You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mem_assigner_unittest.cc 18 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <memory>
  18. #include "graph/anchor.h"
  19. #include "graph/attr_value.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "graph/utils/graph_utils.h"
  22. #include "graph/utils/node_utils.h"
  23. #include "graph/utils/op_desc_utils.h"
  24. #include "graph/utils/tensor_utils.h"
  25. #include "omg/omg_inner_types.h"
  26. #include "../passes/graph_builder_utils.h"
  27. #define protected public
  28. #define private public
  29. #include "graph/build/memory/binary_block_mem_assigner.h"
  30. #include "graph/build/memory/graph_mem_assigner.h"
  31. #include "graph/build/memory/hybrid_mem_assigner.h"
  32. #include "graph/build/memory/max_block_mem_assigner.h"
  33. #include "graph/manager/graph_var_manager.h"
  34. #undef protected
  35. #undef private
  36. using namespace std;
  37. using namespace testing;
  38. using namespace ge;
  39. using domi::GetContext;
  40. class UtestMemoryAssignerTest : public testing::Test {
  41. public:
  42. ge::OpDescPtr CreateOpWithWsSize(const string &name, int64_t wsByte, const string &type = "some") {
  43. ge::OpDescPtr op_def = make_shared<ge::OpDesc>(name, type);
  44. auto desc_temp_ptr = make_shared<ge::GeTensorDesc>();
  45. auto desc_temp = *desc_temp_ptr;
  46. TensorUtils::SetSize(desc_temp, 1024);
  47. op_def->AddInputDesc(desc_temp);
  48. op_def->AddOutputDesc(desc_temp);
  49. std::vector<int64_t> workspace_bytes;
  50. workspace_bytes.push_back(wsByte);
  51. op_def->SetWorkspaceBytes(workspace_bytes);
  52. return op_def;
  53. }
  54. ge::OpDescPtr CreateRefOpWithWsSize(const string &name, int64_t wsByte, const string &type = "some") {
  55. ge::OpDescPtr op_def = make_shared<ge::OpDesc>(name, type);
  56. auto desc_temp_ptr = make_shared<ge::GeTensorDesc>();
  57. auto desc_temp = *desc_temp_ptr;
  58. TensorUtils::SetSize(desc_temp, 1024);
  59. op_def->AddInputDesc(desc_temp);
  60. auto desc_output_ptr = make_shared<ge::GeTensorDesc>();
  61. auto desc_output = *desc_output_ptr;
  62. TensorUtils::SetSize(desc_output, 6500);
  63. ge::TensorUtils::SetReuseInput(desc_output, true);
  64. ge::TensorUtils::SetReuseInputIndex(desc_output, 0);
  65. op_def->AddOutputDesc(desc_output);
  66. std::vector<int64_t> workspace_bytes;
  67. workspace_bytes.push_back(wsByte);
  68. op_def->SetWorkspaceBytes(workspace_bytes);
  69. return op_def;
  70. }
  71. void MakeGraph(ge::ComputeGraphPtr &graph, const string &type = "some") {
  72. ge::OpDescPtr op_def_a = CreateOpWithWsSize("A", 6000, type);
  73. op_def_a->SetStreamId(0);
  74. ge::OpDescPtr op_def_b = CreateOpWithWsSize("B", 120000);
  75. op_def_b->SetStreamId(0);
  76. ge::OpDescPtr op_def_c = CreateOpWithWsSize("C", 16000);
  77. op_def_c->SetStreamId(1);
  78. ge::OpDescPtr op_def_d = CreateOpWithWsSize("D", 24000);
  79. op_def_d->SetStreamId(2);
  80. ge::OpDescPtr op_def_e = CreateOpWithWsSize("E", 24000);
  81. op_def_e->SetStreamId(3);
  82. ge::OpDescPtr op_def_f = CreateOpWithWsSize("F", 30000);
  83. op_def_f->SetStreamId(2);
  84. ge::OpDescPtr op_def_g = CreateOpWithWsSize("G", 32000);
  85. op_def_g->SetStreamId(3);
  86. ge::OpDescPtr op_def_h = CreateOpWithWsSize("H", 48000);
  87. op_def_h->SetStreamId(2);
  88. ge::OpDescPtr op_def_i = CreateOpWithWsSize("I", 60000);
  89. op_def_i->SetStreamId(2);
  90. ge::OpDescPtr op_def_j = CreateOpWithWsSize("J", 256000, NETOUTPUT);
  91. op_def_j->SetStreamId(3);
  92. // add node
  93. ge::NodePtr node_a = graph->AddNode(op_def_a);
