You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 31 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "single_op/task/aicpu_task_builder.h"
  29. #include "single_op/task/aicpu_kernel_task_builder.h"
  30. #include "single_op/task/rts_kernel_task_builder.h"
  31. #include "single_op/task/tbe_task_builder.h"
  32. #include "hybrid/executor/hybrid_model_executor.h"
  33. #include "hybrid/node_executor/node_executor.h"
  34. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  35. using domi::TaskDef;
  36. using std::unique_ptr;
  37. using std::vector;
  38. namespace ge {
  39. namespace {
  40. const size_t kDataOutputNum = 1;
  41. const uint32_t kInputIndexOfData = 0;
  42. const uint32_t kOutputIndexOfData = 0;
  43. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  44. Status CheckHostMem(const std::vector<string> &dependencies, const NodePtr &node, bool &is_host_mem) {
  45. auto op_desc = node->GetOpDesc();
  46. for (const auto &input_name : dependencies) {
  47. int input_index = op_desc->GetInputIndexByName(input_name);
  48. if (input_index < 0) {
  49. GELOGE(INTERNAL_ERROR, "[Get][InputIndex]failed, node:[%s] inputname: %s.",
  50. node->GetName().c_str(), input_name.c_str());
  51. REPORT_CALL_ERROR("E19999", "GetInputIndexByName failed, node:[%s] inputname: %s.",
  52. node->GetName().c_str(), input_name.c_str());
  53. return INTERNAL_ERROR;
  54. }
  55. const auto &src_node = NodeUtils::GetInDataNodeByIndex(*node, input_index);
  56. GE_CHECK_NOTNULL(src_node);
  57. auto src_op_desc = src_node->GetOpDesc();
  58. GE_CHECK_NOTNULL(src_op_desc);
  59. if (src_op_desc->GetType() == DATA) {
  60. auto tensor = src_op_desc->MutableInputDesc(kInputIndexOfData);
  61. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  62. GELOGD("Get hostmem from node %s, inputname: %s.", src_node->GetName().c_str(), input_name.c_str());
  63. continue;
  64. }
  65. }
  66. is_host_mem = false;
  67. return SUCCESS;
  68. }
  69. is_host_mem = true;
  70. return SUCCESS;
  71. }
  72. Status CheckInferDepend(GeModelPtr &ge_model, bool &is_infer_depend, bool &is_host_mem) {
  73. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  74. GE_CHECK_NOTNULL(comp_graph);
  75. for (const auto &node : comp_graph->GetAllNodes()) {
  76. GE_CHECK_NOTNULL(node);
  77. auto op_desc = node->GetOpDesc();
  78. GE_CHECK_NOTNULL(op_desc);
  79. const auto &depends = op_desc->GetOpInferDepends();
  80. bool support_dynamic_shape = false;
  81. (void)AttrUtils::GetBool(op_desc, kAttrSupportDynamicShape, support_dynamic_shape);
  82. if (!depends.empty() && support_dynamic_shape) {
  83. is_infer_depend = true;
  84. return CheckHostMem(depends, node, is_host_mem);
  85. }
  86. }
  87. return SUCCESS;
  88. }
  89. } // namespace
  90. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  91. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  92. Status SingleOpModel::Init() {
  93. GE_CHK_STATUS_RET_NOLOG(InitModel());
  94. return LoadAllNodes();
  95. }
  96. Status SingleOpModel::InitModel() {
  97. ge::ModelData model;
  98. model.model_len = ori_model_size_;
  99. model.model_data = const_cast<void *>(ori_model_data_);
  100. auto ret = model_helper_.LoadModel(model);
  101. if (ret != SUCCESS) {
  102. GELOGE(ret, "[Load][Model] failed.");
  103. REPORT_CALL_ERROR("E19999", "InitModel fail for ModelHelper LoadModel failed.");
  104. return ret;
  105. }
  106. return SUCCESS;
  107. }
  108. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  109. int64_t value = 0;
  110. bool ret = false;
  111. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  112. GE_CHECK_NOTNULL_JUST_RETURN(model);
  113. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  114. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  115. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  116. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  117. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  118. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  119. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  120. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  121. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  122. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  123. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  124. param.core_type = ret ? value : 0;
  125. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu",
  126. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  127. }
  128. Status SingleOpModel::InitModelMem(StreamResource &res) {
  129. ParseOpModelParams(model_helper_, model_params_);
  130. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  131. const string purpose("malloc feature map memory on model execute.");
