You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_execute.cc 25 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/execute/graph_execute.h"
  17. #include <memory>
  18. #include <string>
  19. #include "graph/load/model_manager/model_manager.h"
  20. #include "omm/csa_interact.h"
  21. namespace ge {
  22. GraphExecutor::GraphExecutor()
  23. : init_flag_(false),
  24. train_graph_flag_(false),
  25. sync_run_mutex_(nullptr),
  26. condition_(nullptr),
  27. graph_run_listener_(nullptr),
  28. graph_context_(nullptr),
  29. last_graph_id_(UINT32_MAX),
  30. malloc_flag_(false) {}
  31. GraphExecutor::~GraphExecutor() {
  32. outputs_desc_.clear();
  33. if (malloc_flag_) {
  34. for (auto &buffer_addr : buffer_addr_) {
  35. rtError_t rt_ret;
  36. rt_ret = rtFreeHost(buffer_addr);
  37. if (rt_ret != RT_ERROR_NONE) {
  38. REPORT_CALL_ERROR("E19999", "Call rtFreeHost fail, ret:0x%X when %s", rt_ret, __FUNCTION__);
  39. GELOGE(RT_FAILED, "[GraphManager] subgraph free buffer failed, ret: 0x%X", rt_ret);
  40. }
  41. }
  42. }
  43. malloc_flag_ = false;
  44. buffer_addr_.clear();
  45. }
  46. Status GraphExecutor::SetCondition(std::mutex *mutex, std::condition_variable *cond,
  47. std::shared_ptr<GraphModelListener> listener) {
  48. if (mutex == nullptr) {
  49. REPORT_INNER_ERROR("E19999", "Check param mutex nullptr when %s", __FUNCTION__);
  50. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[SetCondition] input param mutex is nullptr.");
  51. return GE_GRAPH_PARAM_NULLPTR;
  52. }
  53. if (cond == nullptr) {
  54. REPORT_INNER_ERROR("E19999", "Check param cond nullptr when %s", __FUNCTION__);
  55. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[SetCondition] input param cond is nullptr.");
  56. return GE_GRAPH_PARAM_NULLPTR;
  57. }
  58. if (listener == nullptr) {
  59. REPORT_INNER_ERROR("E19999", "Check param listener nullptr when %s", __FUNCTION__);
  60. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[SetCondition] input param listener is nullptr.");
  61. return GE_GRAPH_PARAM_NULLPTR;
  62. }
  63. sync_run_mutex_ = mutex;
  64. condition_ = cond;
  65. graph_run_listener_ = listener;
  66. init_flag_ = true;
  67. return SUCCESS;
  68. }
  69. Status GraphExecutor::SetGraphContext(GraphContextPtr graph_context_ptr) {
  70. if (graph_context_ptr == nullptr) {
  71. REPORT_INNER_ERROR("E19999", "Check param graph_context_ptr nullptr when %s", __FUNCTION__);
  72. GELOGE(GE_GRAPH_PARAM_NULLPTR, "[SetGraphContext] input param graph_context_ptr is nullptr");
  73. return GE_GRAPH_PARAM_NULLPTR;
  74. }
  75. graph_context_ = graph_context_ptr;
  76. return SUCCESS;
  77. }
  78. Status GraphExecutor::SetDynamicSize(uint32_t model_id, const std::vector<uint64_t> &batch_num, int32_t dynamic_type) {
  79. auto model_manager = ge::ModelManager::GetInstance();
  80. GE_CHECK_NOTNULL(model_manager);
  81. Status ret = model_manager->SetDynamicSize(model_id, batch_num, dynamic_type);
  82. if (ret != SUCCESS) {
  83. GELOGE(ret, "SetDynamicSize failed");
  84. return ret;
  85. }
  86. return SUCCESS;
  87. }
  88. void GraphExecutor::SetTrainFlag(bool is_train_graph) { train_graph_flag_ = is_train_graph; }