  94. ge::NodePtr node_b = graph->AddNode(op_def_b);
  95. ge::NodePtr node_c = graph->AddNode(op_def_c);
  96. ge::NodePtr node_d = graph->AddNode(op_def_d);
  97. ge::NodePtr node_e = graph->AddNode(op_def_e);
  98. ge::NodePtr node_f = graph->AddNode(op_def_f);
  99. ge::NodePtr node_g = graph->AddNode(op_def_g);
  100. ge::NodePtr node_h = graph->AddNode(op_def_h);
  101. ge::NodePtr node_i = graph->AddNode(op_def_i);
  102. ge::NodePtr node_j = graph->AddNode(op_def_j);
  103. // add edge
  104. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_b->GetInDataAnchor(0));
  105. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_c->GetInDataAnchor(0));
  106. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(0), node_d->GetInDataAnchor(0));
  107. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(0), node_e->GetInDataAnchor(0));
  108. ge::GraphUtils::AddEdge(node_c->GetOutDataAnchor(0), node_g->GetInDataAnchor(0));
  109. ge::GraphUtils::AddEdge(node_d->GetOutDataAnchor(0), node_f->GetInDataAnchor(0));
  110. ge::GraphUtils::AddEdge(node_e->GetOutDataAnchor(0), node_g->GetInDataAnchor(1));
  111. ge::GraphUtils::AddEdge(node_f->GetOutDataAnchor(0), node_h->GetInDataAnchor(0));
  112. ge::GraphUtils::AddEdge(node_g->GetOutDataAnchor(0), node_j->GetInDataAnchor(0));
  113. ge::GraphUtils::AddEdge(node_h->GetOutDataAnchor(0), node_i->GetInDataAnchor(0));
  114. ge::GraphUtils::AddEdge(node_i->GetOutDataAnchor(0), node_j->GetInDataAnchor(1));
  115. GetContext().out_nodes_map["H"] = {0};
  116. GetContext().out_nodes_map["I"] = {0};
  117. GetContext().out_nodes_map["J"] = {0};
  118. graph->TopologicalSorting();
  119. }
  120. void MakeReuseGraph(ge::ComputeGraphPtr graph) {
  121. ge::OpDescPtr op_def_a = CreateOpWithWsSize("A", 6000);
  122. ge::OpDescPtr op_def_b = CreateOpWithWsSize("B", 120000);
  123. ge::OpDescPtr op_def_c = CreateRefOpWithWsSize("C", 120000);
  124. ge::OpDescPtr op_def_d = make_shared<ge::OpDesc>("D", "CONSTANT");
  125. ge::NodePtr node_a = graph->AddNode(op_def_a);
  126. ge::NodePtr node_b = graph->AddNode(op_def_b);
  127. ge::NodePtr node_c = graph->AddNode(op_def_c);
  128. ge::NodePtr node_d = graph->AddNode(op_def_d);
  129. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_b->GetInDataAnchor(0));
  130. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_c->GetInDataAnchor(0));
  131. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_d->GetInDataAnchor(0));
  132. GetContext().out_nodes_map["B"] = {0};
  133. GetContext().out_nodes_map["C"] = {0};
  134. graph->TopologicalSorting();
  135. }
  136. ComputeGraphPtr MakeCascadeContinuousMemoryGraph() {
  137. ge::ut::GraphBuilder builder("graph");
  138. auto data = builder.AddNode("data", "Data", 1, 1);
  139. auto addn1 = builder.AddNode("addn1", "AddN", 1, 1);
  140. auto addn2 = builder.AddNode("addn2", "AddN", 1, 1);
  141. auto addn3 = builder.AddNode("addn3", "AddN", 1, 1);
  142. auto concat1 = builder.AddNode("concat1", "Concat", 2, 1);
  143. auto concat2 = builder.AddNode("concat2", "Concat", 2, 1);
  144. auto netoutput = builder.AddNode("netoutput", "NetOutput", 2, 0);
  145. ge::AttrUtils::SetBool(concat1->GetOpDesc(), ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, true);
  146. ge::AttrUtils::SetBool(concat1->GetOpDesc(), ATTR_NAME_CONTINUOUS_INPUT_ALLOC, true);
  147. ge::AttrUtils::SetBool(concat1->GetOpDesc(), ATTR_NAME_OUTPUT_REUSE_INPUT, true);
  148. ge::AttrUtils::SetBool(concat2->GetOpDesc(), ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, true);