  132. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  133. model_params_.mem_base =
  134. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  135. if (model_params_.mem_base == nullptr) {
  136. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  137. }
  138. }
  139. if (model_params_.weight_size > 0 && has_weight_) {
  140. const string purpose("malloc weights memory on model execute.");
  141. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  142. if (model_params_.weight_base == nullptr) {
  143. // no need to free memory, for that was handled by StreamResources
  144. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  145. }
  146. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  147. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  148. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  149. model_params_.weight_size,
  150. weight_buffer.GetData(),
  151. weight_buffer.GetSize(),
  152. RT_MEMCPY_HOST_TO_DEVICE));
  153. }
  154. return SUCCESS;
  155. }
  156. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  157. vector<int64_t> offsets = op_desc->GetOutputOffset();
  158. if (offsets.size() != kDataOutputNum) {
  159. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  160. "[Parse][InputNode]Data op should have only one output, but got %zu, op_name:%s, op_type:%s.",
  161. op_desc->GetOutputOffset().size(), op_desc->GetName().c_str(), op_desc->GetType().c_str());
  162. REPORT_INNER_ERROR("E19999", "ParseInputNode fail for Data op should have only one output, but got %zu,"
  163. "op_name:%s, op_type:%s.", op_desc->GetOutputOffset().size(),
  164. op_desc->GetName().c_str(), op_desc->GetType().c_str());
  165. return ACL_ERROR_GE_PARAM_INVALID;
  166. }
  167. auto output_desc = op_desc->GetOutputDescPtr(0);
  168. GE_CHECK_NOTNULL(output_desc);
  169. int64_t tensor_size = 0;
  170. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  171. input_offset_list_.emplace_back(offsets[0]);
  172. input_sizes_.emplace_back(tensor_size);
  173. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  174. tensor_size, static_cast<uint32_t>(offsets[0]));
  175. return SUCCESS;
  176. }
  177. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  178. vector<int64_t> offsets = op_desc->GetInputOffset();
  179. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  180. auto input_desc = op_desc->GetInputDescPtr(k);
  181. if (input_desc == nullptr) {
  182. continue;
  183. }
  184. int64_t tensor_size = 0;
  185. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  186. output_offset_list_.emplace_back(offsets[k]);
  187. output_sizes_.emplace_back(tensor_size);
  188. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  189. tensor_size, static_cast<uint32_t>(offsets[k]));
  190. }
  191. }
  192. Status SingleOpModel::LoadAllNodes() {
  193. auto ge_model = model_helper_.GetGeModel();
  194. GE_CHECK_NOTNULL(ge_model);
  195. Graph graph = ge_model->GetGraph();
  196. model_id_ = ge_model->GetModelId();
  197. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  198. if (compute_graph == nullptr) {
  199. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ComputeGraph] fail, model_name:%s.", model_name_.c_str());
  200. REPORT_CALL_ERROR("E19999", "LoadAllNodes fail for GetComputeGraph return nullptr, model_name:%s.",
  201. model_name_.c_str());
  202. return ACL_ERROR_GE_INTERNAL_ERROR;
  203. }
  204. auto nodes = compute_graph->GetDirectNode();
  205. size_t model_op_size = nodes.size();
  206. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  207. for (size_t i = 0; i < model_op_size; ++i) {
  208. auto node = nodes.at(i);
  209. auto op_desc = node->GetOpDesc();
  210. GE_CHECK_NOTNULL(op_desc);
  211. op_list_[op_desc->GetId()] = node;
  212. auto op_type = op_desc->GetType();
  213. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  214. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  215. data_ops_.emplace_back(op_desc);
  216. auto tensor = op_desc->MutableInputDesc(0);
  217. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  218. int32_t index = 0;
  219. (void) AttrUtils::GetInt(op_desc, ATTR_NAME_INDEX, index);
  220. GELOGD("Node %s, index %d, has host mem.", node->GetName().c_str(), index);
  221. op_with_hostmem_[index] = node;
  222. }
  223. continue;
  224. }
  225. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  226. has_weight_ = true;
  227. continue;
  228. }
  229. if (op_type == NETOUTPUT) {
  230. netoutput_op_ = op_desc;
  231. continue;
  232. }
  233. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  234. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  235. }
  236. return SUCCESS;
  237. }
  238. Status SingleOpModel::ParseInputsAndOutputs() {