  89. Status GraphExecutor::FreeInOutBuffer() {
  90. if (malloc_flag_) {
  91. for (auto iter = buffer_addr_.begin(); iter != buffer_addr_.end(); ++iter) {
  92. rtError_t rt_ret;
  93. rt_ret = rtFreeHost(*iter);
  94. if (rt_ret != RT_ERROR_NONE) {
  95. REPORT_CALL_ERROR("E19999", "Call rtFreeHost fail, ret:0x%X when %s", rt_ret, __FUNCTION__);
  96. GELOGE(RT_FAILED, "[GraphManager] subgraph free buffer failed, ret: 0x%X", rt_ret);
  97. (void)buffer_addr_.erase(buffer_addr_.begin(), iter);
  98. return GE_GRAPH_FREE_FAILED;
  99. }
  100. }
  101. buffer_addr_.clear();
  102. malloc_flag_ = false;
  103. return SUCCESS;
  104. } else {
  105. GELOGD("[GraphManager] not malloc buffer.");
  106. return SUCCESS;
  107. }
  108. }
  109. Status GraphExecutor::MallocInOutBuffer(const std::vector<uint64_t> &buffer_size, std::vector<void *> &data_addr) {
  110. if (malloc_flag_) {
  111. auto all_size_same = true;
  112. if (buffer_size.size() == buffer_size_.size()) {
  113. for (size_t i = 0; i < buffer_size.size(); i++) {
  114. if (buffer_size[i] != buffer_size_[i]) {
  115. all_size_same = false;
  116. break;
  117. }
  118. }
  119. } else {
  120. all_size_same = false;
  121. }
  122. if (all_size_same) {
  123. data_addr = buffer_addr_;
  124. return SUCCESS;
  125. }
  126. buffer_size_.clear();
  127. auto rt_ret = FreeInOutBuffer();
  128. if (rt_ret != SUCCESS) {
  129. GELOGE(RT_FAILED, "[SubGraphInfo] MallocInOutBuffer free buffer failed, ret: 0x%X", rt_ret);
  130. return RT_FAILED;
  131. }
  132. }
  133. rtError_t rt_ret;
  134. for (size_t i = 0; i < buffer_size.size(); ++i) {
  135. void *tmp_buf = nullptr;
  136. rt_ret = rtMallocHost(&tmp_buf, buffer_size[i]);
  137. if (rt_ret != RT_ERROR_NONE) {
  138. REPORT_CALL_ERROR("E19999", "Call rtMallocHost fail, size:%lu, ret:0x%X when %s",
  139. buffer_size[i], rt_ret, __FUNCTION__);
  140. GELOGE(RT_FAILED, "[GraphManager] subgraph malloc buffer failed, ret: 0x%X", rt_ret);
  141. return GE_GRAPH_MALLOC_FAILED;
  142. }
  143. malloc_flag_ = true;
  144. data_addr.push_back(tmp_buf);
  145. buffer_addr_.push_back(tmp_buf);
  146. }
  147. buffer_size_ = buffer_size;
  148. return SUCCESS;
  149. }
  150. Status GraphExecutor::PrepareInputData(const std::vector<GeTensor> &input_tensor, InputData &graph_input_data,
  151. OutputData &graph_output_data, std::vector<InputOutputDescInfo> &output_desc) {
  152. // Preprocessing input data
  153. graph_input_data.index = 0;
  154. graph_input_data.timeout = 0;
  155. graph_input_data.timestamp = 0;
  156. std::size_t inputSize = input_tensor.size();
  157. std::size_t output_size = output_desc.size();
  158. std::vector<uint64_t> bufferSizeVec;
  159. std::vector<void *> addrVec;
  160. for (std::size_t i = 0; i < inputSize; ++i) {
  161. const GeTensor *InTensor = &input_tensor[i];
  162. GE_CHECK_NOTNULL(InTensor);
  163. bufferSizeVec.push_back(InTensor->GetData().size());
  164. }
  165. for (const auto &desc : output_desc) {
  166. bufferSizeVec.push_back(desc.size);
  167. }
  168. Status ret = MallocInOutBuffer(bufferSizeVec, addrVec);
  169. if (ret != SUCCESS) {
