_task_context);
  241. const auto &task = node_state->GetKernelTask();
  242. if (task == nullptr) {
  243. GELOGE(INTERNAL_ERROR, "[Get][KernelTask] failed for[%s], NodeTask is null.", node_state->GetName().c_str());
  244. REPORT_CALL_ERROR("E19999", "GetKernelTask failed for %s, nodetask is null.", node_state->GetName().c_str());
  245. return INTERNAL_ERROR;
  246. }
  247. auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release());
  248. node_state->SetTaskContext(shared_task_context);
  249. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  250. return AfterPrepared(p_node_state);
  251. }
  252. }
  253. Status SubgraphExecutor::PrepareNodes(int group) {
  254. const size_t node_size = graph_item_->GetNodeSize(group);
  255. GELOGD("[%s] Start to prepare nodes. group = %d, size = %zu", graph_item_->GetName().c_str(), group, node_size);
  256. if (!graph_item_->HasCtrlFlowOp()) {
  257. for (const auto &node_item : graph_item_->GetAllNodes(group)) {
  258. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  259. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  260. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  261. }
  262. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  263. return SUCCESS;
  264. }
  265. // Initialize the ready queue
  266. size_t node_count = 0;
  267. bool node_complete = false;
  268. for (const auto &node_item : graph_item_->GetRootNodes(group)) {
  269. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  270. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  271. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  272. node_complete = node_item->NodeType() == NETOUTPUT;
  273. node_count++;
  274. }
  275. GELOGD("[%s] Done preparing root nodes.", graph_item_->GetName().c_str());
  276. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  277. while (((group != -1) && (node_count < node_size)) || ((group == -1) && !node_complete)) {
  278. const NodeItem *node_item = nullptr;
  279. if (!prepare_queue.Pop(node_item)) {
  280. if (context_->is_eos_) {
  281. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  282. break;
  283. }
  284. if (context_->GetStatus() != SUCCESS) {
  285. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  286. return SUCCESS;
  287. }
  288. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  289. return INTERNAL_ERROR;
  290. }
  291. if (node_item == nullptr) {
  292. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  293. break;
  294. }
  295. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  296. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  297. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  298. node_complete = node_item->NodeType() == NETOUTPUT;
  299. node_count++;
  300. }
  301. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  302. return SUCCESS;
  303. }
  304. Status SubgraphExecutor::NodeScheduled(NodeState *node_state) {
  305. GELOGD("Graph[%s] After [%s] scheduled, data size: %zu, ctrl size: %zu, switch index: %d, merge index: %d",
  306. graph_item_->GetName().c_str(), node_state->GetName().c_str(),
  307. node_state->GetNodeItem()->data_send_.size(), node_state->GetNodeItem()->ctrl_send_.size(),
  308. node_state->GetSwitchIndex(), node_state->GetMergeIndex());
  309. auto future = pre_run_pool_.commit([this, node_state]() -> Status {
  310. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] Start");
  311. std::function<void(const NodeItem *)> callback = [&](const NodeItem *node_item) {
  312. const auto &node_name = node_item->node_name;
  313. int group = (node_state->GetGroup() != -1) ? node_item->group : -1;
  314. GELOGI("After [%s] scheduled, [%s] is ready for prepare.", node_state->GetName().c_str(), node_name.c_str());
  315. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  316. if (!prepare_queue.Push(node_item)) {
  317. if (!context_->is_eos_) {
  318. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  319. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  320. }
  321. }
  322. };
  323. GE_CHK_STATUS_RET_NOLOG(node_state->NodeScheduled(callback));
  324. node_state->ResetSchedule();
  325. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] End");
  326. return SUCCESS;
  327. });
  328. node_state->SetScheduleFuture(std::move(future));
  329. if (schedule_queue_.Push(node_state)) {
  330. return SUCCESS;
  331. }
  332. if (context_->is_eos_) {
  333. GELOGD("[%s] Got end of sequence", graph_item_->GetName().c_str());
  334. return SUCCESS;
  335. }
  336. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  337. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  338. return INTERNAL_ERROR;
  339. }
  340. Status SubgraphExecutor::AfterPrepared(NodeState *node_state) {
  341. if (!graph_item_->HasCtrlFlowOp()) {
  342. return SUCCESS;
  343. }
  344. if (node_state->IsShapeDependence()) {
  345. return SUCCESS;
  346. }
  347. // Not control flow node, propagate state.