  239. for (auto &op_desc : data_ops_) {
  240. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  241. }
  242. if (netoutput_op_ != nullptr) {
  243. ParseOutputNode(netoutput_op_);
  244. }
  245. return SUCCESS;
  246. }
  247. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  248. int arg_index = 0;
  249. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  250. auto *addr = model_params_.mem_base + input_offset_list_[i];
  251. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  252. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  253. single_op.input_addr_list_.emplace_back(addr);
  254. }
  255. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  256. auto *addr = model_params_.mem_base + output_offset_list_[i];
  257. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  258. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  259. single_op.output_addr_list_.emplace_back(addr);
  260. }
  261. single_op.args_.resize(arg_index);
  262. return SUCCESS;
  263. }
  264. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  265. auto ge_model = model_helper_.GetGeModel();
  266. GE_CHECK_NOTNULL(ge_model);
  267. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  268. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  269. for (int i = 0; i < tasks.size(); ++i) {
  270. const TaskDef &task_def = tasks[i];
  271. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  272. task_def.DebugString().c_str());
  273. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  274. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  275. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  276. task_def.kernel_with_handle().context();
  277. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  278. if (kernel_type == ccKernelType::TE) {
  279. GELOGD("Building TBE task");
  280. TbeOpTask *tbe_task = nullptr;
  281. auto ret = BuildKernelTask(task_def, &tbe_task);
  282. if (ret != SUCCESS) {
  283. return ret;
  284. }
  285. ParseArgTable(tbe_task, single_op);
  286. tbe_task->SetModelArgs(model_name_, model_id_);
  287. if (tbe_task->tiling_buffer_ != nullptr) {
  288. tbe_task->stream_resource_ = stream_resource;
  289. }
  290. single_op.tasks_.emplace_back(tbe_task);
  291. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  292. GELOGD("Building AICPU_CC task");
  293. AiCpuCCTask *task = nullptr;
  294. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  295. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  296. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id));
  297. task->SetModelArgs(model_name_, model_id_);
  298. ParseArgTable(task, single_op);
  299. single_op.tasks_.emplace_back(task);
  300. } else {
  301. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  302. "[Check][KernelType]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  303. context.kernel_type());
  304. REPORT_INNER_ERROR("E19999",
  305. "BuildTaskList fail for %u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  306. context.kernel_type());
  307. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  308. }
  309. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  310. GELOGD("Building AICPU_TF task");
  311. AiCpuTask *aicpu_task = nullptr;
  312. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  313. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  314. GE_CHK_STATUS_RET_NOLOG(
  315. BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, singleop_kernel_id));
  316. aicpu_task->SetModelArgs(model_name_, model_id_);
  317. ParseArgTable(aicpu_task, single_op);
  318. single_op.tasks_.emplace_back(aicpu_task);
  319. } else if ((task_type == RT_MODEL_TASK_MEMCPY_ASYNC) || (task_type == RT_MODEL_TASK_MEMCPY_ADDR_ASYNC)) {
  320. auto kernel_def = task_def.memcpy_async();
  321. auto node = op_list_[kernel_def.op_index()];
  322. GE_CHECK_NOTNULL(node);
  323. auto op_desc = node->GetOpDesc();
  324. GE_CHECK_NOTNULL(op_desc);
  325. std::unique_ptr<MemcpyAsyncTask> task;
  326. GE_CHK_STATUS_RET_NOLOG(RtsKernelTaskBuilder::BuildMemcpyAsyncTask(op_desc, kernel_def, model_params_, task));
  327. task->SetModelArgs(model_name_, model_id_);
  328. ParseArgTable(task.get(), single_op);
  329. single_op.tasks_.emplace_back(task.release());
  330. } else {
  331. // skip
  332. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  333. }
  334. }
  335. return SUCCESS;
  336. }
  337. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  338. if (task == nullptr) {
  339. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Parse][ArgTable] fail for input OpTask is nullptr.");
  340. REPORT_INNER_ERROR("E19999", "ParseArgTable fail for input OpTask is nullptr.");
  341. return;
  342. }
  343. // args: addr1, addr2, addr3 ...