  170. GELOGE(GE_GRAPH_MALLOC_FAILED, "[GraphExecutor] Malloc mem failed");
  171. return GE_GRAPH_MALLOC_FAILED;
  172. }
  173. for (std::size_t i = 0; i < input_tensor.size() && i < addrVec.size(); ++i) {
  174. const GeTensor *in_tensor = &input_tensor[i];
  175. GE_CHECK_NOTNULL(in_tensor);
  176. if ((addrVec[i] != nullptr) && (in_tensor->GetData().data() != nullptr)) {
  177. rtError_t rt_ret = rtMemcpy(addrVec[i], bufferSizeVec[i], in_tensor->GetData().data(),
  178. in_tensor->GetData().size(), RT_MEMCPY_HOST_TO_HOST);
  179. if (rt_ret != RT_ERROR_NONE) {
  180. REPORT_CALL_ERROR("E19999", "Call rtMemcpy fail, dst_size:%lu, src_size:%zu, ret:0x%X when %s",
  181. bufferSizeVec[i], in_tensor->GetData().size(), rt_ret, __FUNCTION__);
  182. GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
  183. return RT_FAILED;
  184. }
  185. }
  186. DataBuffer in_data_buf;
  187. in_data_buf.data = reinterpret_cast<uint8_t *>(addrVec[i]);
  188. in_data_buf.length = in_tensor->GetData().size();
  189. in_data_buf.isDataSupportMemShare = false;
  190. graph_input_data.blobs.push_back(in_data_buf);
  191. }
  192. graph_output_data.index = 0;
  193. for (std::size_t j = 0; j < output_size; j++) {
  194. auto desc = output_desc[j];
  195. uint64_t buffer_size = desc.size;
  196. DataBuffer out_data_buf;
  197. out_data_buf.data = reinterpret_cast<uint8_t *>(addrVec[inputSize + j]);
  198. out_data_buf.length = buffer_size;
  199. out_data_buf.isDataSupportMemShare = false;
  200. graph_output_data.blobs.push_back(out_data_buf);
  201. }
  202. return SUCCESS;
  203. }
  204. Status GraphExecutor::SyncExecuteModel(uint32_t model_id, const std::vector<GeTensor> &input_tensor,
  205. std::vector<GeTensor> &output_tensor) {
  206. auto model_manager = ge::ModelManager::GetInstance();
  207. GE_CHECK_NOTNULL(model_manager);
  208. if (model_manager->IsDynamicShape(model_id)) {
  209. GELOGI("[ExecuteGraph] GetInputOutputDescInfo via dynamic shape model executor, modelId=%u", model_id);
  210. return model_manager->SyncExecuteModel(model_id, input_tensor, output_tensor);
  211. }
  212. // Prepare input and output
  213. std::vector<InputOutputDescInfo> inputs_desc;
  214. std::vector<InputOutputDescInfo> output_desc;
  215. GELOGI("[ExecuteGraph] GetInputOutputDescInfo via new ome begin.");
  216. Status ret = GetInputOutputDescInfo(model_id, inputs_desc, output_desc);
  217. if (ret != SUCCESS) {
  218. GELOGE(GE_GRAPH_GET_IN_OUT_FAILED, "[GraphExecutor] GetInputOutputDescInfo failed, modelId=%u.", model_id);
  219. return GE_GRAPH_GET_IN_OUT_FAILED;
  220. }
  221. outputs_desc_.assign(output_desc.begin(), output_desc.end());
  222. InputData input_data;
  223. OutputData output_data;
  224. input_data.model_id = model_id;
  225. ret = PrepareInputData(input_tensor, input_data, output_data, output_desc);
  226. if (ret != SUCCESS) {
  227. GELOGE(GE_GRAPH_PREPARE_FAILED, "[GraphExecutor] PrepareInputData failed, modelId=%u.", model_id);
  228. return GE_GRAPH_PREPARE_FAILED;
  229. }
  230. if (graph_run_listener_->ResetResult() != SUCCESS) {
  231. REPORT_CALL_ERROR("E19999", "Call graph_run_listener_.ResetResult fail, model_id:%u, when %s",