  149. ge::AttrUtils::SetBool(concat2->GetOpDesc(), ATTR_NAME_CONTINUOUS_INPUT_ALLOC, true);
  150. ge::AttrUtils::SetBool(concat2->GetOpDesc(), ATTR_NAME_OUTPUT_REUSE_INPUT, true);
  151. addn1->GetOpDesc()->SetOutputOffset({100});
  152. addn2->GetOpDesc()->SetOutputOffset({200});
  153. concat1->GetOpDesc()->SetOutputOffset({100});
  154. addn3->GetOpDesc()->SetOutputOffset({700});
  155. concat2->GetOpDesc()->SetOutputOffset({500});
  156. ge::AttrUtils::SetListInt(addn1->GetOpDesc(), ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, {100});
  157. ge::AttrUtils::SetListInt(addn2->GetOpDesc(), ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, {100});
  158. ge::AttrUtils::SetListInt(addn3->GetOpDesc(), ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, {100});
  159. ge::AttrUtils::SetListInt(concat1->GetOpDesc(), ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, {200});
  160. ge::AttrUtils::SetListInt(concat2->GetOpDesc(), ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, {300});
  161. builder.AddDataEdge(data, 0, addn1, 0);
  162. builder.AddDataEdge(data, 0, addn2, 0);
  163. builder.AddDataEdge(addn1, 0, concat1, 0);
  164. builder.AddDataEdge(addn2, 0, concat1, 1);
  165. builder.AddDataEdge(concat1, 0, concat2, 0);
  166. builder.AddDataEdge(addn3, 0, concat2, 1);
  167. return builder.GetGraph();
  168. }
  169. ComputeGraphPtr MakeRefNodeGraph() {
  170. ge::ut::GraphBuilder builder("graph");
  171. auto var_input = builder.AddNode("var", "Variable", 1, 1);
  172. auto const_input = builder.AddNode("const", "Const", 1, 1);
  173. auto assign = builder.AddNode("assgin", "Assign", 2, 1);
  174. // add link
  175. builder.AddDataEdge(var_input, 0, assign, 0);
  176. builder.AddDataEdge(const_input, 0, assign, 1);
  177. // set offset
  178. assign->GetOpDesc()->SetInputOffset({100, 0});
  179. assign->GetOpDesc()->SetOutputOffset({10000});
  180. var_input->GetOpDesc()->SetOutputOffset({10000});
  181. const_input->GetOpDesc()->SetOutputOffset({1000});
  182. // set mem type
  183. ge::AttrUtils::SetListInt(assign->GetOpDesc(), ATTR_NAME_INPUT_MEM_TYPE_LIST, {RT_MEMORY_HBM, RT_MEMORY_L1});
  184. // set ref
  185. auto output_tensordesc = assign->GetOpDesc()->MutableOutputDesc(0);
  186. ge::TensorUtils::SetReuseInput(*output_tensordesc, true);
  187. uint32_t reuse_input_index = 0;
  188. ge::TensorUtils::SetReuseInputIndex(*output_tensordesc, reuse_input_index);
  189. return builder.GetGraph();
  190. }
  191. protected:
  192. void SetUp() {}
  193. void TearDown() { GetContext().out_nodes_map.clear(); }
  194. };
  195. /*
  196. TEST_F(UtestMemoryAssignerTest, MemoryBlock_Resize_RealSizeList_is_empty) {
  197. ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("");
  198. ge::OpDescPtr op_def_a = CreateOpWithWsSize("A", 6000);
  199. ge::NodePtr node_a = graph->AddNode(op_def_a);
  200. MemoryBlock* memory_block = new MemoryBlock(0);
  201. memory_block->Init(1, kOutput, node_a, 0, 1);
  202. memory_block->real_size_list_.clear();
  203. memory_block->Resize();
  204. EXPECT_EQ(memory_block->Size(), 0);
  205. delete memory_block;
  206. }
  207. */
  208. namespace ge {
  209. class MockBlockMemAssigner : public BlockMemAssigner {
  210. public:
  211. explicit MockBlockMemAssigner(ge::ComputeGraphPtr compute_graph, const std::map<std::string, std::string> &anchor_to_symbol, const std::map<std::string, std::list<NodeIndexIO>> &symbol_to_anchors) : BlockMemAssigner(compute_graph, anchor_to_symbol, symbol_to_anchors) {};
  212. virtual ~MockBlockMemAssigner(){};
  213. Status GetMemoryRanges(std::vector<int64_t> &ranges) override { return FAILED; }