  344. uintptr_t *arg_base = nullptr;
  345. size_t arg_num = 0;
  346. task->GetIoAddr(arg_base, arg_num);
  347. for (size_t i = 0; i < arg_num; ++i) {
  348. uintptr_t *ptr_to_addr = arg_base + i;
  349. uintptr_t addr = *ptr_to_addr;
  350. auto iter = model_params_.addr_mapping_.find(addr);
  351. if (iter != model_params_.addr_mapping_.end()) {
  352. int arg_index = iter->second;
  353. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  354. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  355. }
  356. }
  357. }
  358. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  359. GE_CHECK_NOTNULL(task);
  360. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  361. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  362. task_def.kernel_with_handle().context();
  363. auto iter = op_list_.find(context.op_index());
  364. if (iter == op_list_.end()) {
  365. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Param:TaskDef]op desc not found. op index = %u", context.op_index());
  366. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for op desc not found. op index = %u", context.op_index());
  367. return ACL_ERROR_GE_INTERNAL_ERROR;
  368. }
  369. auto *tbe_task = new (std::nothrow) TbeOpTask();
  370. if (tbe_task == nullptr) {
  371. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][TbeOpTask]failed.");
  372. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for new TbeOpTask.");
  373. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  374. }
  375. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  376. auto ret = builder.BuildTask(*tbe_task, model_params_);
  377. if (ret != SUCCESS) {
  378. delete tbe_task;
  379. tbe_task = nullptr;
  380. return ret;
  381. }
  382. *task = tbe_task;
  383. return SUCCESS;
  384. }
  385. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task, uint64_t kernel_id) {
  386. auto iter = op_list_.find(kernel_def.op_index());
  387. if (iter == op_list_.end()) {
  388. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  389. "[Check][Param:KernelExDef]op not found. op index = %u", kernel_def.op_index());
  390. REPORT_INNER_ERROR("E19999",
  391. "BuildKernelExTask fail for param kernel_def, because op of kernel_def not found, op index:%u.",
  392. kernel_def.op_index());
  393. return ACL_ERROR_GE_INTERNAL_ERROR;
  394. }
  395. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  396. if (aicpu_task == nullptr) {
  397. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuTask] failed.");
  398. REPORT_INNER_ERROR("E19999", "BuildKernelExTask fail for new AiCpuTask, model_name:%s.", model_name_.c_str());
  399. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  400. }
  401. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  402. auto ret = builder.BuildTask(*aicpu_task, model_params_, kernel_id);
  403. if (ret != SUCCESS) {
  404. GELOGE(ret, "[Build][Task] failed, kernel_id:%lu.", kernel_id);
  405. return ret;
  406. }
  407. *task = aicpu_task.release();
  408. return SUCCESS;
  409. }
  410. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, AiCpuCCTask **task, uint64_t kernel_id) {
  411. const auto &context = kernel_def.context();
  412. auto iter = op_list_.find(context.op_index());
  413. if (iter == op_list_.end()) {
  414. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  415. "[Check][Param:KernelDef] op desc not found. op index = %u", context.op_index());
  416. REPORT_INNER_ERROR("E19999",
  417. "BuildCpuKernelTask fail for kernel_def is invalid, because op of kernel_def not found, op index:%u.",
  418. context.op_index());
  419. return ACL_ERROR_GE_INTERNAL_ERROR;
  420. }
  421. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  422. if (aicpucc_task == nullptr) {
  423. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuCCTask] failed");
  424. REPORT_INNER_ERROR("E19999", "BuildCpuKernelTask fail for new AiCpuCCTask, model_name:%s.", model_name_.c_str());
  425. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  426. }
  427. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  428. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  429. if (ret != SUCCESS) {
  430. GELOGE(ret, "[Build][AiCpuCCTask]failed, kernel_id:%lu.", kernel_id);
  431. REPORT_CALL_ERROR("E19999", "BuildCpuKernelTask fail for build AiCpuTask, kernel_id:%lu.", kernel_id);
  432. return ret;
  433. }
  434. *task = aicpucc_task.release();
  435. return SUCCESS;
  436. }
  437. Status SingleOpModel::InitHybridModelExecutor(const StreamResource &resource, const GeModelPtr &ge_model,
  438. SingleOp &single_op) {
  439. for (const auto &op_desc : data_ops_) {
  440. auto output_tensor_desc = op_desc->GetOutputDesc(kOutputIndexOfData);
  441. GeTensorDesc tensor_desc(output_tensor_desc);
