You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ge_ir_build.h 4.9 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. * Licensed under the Apache License, Version 2.0 (the "License");
  4. * you may not use this file except in compliance with the License.
  5. * You may obtain a copy of the License at
  6. * http://www.apache.org/licenses/LICENSE-2.0
  7. * Unless required by applicable law or agreed to in writing, software
  8. * distributed under the License is distributed on an "AS IS" BASIS,
  9. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. * See the License for the specific language governing permissions and
  11. * limitations under the License.
  12. */
  13. #ifndef INC_EXTERNAL_GE_IR_BUILD_H_
  14. #define INC_EXTERNAL_GE_IR_BUILD_H_
  15. #if defined(_MSC_VER)
  16. #ifdef FUNC_VISIBILITY
  17. #define GE_FUNC_VISIBILITY _declspec(dllexport)
  18. #else
  19. #define GE_FUNC_VISIBILITY
  20. #endif
  21. #else
  22. #ifdef FUNC_VISIBILITY
  23. #define GE_FUNC_VISIBILITY __attribute__((visibility("default")))
  24. #else
  25. #define GE_FUNC_VISIBILITY
  26. #endif
  27. #endif
  28. #include <string>
  29. #include <map>
  30. #include <memory>
  31. #include "graph/graph.h"
  32. #include "graph/ge_error_codes.h"
  33. namespace {
  34. const int IR_MAJOR_VERSION = 1;
  35. const int IR_MINOR_VERSION = 0;
  36. const int IR_PATCH_VERSION = 0;
  37. } // namespace
  38. namespace ge {
  39. struct ModelBufferData {
  40. std::shared_ptr<uint8_t> data = nullptr;
  41. uint64_t length;
  42. };
  43. /**
  44. * @ingroup AscendCL
  45. * @brief build model.Notice the model is stored in buffer
  46. *
  47. * @param global_options[IN] global init params for build
  48. * @retval GRAPH_SUCCESS The function is successfully executed.
  49. * @retval OtherValues Failure
  50. */
  51. ATTRIBUTED_DEPRECATED(GE_FUNC_VISIBILITY graphStatus aclgrphBuildInitialize(std::map<AscendString, AscendString> &))
  52. GE_FUNC_VISIBILITY graphStatus aclgrphBuildInitialize(std::map<std::string, std::string> global_options);
  53. GE_FUNC_VISIBILITY graphStatus aclgrphBuildInitialize(std::map<AscendString, AscendString> &global_options);
  54. /**
  55. * @ingroup AscendCL
  56. * @brief build model.Notice the model is stored in buffer
  57. *
  58. */
  59. GE_FUNC_VISIBILITY void aclgrphBuildFinalize();
  60. /**
  61. * @ingroup AscendCL
  62. * @brief build model.Notice the model is stored in buffer
  63. *
  64. * @param graph[IN] the graph ready to build
  65. * @param options[IN] options used for build
  66. * @param model[OUT] builded model
  67. * @retval GRAPH_SUCCESS The function is successfully executed.
  68. * @retval OtherValues Failure
  69. */
  70. ATTRIBUTED_DEPRECATED(GE_FUNC_VISIBILITY graphStatus aclgrphBuildModel(const ge::Graph &, const std::map<AscendString, AscendString> &,
  71. ModelBufferData &))
  72. GE_FUNC_VISIBILITY graphStatus aclgrphBuildModel(const ge::Graph &graph, const std::map<std::string, std::string> &build_options,
  73. ModelBufferData &model);
  74. GE_FUNC_VISIBILITY graphStatus aclgrphBuildModel(const ge::Graph &graph, const std::map<AscendString, AscendString> &build_options,
  75. ModelBufferData &model);
  76. /**
  77. * @ingroup AscendCL
  78. * @brief save model buffer to file
  79. *
  80. * @param output_file[IN] the file path to be saved
  81. * @param model[IN] model buffer data
  82. * @retval GRAPH_SUCCESS The function is successfully executed.
  83. * @retval OtherValues Failure
  84. */
  85. ATTRIBUTED_DEPRECATED(GE_FUNC_VISIBILITY graphStatus aclgrphSaveModel(const char *, const ModelBufferData &))
  86. GE_FUNC_VISIBILITY graphStatus aclgrphSaveModel(const string &output_file, const ModelBufferData &model);
  87. GE_FUNC_VISIBILITY graphStatus aclgrphSaveModel(const char *output_file, const ModelBufferData &model);
  88. /**
  89. * @ingroup AscendCL
  90. * @brief query IR interface version
  91. *
  92. * @param major_version[OUT] IR interface major version
  93. * @param minor_version[OUT] IR interface minor version
  94. * @param patch_version[OUT] IR interface patch version
  95. * @retval GRAPH_SUCCESS The function is successfully executed.
  96. * @retval OtherValues Failure
  97. */
  98. GE_FUNC_VISIBILITY graphStatus aclgrphGetIRVersion(int *major_version, int *minor_version, int *patch_version);
  99. /**
  100. * @ingroup AscendCL
  101. * @brief dump graph
  102. *
  103. * @param graph[IN] the graph ready to build
  104. * @param file[IN] file path
  105. * @param file[IN] file path string len
  106. * @retval GRAPH_SUCCESS The function is successfully executed.
  107. * @retval OtherValues Failure
  108. */
  109. GE_FUNC_VISIBILITY graphStatus aclgrphDumpGraph(const ge::Graph &graph, const char *file, const size_t len);
  110. /**
  111. * @ingroup AscendCL
  112. * @brief create single op graph
  113. *
  114. * @param op_type[IN] the op_type
  115. * @param inputs[IN] the inputdesc
  116. * @param outputs[IN] the outputdesc
  117. * @param graph[OUT] the graph
  118. * @retval GRAPH_SUCCESS The function is successfully executed.
  119. * @retval OtherValues Failure
  120. */
  121. GE_FUNC_VISIBILITY graphStatus aclgrphGenerateForOp(const AscendString &op_type, const std::vector<TensorDesc> &inputs,
  122. const std::vector<TensorDesc> &outputs, Graph &graph);
  123. }; // namespace ge
  124. #endif // INC_EXTERNAL_GE_IR_BUILD_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示