  348. return NodeScheduled(node_state);
  349. }
  350. void SubgraphExecutor::AfterExecuted(NodeState *node_state) {
  351. if (!node_state->IsShapeDependence()) {
  352. return;
  353. }
  354. // For control flow node, propagate state.
  355. auto error = NodeScheduled(node_state);
  356. if (error != SUCCESS) {
  357. auto task_context = node_state->GetTaskContext();
  358. task_context->OnError(error);
  359. }
  360. }
  361. void SubgraphExecutor::OnNodeDone(NodeState *node_state) {
  362. auto task_context = node_state->GetTaskContext();
  363. NodeDoneCallback cb(context_, task_context);
  364. auto error = cb.OnNodeDone();
  365. if (error != SUCCESS) {
  366. task_context->OnError(error);
  367. }
  368. if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  369. AfterExecuted(node_state);
  370. }
  371. }
  372. Status SubgraphExecutor::InitCallback(NodeState *node_state, std::function<void()> &callback) {
  373. auto task_context = node_state->GetTaskContext();
  374. GE_CHECK_NOTNULL(task_context);
  375. if (task_context->NeedCallback()) {
  376. callback = std::bind(&SubgraphExecutor::OnNodeDone, this, node_state);
  377. } else if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  378. callback = std::bind(&SubgraphExecutor::AfterExecuted, this, node_state);
  379. }
  380. return SUCCESS;
  381. }
  382. Status SubgraphExecutor::ScheduleNodes() {
  383. GELOGD("[%s] Start to schedule nodes.", graph_item_->GetName().c_str());
  384. while (true) {
  385. NodeState *node_state = nullptr;
  386. if (!schedule_queue_.Pop(node_state)) {
  387. if (context_->is_eos_) {
  388. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  389. break;
  390. }
  391. if (context_->GetStatus() != SUCCESS) {
  392. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  393. return SUCCESS;
  394. }
  395. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  396. return INTERNAL_ERROR;
  397. }
  398. if (node_state == nullptr) {
  399. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  400. break;
  401. }
  402. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForScheduleDone());
  403. }
  404. GELOGD("[%s] Done schedule nodes successfully.", graph_item_->GetName().c_str());
  405. return SUCCESS;
  406. }
  407. Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) const {
  408. HYBRID_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
  409. "[Invoke][InferShape] failed for [%s].", node_state.GetName().c_str());
  410. HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_state),
  411. "[Invoke][PropagateOutputShapes] failed for [%s].", node_state.GetName().c_str());
  412. return SUCCESS;
  413. }
  414. Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state) {
  415. auto &node_item = *node_state.GetNodeItem();
  416. if (node_item.kernel_task == nullptr) {
  417. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(node_state, ctx),
  418. "[Invoke][Compile] Failed for node[%s]", node_state.GetName().c_str());
  419. } else {
  420. node_state.SetKernelTask(node_item.kernel_task);
  421. }
  422. auto unique_task_context = TaskContext::Create(&node_state, context_, subgraph_context_.get());
  423. GE_CHECK_NOTNULL(unique_task_context);
  424. const auto &task = node_state.GetKernelTask();
  425. if (task == nullptr) {
  426. GELOGE(INTERNAL_ERROR, "[Invoke][GetKernelTask] failed for[%s], NodeTask is null.", node_state.GetName().c_str());
  427. REPORT_CALL_ERROR("E19999", "invoke GetKernelTask failed for %s, NodeTask is null.", node_state.GetName().c_str());
  428. return INTERNAL_ERROR;
  429. }
  430. auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release());
  431. node_state.SetTaskContext(shared_task_context);
  432. GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context));
  433. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start");
  434. GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*shared_task_context)); // update op_desc before alloc ws
  435. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end");
  436. return SUCCESS;
  437. }
  438. Status SubgraphExecutor::LaunchTasks() {
  439. while (true) {
  440. NodeState *node_state = nullptr;
  441. if (!ready_queue_.Pop(node_state)) {
  442. GELOGE(INTERNAL_ERROR, "[Invoke][Pop] failed for [%s].", graph_item_->GetName().c_str());
  443. REPORT_CALL_ERROR("E19999", "invoke pop failed for %s.", graph_item_->GetName().c_str());
  444. return INTERNAL_ERROR;
  445. }
  446. if (node_state == nullptr) {
  447. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  448. return SUCCESS;
  449. }
  450. if (node_state->GetType() == NETOUTPUT) {
  451. // Wait for all inputs become valid
  452. // after PrepareNodes returned. all output tensors and shapes are valid
  453. GE_CHK_STATUS_RET_NOLOG(node_state->GetShapeInferenceState().AwaitShapesReady(*context_));
  454. GE_CHK_STATUS_RET_NOLOG(node_state->AwaitInputTensors(*context_));
  455. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  456. continue;
  457. }
  458. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForPrepareDone());