  232. model_id, __FUNCTION__);
  233. GELOGE(GE_GRAPH_EXECUTE_FAILED, "Reset result failed");
  234. return GE_GRAPH_EXECUTE_FAILED;
  235. }
  236. // Run mode async
  237. GELOGI("[ExecuteGraph] DataInput via new ome begin.");
  238. ret = DataInput(input_data, output_data);
  239. if (ret != SUCCESS) {
  240. GELOGE(GE_GRAPH_DATA_INPUT_FAILED, "[GraphExecutor] push data failed, modelId=%u.", model_id);
  241. return GE_GRAPH_DATA_INPUT_FAILED;
  242. }
  243. GELOGI("[GraphExecutor] input data push to wrapper finish, waiting for result...");
  244. // Pending until async execute graph complete
  245. {
  246. std::unique_lock<std::mutex> ulock(*sync_run_mutex_);
  247. if (!graph_run_listener_->IsFinished()) {
  248. (*condition_).wait(ulock);
  249. }
  250. // Run graph return
  251. uint32_t result_code = graph_run_listener_->GetResultCode();
  252. if (result_code != SUCCESS && result_code != END_OF_SEQUENCE) {
  253. REPORT_CALL_ERROR("E19999", "Graph_run_listener_ run fail, result:%u, model_id:%u, when %s",
  254. result_code, model_id, __FUNCTION__);
  255. GELOGE(GE_GRAPH_EXECUTE_FAILED, "[GraphExecutor] execute model failed, ret=%u, modelId=%u.", result_code,
  256. model_id);
  257. return GE_GRAPH_EXECUTE_FAILED;
  258. }
  259. }
  260. for (size_t i = 0; i < output_data.blobs.size(); ++i) {
  261. DataBuffer outputDataTmp = output_data.blobs[i];
  262. CHECK_FALSE_EXEC(outputDataTmp.length != 0,
  263. REPORT_INNER_ERROR("E19999", "Param output_data.length is 0 in model:%u, check invalid, when %s",
  264. model_id, __FUNCTION__);
  265. GELOGE(GE_GRAPH_EXECUTE_FAILED, "Failed to allocate memory, length is 0.");
  266. return GE_GRAPH_EXECUTE_FAILED);
  267. std::unique_ptr<uint8_t> outBufTmp(new (std::nothrow) uint8_t[outputDataTmp.length]);
  268. if (outBufTmp == nullptr) {
  269. REPORT_INNER_ERROR("E19999", "New output buffer fail, length:%lu, model:%u, when %s",
  270. outputDataTmp.length, model_id, __FUNCTION__);
  271. GELOGE(FAILED, "Failed to allocate memory.");
  272. return FAILED;
  273. }
  274. GE_PRINT_DYNAMIC_MEMORY(new, "the output memory of data on training.", sizeof(uint8_t) * outputDataTmp.length)
  275. rtError_t ret_value = rtMemcpy(outBufTmp.get(), outputDataTmp.length, outputDataTmp.data, outputDataTmp.length,
  276. RT_MEMCPY_HOST_TO_HOST);
  277. CHECK_FALSE_EXEC(ret_value == RT_ERROR_NONE,
  278. REPORT_CALL_ERROR("E19999", "Call rtMemcpy fail, dst_size:%lu, src_size:%zu, ret:0x%X when %s",
  279. outputDataTmp.length, outputDataTmp.length, ret_value, __FUNCTION__);
  280. GELOGE(GE_GRAPH_EXECUTE_FAILED, "Call rt api rtMemcpy failed, ret: 0x%X", ret);
  281. return GE_GRAPH_EXECUTE_FAILED);
  282. GeTensor outTensor;
  283. std::vector<int64_t> shapeDims;
  284. for (const auto &dim : output_desc[i].shape_info.dims) {
  285. shapeDims.push_back(dim);
  286. }
  287. GeShape outShape(shapeDims);
  288. outTensor.MutableTensorDesc().SetShape(outShape);
  289. outTensor.MutableTensorDesc().SetDataType((DataType)output_desc[i].data_type);
  290. (void)outTensor.SetData(outBufTmp.get(), outputDataTmp.length);
  291. output_tensor.push_back(outTensor);
  292. }
