You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stateless_random_ops.h 2.3 kB

5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_OP_STATELESS_RANDOM_OPS_H
  17. #define GE_OP_STATELESS_RANDOM_OPS_H
  18. #include "graph/operator.h"
  19. #include "graph/operator_reg.h"
  20. namespace ge {
  21. /**
  22. *@brief Draws samples from a multinomial distribution.
  23. *@par Inputs:
  24. include: \n
  25. *@li logits:2-D Tensor with shape [batch_size, num_classes]. Each slice [i, :]\n
  26. *represents the unnormalized log probabilities for all classes.
  27. *@li num_samples:0-D. Number of independent samples to draw for each row slice.
  28. *@li seed:The seed to generate random.
  29. *@par Attributes:
  30. *output_dtype:Output data type.
  31. *@par Outputs:
  32. *y:Output random number.
  33. *@see StatelessMultinomial()
  34. */
  35. REG_OP(StatelessMultinomial)
  36. .INPUT(logits, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE}))
  37. .INPUT(num_samples, TensorType({DT_INT32}))
  38. .INPUT(seed, TensorType({DT_INT32, DT_INT64}))
  39. .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
  40. .ATTR(output_dtype, Type, DT_INT64)
  41. .OP_END_FACTORY_REG(StatelessMultinomial)
  42. /**
  43. *@brief Outputs deterministic pseudorandom random integers from a uniform distribution.
  44. *@par Inputs:
  45. *@li shape: The shape of the output tensor.
  46. *@li seed: 2 seeds (shape [2]).
  47. *@li minval: Minimum value (inclusive, scalar).
  48. *@li maxval: Maximum value (exclusive, scalar).
  49. *@par Outputs:
  50. *y: Returns Random values with specified shape.
  51. */
  52. REG_OP(StatelessRandomUniformInt)
  53. .INPUT(shape, TensorType({DT_INT32, DT_INT64}))
  54. .INPUT(seed, TensorType({DT_INT32, DT_INT64}))
  55. .INPUT(minval, TensorType({DT_INT32, DT_INT64}))
  56. .INPUT(maxval, TensorType({DT_INT32, DT_INT64}))
  57. .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
  58. .OP_END_FACTORY_REG(StatelessRandomUniformInt)
  59. } // namespace ge
  60. #endif //GE_OP_STATELESS_RANDOM_OPS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示