  459. GELOGD("[%s] Start to execute.", node_state->GetName().c_str());
  460. auto shared_task_context = node_state->GetTaskContext();
  461. GE_CHECK_NOTNULL(shared_task_context);
  462. shared_task_context->SetForceInferShape(force_infer_shape_);
  463. std::function<void()> callback;
  464. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state, callback));
  465. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, shared_task_context, *context_, callback),
  466. "[Invoke][ExecuteAsync] failed for [%s].", node_state->GetName().c_str());
  467. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  468. }
  469. }
  470. Status SubgraphExecutor::ScheduleTasks(int group) {
  471. GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
  472. auto prepare_future = std::async(std::launch::async, [&]() -> Status {
  473. GetContext().SetSessionId(context_->session_id);
  474. GetContext().SetContextId(context_->context_id);
  475. auto ret = PrepareNodes(group);
  476. ready_queue_.Push(nullptr);
  477. schedule_queue_.Push(nullptr);
  478. for (auto &item : prepare_queues_) {
  479. item.second.Push(nullptr);
  480. }
  481. return ret;
  482. });
  483. auto schedule_future = std::async(std::launch::async, [&]() -> Status {
  484. return ScheduleNodes();
  485. });
  486. GELOGD("[%s] Start to execute subgraph.", graph_item_->GetName().c_str());
  487. auto ret = LaunchTasks();
  488. if (ret != SUCCESS) {
  489. subgraph_context_->OnError(ret);
  490. context_->SetErrorCode(ret);
  491. ready_queue_.Stop();
  492. schedule_queue_.Stop();
  493. for (auto &item : prepare_queues_) {
  494. item.second.Stop();
  495. }
  496. prepare_future.wait();
  497. schedule_future.wait();
  498. return ret;
  499. }
  500. GE_CHK_STATUS_RET(prepare_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  501. graph_item_->GetName().c_str());
  502. GE_CHK_STATUS_RET(schedule_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  503. graph_item_->GetName().c_str());
  504. GELOGD("[%s] Done launching all tasks successfully.", graph_item_->GetName().c_str());
  505. return SUCCESS;
  506. }
  507. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs) {
  508. return subgraph_context_->GetOutputs(outputs);
  509. }
  510. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc) {
  511. GE_CHK_STATUS_RET(GetOutputs(outputs), "[Invoke][GetOutputs] failed for [%s].", graph_item_->GetName().c_str());
  512. // copy output data from op to designated position
  513. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc),
  514. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  515. graph_item_->GetName().c_str());
  516. if (outputs.size() != output_desc.size()) {
  517. GELOGE(INTERNAL_ERROR, "[Check][Size]Number of outputs(%zu) mismatch number of output_desc(%zu).",
  518. outputs.size(), output_desc.size());
  519. REPORT_INNER_ERROR("E19999", "Number of outputs(%zu) mismatch number of output_desc(%zu).",
  520. outputs.size(), output_desc.size());
  521. return INTERNAL_ERROR;
  522. }
  523. return SUCCESS;
  524. }
  525. Status SubgraphExecutor::Synchronize() {
  526. GELOGD("[%s] Synchronize start.", graph_item_->GetName().c_str());
  527. GE_CHK_STATUS_RET_NOLOG(context_->Synchronize(context_->stream));
  528. GELOGD("[%s] Done synchronizing successfully.", graph_item_->GetName().c_str());
  529. return SUCCESS;
  530. }
  531. Status SubgraphExecutor::SetOutputsToParentNode(TaskContext &task_context) {
  532. // get output tensors and tensor desc list
  533. std::vector<TensorValue> outputs;
  534. std::vector<ConstGeTensorDescPtr> output_desc_list;
  535. GE_CHK_STATUS_RET(subgraph_context_->GetOutputs(outputs), "[Invoke][GetOutputs][%s] Failed to get output tensors.",
  536. graph_item_->GetName().c_str());
  537. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc_list),
  538. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  539. graph_item_->GetName().c_str());
  540. if (outputs.size() != output_desc_list.size()) {
  541. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] num of output tensors = %zu, num of output tensor desc = %zu not equal",
  542. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  543. REPORT_INNER_ERROR("E19999", "%s num of output tensors = %zu, num of output tensor desc = %zu not equal",
  544. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  545. return INTERNAL_ERROR;
  546. }
  547. // mapping to parent task context
  548. for (size_t i = 0; i < outputs.size(); ++i) {
  549. int parent_output_index = graph_item_->GetParentOutputIndex(i);
  550. GE_CHECK_GE(parent_output_index, 0);
  551. // update tensor
  552. GELOGD("[%s] Updating output[%zu] to parent output[%d]",
  553. graph_item_->GetName().c_str(),
  554. i,
  555. parent_output_index);
  556. GELOGD("[%s] Updating output tensor, index = %d, tensor = %s",
  557. graph_item_->GetName().c_str(),
  558. parent_output_index,
  559. outputs[i].DebugString().c_str());
  560. GE_CHK_STATUS_RET(task_context.SetOutput(parent_output_index, outputs[i]));
  561. // updating shapes. dynamic format/dtype is not supported.