  293. GELOGI("[GraphExecutor] execute model success, modelId=%u.", model_id);
  294. return SUCCESS;
  295. }
  296. void GraphExecutor::InitModelIdInfo(std::vector<uint32_t> &out_model_id_info,
  297. std::vector<SubGraphInfoPtr> &sub_graph_vec, uint32_t output_size) {
  298. for (uint32_t i = 0; i < output_size; i++) {
  299. for (size_t j = 0; j < sub_graph_vec.size(); j++) {
  300. if (sub_graph_vec[j]->GetOutputFlag().size() == output_size && sub_graph_vec[j]->GetOutputFlag().at(i)) {
  301. out_model_id_info.push_back(sub_graph_vec[j]->GetModelIdInfo().model_id);
  302. }
  303. }
  304. }
  305. }
  306. Status GraphExecutor::FreeExecuteMemory() {
  307. auto ret = FreeInOutBuffer();
  308. if (ret != SUCCESS) {
  309. GELOGE(ret, "[FreeExecuteMemory] FreeInOutBuffer Error!");
  310. return ret;
  311. }
  312. return SUCCESS;
  313. }
  314. Status GraphExecutor::ExecuteGraph(GraphId graph_id, const GeRootModelPtr &ge_root_model,
  315. const std::vector<GeTensor> &input_tensor, std::vector<GeTensor> &output_tensor) {
  316. if (graph_id != last_graph_id_) {
  317. auto ret = FreeExecuteMemory();
  318. if (ret != SUCCESS) {
  319. return ret;
  320. }
  321. }
  322. last_graph_id_ = graph_id;
  323. if (!init_flag_) {
  324. REPORT_INNER_ERROR("E19999", "No SetCondition called before, graph:%u, check invalid when %s",
  325. graph_id, __FUNCTION__);
  326. GELOGE(GE_GRAPH_EXECUTE_NOT_INIT, "[GraphExecutor] AI Core Engine without calling SetCondition!");
  327. return GE_GRAPH_EXECUTE_NOT_INIT;
  328. }
  329. GE_CHECK_NOTNULL_EXEC(ge_root_model, return FAILED);
  330. Status ret = SyncExecuteModel(ge_root_model->GetModelId(), input_tensor, output_tensor);
  331. if (ret != SUCCESS) {
  332. GELOGE(GE_GRAPH_SYNC_MODEL_FAILED, "[GraphExecutor] SyncExecuteModel Error!");
  333. return GE_GRAPH_SYNC_MODEL_FAILED;
  334. }
  335. return SUCCESS;
  336. }
  337. Status GraphExecutor::ExecuteGraphAsync(GraphId graph_id, const GeRootModelPtr &ge_root_model,
  338. const std::vector<InputTensorInfo> &input_tensor) {
  339. GELOGI("[GraphExecutor] Start to async execute graph, graph_id=%u", graph_id);
  340. if (graph_id != last_graph_id_) {
  341. auto ret = FreeExecuteMemory();
  342. if (ret != SUCCESS) {
  343. return ret;
  344. }
  345. }
  346. last_graph_id_ = graph_id;
  347. GE_CHECK_NOTNULL_EXEC(ge_root_model, return FAILED);
  348. Status ret = AsyncExecuteModel(ge_root_model->GetModelId(), input_tensor);
  349. if (ret != SUCCESS) {
  350. GELOGE(GE_GRAPH_SYNC_MODEL_FAILED, "[GraphExecutor] AsyncExecuteModel Error!");
  351. return GE_GRAPH_SYNC_MODEL_FAILED;
  352. }
  353. GELOGI("[GraphExecutor] Async execute graph success, graph_id=%u", graph_id);
  354. return SUCCESS;
  355. }
  356. Status GraphExecutor::AsyncExecuteModel(uint32_t model_id, const std::vector<InputTensorInfo> &inputs) {
  357. try {
  358. auto model_manager = ge::ModelManager::GetInstance();
  359. GE_CHECK_NOTNULL(model_manager);
  360. GELOGI("RunAsync begin.model_id %u", model_id);
  361. Status ret = model_manager->DataInputTensor(model_id, inputs);
  362. if (ret != SUCCESS) {
  363. GELOGE(ret, "RunAsync: DataInput fail");
  364. return ret;