  442. single_op.inputs_desc_.emplace_back(tensor_desc);
  443. GELOGD("Init inputs desc from %s.", op_desc->GetName().c_str());
  444. }
  445. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  446. auto root_model = model_helper_.GetGeRootModel();
  447. GE_CHECK_NOTNULL(root_model);
  448. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  449. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  450. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  451. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  452. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  453. int32_t device_id = 0;
  454. GE_CHK_RT_RET(rtGetDevice(&device_id));
  455. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  456. device_id,
  457. resource.GetStream()));
  458. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  459. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  460. return SUCCESS;
  461. }
  462. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  463. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  464. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  465. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  466. GE_CHECK_NOTNULL(single_op.running_param_);
  467. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  468. auto ge_model = model_helper_.GetGeModel();
  469. GE_CHECK_NOTNULL(ge_model);
  470. bool infer_depend_flag = false;
  471. bool is_host_mem = false;
  472. GE_CHK_STATUS_RET(CheckInferDepend(ge_model, infer_depend_flag, is_host_mem), "[Check][InferDepend] failed.");
  473. if (infer_depend_flag) {
  474. // construct single_op, do single op with HybridModelExecutor
  475. GELOGD("Init hybrid model params of single op, and will do execute with hybrid model executor.");
  476. return InitHybridModelExecutor(resource, ge_model, single_op);
  477. }
  478. return BuildTaskList(&resource, single_op);
  479. }
  480. Status SingleOpModel::BuildTaskListForDynamicOp(StreamResource *stream_resource, DynamicSingleOp &single_op) {
  481. auto ge_model = model_helper_.GetGeModel();
  482. GE_CHECK_NOTNULL(ge_model);
  483. auto compute_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  484. GE_CHECK_NOTNULL(compute_graph);
  485. single_op.compute_graph_ = compute_graph;
  486. if (tbe_tasks_.size() > 0) {
  487. const auto &task_def = tbe_tasks_[0];
  488. GELOGD("Building TBE task.");
  489. TbeOpTask *tbe_task = nullptr;
  490. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  491. tbe_task->SetModelArgs(model_name_, model_id_);
  492. if (tbe_task->tiling_buffer_ != nullptr) {
  493. GELOGD("tiling buffer is not nullptr.");
  494. tbe_task->stream_resource_ = stream_resource;
  495. }
  496. single_op.op_task_.reset(tbe_task);
  497. } else if (aicpu_tasks_.size() > 0) {
  498. const auto &task_def = aicpu_tasks_[0];
  499. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  500. if (task_type == RT_MODEL_TASK_KERNEL) {
  501. GELOGD("Building AICPU_CC task");
  502. AiCpuCCTask *task = nullptr;
  503. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  504. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  505. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  506. if (task->GetUnknownType() == DEPEND_COMPUTE) {
  507. if (aicpu_tasks_.size() < 2) {
  508. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  509. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  510. return ACL_ERROR_GE_PARAM_INVALID;
  511. }
  512. const TaskDef &copy_task_def = aicpu_tasks_[1];
  513. GE_CHK_STATUS_RET_NOLOG(task->SetMemCopyTask(copy_task_def.kernel()));
  514. }
  515. task->SetModelArgs(model_name_, model_id_);
  516. single_op.op_task_.reset(task);
  517. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  518. GELOGD("Building AICPU_TF task");
  519. AiCpuTask *aicpu_task = nullptr;
  520. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  521. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  522. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, dynamic_singleop_kernel_id));
  523. if (aicpu_task->GetUnknownType() == DEPEND_COMPUTE) {
  524. if (aicpu_tasks_.size() < 2) {
  525. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  526. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  527. return ACL_ERROR_GE_PARAM_INVALID;
  528. }
  529. const TaskDef &copy_task_def = aicpu_tasks_[1];
  530. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  531. }
  532. aicpu_task->SetModelArgs(model_name_, model_id_);
  533. single_op.op_task_.reset(aicpu_task);
  534. }
  535. }
  536. return SUCCESS;
  537. }
  538. Status SingleOpModel::NeedHybridModel(GeModelPtr &ge_model, bool &need_hybrid_model) {
  539. bool is_infer_depend = false;
  540. bool is_host_mem = false;
