You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tensor_value.h 2.3 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_HYBRID_COMMON_TENSOR_VALUE_H_
  17. #define GE_HYBRID_COMMON_TENSOR_VALUE_H_
  18. #include <atomic>
  19. #include <cstddef>
  20. #include <memory>
  21. #include "memory/memory_api.h"
  22. namespace ge {
  23. namespace hybrid {
  24. class NpuMemoryAllocator;
  25. class AllocationAttr;
  26. class TensorBuffer {
  27. public:
  28. static std::unique_ptr<TensorBuffer> Create(NpuMemoryAllocator *allocator, size_t size,
  29. AllocationAttr *attr = nullptr);
  30. static std::unique_ptr<TensorBuffer> Create(void *buffer, size_t size);
  31. TensorBuffer(const TensorBuffer &) = delete;
  32. TensorBuffer &operator=(const TensorBuffer &) = delete;
  33. ~TensorBuffer();
  34. void *GetData() { return buffer_; }
  35. size_t GetSize() const { return size_; }
  36. private:
  37. TensorBuffer(NpuMemoryAllocator *allocator, void *buffer, size_t size, MemStorageType mem_type = HBM);
  38. NpuMemoryAllocator *allocator_ = nullptr;
  39. void *buffer_ = nullptr;
  40. size_t size_ = 0;
  41. MemStorageType mem_type_;
  42. };
  43. class TensorValue {
  44. public:
  45. TensorValue() = default;
  46. explicit TensorValue(std::shared_ptr<TensorBuffer> buffer);
  47. TensorValue(void *buffer, size_t size);
  48. ~TensorValue();
  49. void Destroy();
  50. bool IsEmpty() { return ref_buffer_ == nullptr && buffer_ == nullptr; }
  51. const void *GetData() const;
  52. std::string DebugString() const;
  53. void SetName(const std::string &name) { name_ = name; }
  54. void *MutableData();
  55. size_t GetSize() const;
  56. private:
  57. std::shared_ptr<TensorBuffer> buffer_;
  58. std::string name_;
  59. // for weights and variables
  60. void *ref_buffer_ = nullptr;
  61. size_t ref_size_ = 0;
  62. // shape
  63. };
  64. } // namespace hybrid
  65. } // namespace ge
  66. #endif // GE_HYBRID_COMMON_TENSOR_VALUE_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示