  365. }
  366. GELOGI("RunAsync success.");
  367. } catch (std::bad_alloc &) {
  368. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur when %s failed", __FUNCTION__);
  369. GELOGE(MEMALLOC_FAILED, "RunAsync failed, bad memory allocation occur !");
  370. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  371. return MEMALLOC_FAILED;
  372. } catch (...) {
  373. REPORT_INNER_ERROR("E19999", "Some exceptions occur when %s failed", __FUNCTION__);
  374. GELOGE(FAILED, "RunAsync failed, some exceptions occur !");
  375. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  376. return FAILED;
  377. }
  378. return SUCCESS;
  379. }
  380. Status GraphExecutor::DataInput(const InputData &input_data, OutputData &output_data) {
  381. try {
  382. auto model_manager = ge::ModelManager::GetInstance();
  383. GE_CHECK_NOTNULL(model_manager);
  384. Status ret = model_manager->DataInput(input_data, output_data);
  385. if (ret != SUCCESS) {
  386. GELOGE(ret, "DataInput: DataInput failed.");
  387. CsaInteract::GetInstance().WriteErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  388. return ret;
  389. }
  390. } catch (std::bad_alloc &) {
  391. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur when %s failed", __FUNCTION__);
  392. GELOGE(MEMALLOC_FAILED, "DataInput failed, bad memory allocation occur !");
  393. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  394. return MEMALLOC_FAILED;
  395. } catch (...) {
  396. REPORT_INNER_ERROR("E19999", "Some exceptions occur when %s failed", __FUNCTION__);
  397. GELOGE(FAILED, "DataInput failed, some exceptions occur !");
  398. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  399. return FAILED;
  400. }
  401. return SUCCESS;
  402. }
  403. Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc,
  404. vector<InputOutputDescInfo> &output_desc) {
  405. try {
  406. auto model_manager = ge::ModelManager::GetInstance();
  407. GE_CHECK_NOTNULL(model_manager);
  408. Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc);
  409. if (ret != SUCCESS) {
  410. GELOGE(ret, "GetInputOutputDescInfo failed.");
  411. CsaInteract::GetInstance().WriteErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  412. return ret;
  413. }
  414. } catch (std::bad_alloc &) {
  415. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur when %s failed", __FUNCTION__);
  416. GELOGE(MEMALLOC_FAILED, "GetInputOutputDescInfo failed, bad memory allocation occur !");
  417. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  418. return MEMALLOC_FAILED;
  419. } catch (...) {
  420. REPORT_INNER_ERROR("E19999", "Some exceptions occur when %s failed", __FUNCTION__);
  421. GELOGE(FAILED, "GetInputOutputDescInfo failed, some exceptions occur !");
  422. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  423. return FAILED;
  424. }
  425. return SUCCESS;
  426. }
  427. Status GraphExecutor::GetInputOutputDescInfo(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc,
  428. vector<InputOutputDescInfo> &output_desc,
  429. std::vector<uint32_t> &input_formats, std::vector<uint32_t> &out_formats,
  430. bool new_model_desc) {
  431. try {