  541. GE_CHK_STATUS_RET(CheckInferDepend(ge_model, is_infer_depend, is_host_mem), "[Check][InferDepend] failed.");
  542. bool need_d2h_cpy = is_infer_depend && !is_host_mem;
  543. bool aicpu_multi_task = tbe_tasks_.size() >= 1 && aicpu_tasks_.size() >= 1;
  544. bool aicore_multi_task = tbe_tasks_.size() > 1;
  545. need_hybrid_model = need_d2h_cpy || aicore_multi_task || aicpu_multi_task;
  546. return SUCCESS;
  547. }
  548. Status SingleOpModel::ParseTasks() {
  549. auto ge_model = model_helper_.GetGeModel();
  550. GE_CHECK_NOTNULL(ge_model);
  551. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  552. for (int i = 0; i < tasks.size(); ++i) {
  553. TaskDef &task_def = tasks[i];
  554. GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(),
  555. task_def.DebugString().c_str());
  556. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  557. if (task_type == RT_MODEL_TASK_KERNEL) {
  558. const auto &kernel_def = task_def.kernel();
  559. const auto &context = kernel_def.context();
  560. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  561. if (kernel_type == ccKernelType::TE) {
  562. tbe_tasks_.emplace_back(task_def);
  563. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  564. aicpu_tasks_.emplace_back(task_def);
  565. } else {
  566. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  567. "[Check][Param:TaskDef]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  568. context.kernel_type());
  569. REPORT_INNER_ERROR("E19999",
  570. "BuildModelTaskKernel fail for got:%u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  571. context.kernel_type());
  572. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  573. }
  574. } else if (task_type == RT_MODEL_TASK_ALL_KERNEL) {
  575. tbe_tasks_.emplace_back(task_def);
  576. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  577. aicpu_tasks_.emplace_back(task_def);
  578. } else {
  579. // skip
  580. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  581. }
  582. }
  583. return SUCCESS;
  584. }
  585. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  586. single_op.num_inputs_ = data_ops_.size();
  587. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  588. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  589. model_params_.memory_size = UINT64_MAX;
  590. model_params_.graph_is_dynamic = true;
  591. GE_CHK_STATUS_RET(ParseTasks(), "[Parse][Tasks] failed.");
  592. auto ge_model = model_helper_.GetGeModel();
  593. GE_CHECK_NOTNULL(ge_model);
  594. bool need_hybrid_model = false;
  595. GE_CHK_STATUS_RET(NeedHybridModel(ge_model, need_hybrid_model), "[Check][NeedHybridModel] failed.");
  596. if (need_hybrid_model) {
  597. GELOGD("Build single op HybridModel.");
  598. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  599. GE_CHK_STATUS(SetHostMemTensor(single_op), "[Init][HostMem]Failed.");
  600. auto root_model = model_helper_.GetGeRootModel();
  601. GE_CHECK_NOTNULL(root_model);
  602. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  603. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  604. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  605. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  606. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  607. int32_t device_id = 0;
  608. GE_CHK_RT_RET(rtGetDevice(&device_id));
  609. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  610. device_id,
  611. resource.GetStream()));
  612. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  613. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  614. return SUCCESS;
  615. }
  616. return BuildTaskListForDynamicOp(&resource, single_op);
  617. }
  618. Status SingleOpModel::SetHostMemTensor(DynamicSingleOp &single_op) {
  619. for (auto &node_map : op_with_hostmem_) {
  620. auto node = node_map.second;
  621. auto out_anchor = node->GetOutDataAnchor(0);
  622. GE_CHECK_NOTNULL(out_anchor);
  623. auto in_anchors = out_anchor->GetPeerInDataAnchors();
  624. vector<GeTensorDescPtr> tensor_descs;
  625. auto idx = node_map.first;
  626. for (auto anchor : in_anchors) {
  627. GE_CHECK_NOTNULL(anchor);
  628. auto output_node = anchor->GetOwnerNode();
  629. GE_CHECK_NOTNULL(output_node);
  630. auto op_desc = output_node->GetOpDesc();
  631. GE_CHECK_NOTNULL(op_desc);
  632. auto tensor_desc = op_desc->MutableInputDesc(anchor->GetIdx());
  633. tensor_descs.emplace_back(tensor_desc);
  634. GELOGD("Get %d th input tensor desc of %s by %d data node: %s.", anchor->GetIdx(),
  635. output_node->GetName().c_str(), idx, node->GetName().c_str());
  636. }
  637. single_op.tensor_with_hostmem_[idx] = tensor_descs;
  638. }
  639. return SUCCESS;
  640. }
  641. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示