  562. // It should be noted that even the subgraph is of known shape, it is also necessary to update parent output desc,
  563. // for instance, IfOp may have two known-shaped subgraphs of different output shapes
  564. const auto &output_desc = output_desc_list[i];
  565. auto parent_output_desc = task_context.MutableOutputDesc(parent_output_index);
  566. GE_CHECK_NOTNULL(parent_output_desc);
  567. GELOGD("[%s] Updating output shape[%d] from [%s] to [%s]",
  568. graph_item_->GetName().c_str(),
  569. parent_output_index,
  570. parent_output_desc->MutableShape().ToString().c_str(),
  571. output_desc->GetShape().ToString().c_str());
  572. parent_output_desc->SetShape(output_desc->GetShape());
  573. GELOGD("[%s] Updating output original shape[%d] from [%s] to [%s]",
  574. graph_item_->GetName().c_str(),
  575. parent_output_index,
  576. parent_output_desc->GetOriginShape().ToString().c_str(),
  577. output_desc->GetOriginShape().ToString().c_str());
  578. parent_output_desc->SetOriginShape(output_desc->GetOriginShape());
  579. }
  580. return SUCCESS;
  581. }
  582. Status SubgraphExecutor::EnableOutputZeroCopy(const vector<TensorValue> &outputs) {
  583. GELOGD("To enable zero copy, output number = %zu", outputs.size());
  584. const auto &output_edges = graph_item_->GetOutputEdges();
  585. // Op -> MetOutput, set the output tensor of Op that output to the NetOutput node
  586. if (outputs.size() != output_edges.size()) {
  587. GELOGE(PARAM_INVALID, "[Check][Size]Output number mismatches, expect = %zu, but given = %zu",
  588. output_edges.size(), outputs.size());
  589. REPORT_INNER_ERROR("E19999", "Output number mismatches, expect = %zu, but given = %zu",
  590. output_edges.size(), outputs.size());
  591. return PARAM_INVALID;
  592. }
  593. for (size_t i = 0; i < outputs.size(); ++i) {
  594. auto &output_tensor = outputs[i];
  595. auto &output_node = output_edges[i].first;
  596. int output_idx = output_edges[i].second;
  597. GELOGD("[%s] Set output tensor[%zu] to [%s]'s output[%d], tensor = %s",
  598. graph_item_->GetName().c_str(),
  599. i,
  600. output_node->NodeName().c_str(),
  601. output_idx,
  602. output_tensor.DebugString().c_str());
  603. GE_CHK_STATUS_RET(subgraph_context_->SetOutput(*output_node, output_idx, output_tensor),
  604. "[Invoke][SetOutput][%s] Failed to set input tensor[%zu]",
  605. graph_item_->GetName().c_str(), i);
  606. }
  607. GELOGD("Done enabling zero copy for outputs successfully.");
  608. return SUCCESS;
  609. }
  610. Status SubgraphExecutor::PartialExecuteAsync(int task_group) {
  611. return ScheduleTasks(task_group);
  612. }
  613. Status SubgraphExecutor::InitForPartialExecution(const vector<TensorValue> &inputs,
  614. const vector<ConstGeTensorDescPtr> &input_desc) {
  615. return Init(inputs, input_desc);
  616. }
  617. } // namespace hybrid
  618. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示