  432. auto model_manager = ge::ModelManager::GetInstance();
  433. GE_CHECK_NOTNULL(model_manager);
  434. Status ret = model_manager->GetInputOutputDescInfo(model_id, input_desc, output_desc, input_formats, out_formats,
  435. new_model_desc);
  436. if (ret != SUCCESS) {
  437. GELOGE(ret, "GetInputOutputDescInfo failed.");
  438. CsaInteract::GetInstance().WriteErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  439. return ret;
  440. }
  441. } catch (std::bad_alloc &) {
  442. REPORT_INNER_ERROR("E19999", "Bad memory allocation exception occur when %s failed", __FUNCTION__);
  443. GELOGE(MEMALLOC_FAILED, "GetInputOutputDescInfo failed, bad memory allocation occur !");
  444. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  445. return MEMALLOC_FAILED;
  446. } catch (...) {
  447. REPORT_INNER_ERROR("E19999", "Some exceptions occur when %s failed", __FUNCTION__);
  448. GELOGE(FAILED, "GetInputOutputDescInfo failed, some exceptions occur !");
  449. CsaInteract::GetInstance().WriteErrorCode(FAILED, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  450. return FAILED;
  451. }
  452. return SUCCESS;
  453. }
  454. ///
  455. /// @ingroup ge
  456. /// @brief Get dynamic batch_info
  457. /// @param [in] model_id
  458. /// @param [out] batch_info
  459. /// @param [out] dynamic_type
  460. /// @return execute result
  461. ///
  462. Status GraphExecutor::GetDynamicBatchInfo(uint32_t model_id, std::vector<std::vector<int64_t>> &batch_info,
  463. int32_t &dynamic_type) {
  464. auto model_manager = ge::ModelManager::GetInstance();
  465. GE_CHECK_NOTNULL(model_manager);
  466. Status ret = model_manager->GetDynamicBatchInfo(model_id, batch_info, dynamic_type);
  467. if (ret != SUCCESS) {
  468. GELOGE(ret, "GetDynamicBatchInfo failed.");
  469. return ret;
  470. }
  471. return SUCCESS;
  472. }
  473. ///
  474. /// @ingroup ge
  475. /// @brief Get combined dynamic dims info
  476. /// @param [in] model_id
  477. /// @param [out] batch_info
  478. /// @return execute result
  479. ///
  480. Status GraphExecutor::GetCombinedDynamicDims(uint32_t model_id, std::vector<std::vector<int64_t>> &batch_info) {
  481. auto model_manager = ge::ModelManager::GetInstance();
  482. GE_CHECK_NOTNULL(model_manager);
  483. Status ret = model_manager->GetCombinedDynamicDims(model_id, batch_info);
  484. if (ret != SUCCESS) {
  485. GELOGE(ret, "GetCombinedDynamicDims failed.");
  486. return ret;
  487. }
  488. return SUCCESS;
  489. }
  490. ///
  491. /// @ingroup ge
  492. /// @brief Get user designate shape order
  493. /// @param [in] model_id
  494. /// @param [out] user_input_shape_order
  495. /// @return execute result
  496. ///
  497. ge::Status GraphExecutor::GetUserDesignateShapeOrder(uint32_t model_id,
  498. std::vector<std::string> &user_input_shape_order) {
  499. auto model_manager = ge::ModelManager::GetInstance();
  500. GE_CHECK_NOTNULL(model_manager);
  501. Status ret = model_manager->GetUserDesignateShapeOrder(model_id, user_input_shape_order);
  502. if (ret != SUCCESS) {
  503. GELOGE(ret, "GetUserDesignateShapeOrder failed.");
  504. return ret;
  505. }
  506. return SUCCESS;
  507. }
