You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_model_deploy_schedule.cc 2.4 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. /**
  2. * Copyright 2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include "external/ge/ge_api.h"
  18. #include "ge_running_env/ge_running_env_faker.h"
  19. #include "ge_graph_dsl/graph_dsl.h"
  20. #include "ge_graph_dsl/assert/graph_assert.h"
  21. namespace ge {
  22. class TestModelDeploySchedule : public testing::Test {
  23. protected:
  24. void SetUp() { ge_env.InstallDefault(); }
  25. void TearDown() {}
  26. GeRunningEnvFaker ge_env;
  27. };
  28. TEST_F(TestModelDeploySchedule, test_data_slice) {
  29. DEF_GRAPH(g1) {
  30. auto data = std::make_shared<OpDesc>("data1", DATA);
  31. auto var = std::make_shared<OpDesc>("var1", VARIABLE);
  32. auto conv = std::make_shared<OpDesc>("conv1", CONV2D);
  33. // data output 0
  34. auto data_output_desc = data->MutableOutputDesc(0);
  35. std::vector<std::vector<int64_t>> cut_attr = {{0, 0, 0, 0}};
  36. ge::AttrUtils::SetListListInt(data_output_desc, "cut_info", cut_attr);
  37. // conv input 0
  38. auto conv_input_desc = conv->MutableInputDesc(0);
  39. ge::AttrUtils::SetListListInt(conv_input_desc, "cut_info", {{1,0,0,0}, {0,0,0,0}});
  40. // conv input 1
  41. auto input_desc = conv->MutableInputDesc(1);
  42. ge::AttrUtils::SetListListInt(input_desc, "cut_info", {{0, 0, 0, 0}, {0, 0, 1, 0}});
  43. CHAIN(NODE(data)->NODE(conv));
  44. CHAIN(NODE(var)->NODE(conv));
  45. // CHAIN(NODE("data1", DATA)->NODE("conv1", CONV2D));
  46. // CHAIN(NODE("var1", VARIABLE)->NODE("conv1"));
  47. };
  48. map<AscendString, AscendString> options;
  49. // TODO: add option to enable mds pass
  50. Session session(options);
  51. session.AddGraph(1, ToGeGraph(g1), options);
  52. std::vector<InputTensorInfo> inputs;
  53. auto ret = session.BuildGraph(1, inputs);
  54. EXPECT_EQ(ret, SUCCESS);
  55. CHECK_GRAPH(PreRunAfterBuild) {
  56. ASSERT_EQ(graph->GetName(), "g1_1");
  57. ASSERT_EQ(graph->GetAllNodesSize(), 4);
  58. };
  59. }
  60. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示