  508. Status GraphExecutor::GetCurShape(const uint32_t model_id, std::vector<int64_t> &batch_info, int32_t &dynamic_type) {
  509. auto model_manager = ge::ModelManager::GetInstance();
  510. GE_CHECK_NOTNULL(model_manager);
  511. Status ret = model_manager->GetCurShape(model_id, batch_info, dynamic_type);
  512. if (ret != SUCCESS) {
  513. GELOGE(ret, "GetCurShape failed");
  514. return ret;
  515. }
  516. return SUCCESS;
  517. }
  518. Status GraphExecutor::GetModelAttr(uint32_t model_id, std::vector<string> &dynamic_output_shape_info) {
  519. auto model_manager = ge::ModelManager::GetInstance();
  520. GE_CHECK_NOTNULL(model_manager);
  521. Status ret = model_manager->GetModelAttr(model_id, dynamic_output_shape_info);
  522. if (ret != SUCCESS) {
  523. GELOGE(FAILED, "GetModelAttr failed");
  524. return ret;
  525. }
  526. return SUCCESS;
  527. }
  528. Status GraphExecutor::GetAippInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) {
  529. auto model_manager = ge::ModelManager::GetInstance();
  530. GE_CHECK_NOTNULL(model_manager);
  531. Status ret = model_manager->GetAippInfo(model_id, index, aipp_info);
  532. if (ret != SUCCESS) {
  533. GELOGW("GetAIPPInfo is not success.");
  534. return ret;
  535. }
  536. return SUCCESS;
  537. }
  538. Status GraphExecutor::GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index) {
  539. auto model_manager = ge::ModelManager::GetInstance();
  540. GE_CHECK_NOTNULL(model_manager);
  541. Status ret = model_manager->GetAippType(model_id, index, type, aipp_index);
  542. if (ret != SUCCESS) {
  543. GELOGW("Get aipp type is not success.");
  544. return ret;
  545. }
  546. return SUCCESS;
  547. }
  548. Status GraphExecutor::GetOrigInputInfo(uint32_t model_id, uint32_t index, OriginInputInfo &orig_input_info) {
  549. auto model_manager = ge::ModelManager::GetInstance();
  550. GE_CHECK_NOTNULL(model_manager);
  551. Status ret = model_manager->GetOrigInputInfo(model_id, index, orig_input_info);
  552. if (ret != SUCCESS) {
  553. GELOGE(ret, "GetOrigInputInfo failed.");
  554. return ret;
  555. }
  556. return SUCCESS;
  557. }
  558. Status GraphExecutor::GetAllAippInputOutputDims(uint32_t model_id, uint32_t index,
  559. std::vector<InputOutputDims> &input_dims,
  560. std::vector<InputOutputDims> &output_dims) {
  561. auto model_manager = ge::ModelManager::GetInstance();
  562. GE_CHECK_NOTNULL(model_manager);
  563. Status ret = model_manager->GetAllAippInputOutputDims(model_id, index, input_dims, output_dims);
  564. if (ret != SUCCESS) {
  565. GELOGE(ret, "GetAllAippInputOutputDims failed.");
  566. return ret;
  567. }
  568. return SUCCESS;
  569. }
  570. Status GraphExecutor::GetOpDescInfo(uint32_t device_id, uint32_t stream_id, uint32_t task_id,
  571. OpDescInfo &op_desc_info) {
  572. auto model_manager = ge::ModelManager::GetInstance();
  573. GE_CHECK_NOTNULL(model_manager);
  574. Status ret = model_manager->GetOpDescInfo(device_id, stream_id, task_id, op_desc_info);
  575. if (ret != SUCCESS) {
  576. GELOGE(ret, "GetOpDescInfo failed.");
  577. return ret;
  578. }
  579. return SUCCESS;
  580. }
  581. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示