  214. };
  215. } // namespace ge
  216. // when check GetMemoryRanges return fail, Assign return fail
  217. TEST_F(UtestMemoryAssignerTest, Mock_block_mem_assigner_failed) {
  218. ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("");
  219. MakeGraph(graph);
  220. std::map<std::string, std::string> anchor_to_symbol;
  221. std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
  222. EXPECT_EQ(GraphUtils::GetRefMapping(graph, symbol_to_anchors, anchor_to_symbol), GRAPH_SUCCESS);
  223. MockBlockMemAssigner mock_assigner(graph, anchor_to_symbol, symbol_to_anchors);
  224. EXPECT_EQ(mock_assigner.Assign(), FAILED);
  225. }
  226. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_continuous_input) {
  227. ge::ComputeGraphPtr graph = MakeCascadeContinuousMemoryGraph();
  228. auto addn1 = graph->FindNode("addn1");
  229. auto addn2 = graph->FindNode("addn2");
  230. EXPECT_EQ(addn1->GetOpDesc()->GetOutputOffset()[0], 100);
  231. EXPECT_EQ(addn2->GetOpDesc()->GetOutputOffset()[0], 200);
  232. GraphMemoryAssigner memoryAssigner(graph);
  233. MemoryOffset memory_offset(RT_MEMORY_HBM, 0);
  234. memoryAssigner.memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);
  235. EXPECT_EQ(memoryAssigner.ReAssignContinuousMemory(false), GRAPH_SUCCESS);
  236. EXPECT_EQ(addn1->GetOpDesc()->GetOutputOffset()[0], 500);
  237. EXPECT_EQ(addn2->GetOpDesc()->GetOutputOffset()[0], 600);
  238. }
  239. TEST_F(UtestMemoryAssignerTest, graph_memory_set_last_used_attr) {
  240. ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("");
  241. MakeGraph(graph);
  242. auto node_f = graph->FindNode("F");
  243. MemoryAssigner memory_assigner(graph);
  244. map<int64_t, size_t> mem_offset;
  245. size_t zero_memory_size = 0;
  246. EXPECT_EQ(memory_assigner.AssignMemory(false, mem_offset, zero_memory_size), GRAPH_SUCCESS);
  247. bool flag = 0;
  248. (void) ge::AttrUtils::GetBool(node_f->GetOpDesc()->GetInputDesc(0), ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE, flag);
  249. EXPECT_EQ(flag, true);
  250. }
  251. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_ref_var) {
  252. ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("");
  253. MakeGraph(graph, VARIABLE);
  254. auto node_a = graph->FindNode("A");
  255. auto node_b = graph->FindNode("B");
  256. std::string value = "A";
  257. (void) ge::AttrUtils::SetStr(node_b->GetOpDesc()->MutableOutputDesc(0), REF_VAR_SRC_VAR_NAME, value);
  258. MemoryAssigner memory_assigner(graph);
  259. map<int64_t, size_t> mem_offset;
  260. size_t zero_memory_size = 0;
  261. VarManager::Instance(0)->Init(0, 0, 0, 0);
  262. EXPECT_EQ(memory_assigner.AssignMemory(false, mem_offset, zero_memory_size), GRAPH_SUCCESS);
  263. EXPECT_EQ(node_b->GetOpDesc()->GetOutputOffset()[0], node_a->GetOpDesc()->GetOutputOffset()[0]);
  264. }
  265. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_ref_var_not_found) {
  266. ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("");
  267. MakeGraph(graph, VARIABLE);
  268. ge::ComputeGraphPtr sub_graph = make_shared<ge::ComputeGraph>("");
  269. MakeReuseGraph(sub_graph);
  270. graph->AddSubGraph(sub_graph);
  271. auto node_a = graph->FindNode("A");
  272. auto node_b = graph->FindNode("B");
  273. std::string value = "M";
  274. (void) ge::AttrUtils::SetStr(node_b->GetOpDesc()->MutableOutputDesc(0), REF_VAR_SRC_VAR_NAME, value);
  275. MemoryAssigner memory_assigner(graph);
  276. map<int64_t, size_t> mem_offset;
  277. size_t zero_memory_size = 0;
  278. VarManager::Instance(0)->Init(0, 0, 0, 0);
  279. EXPECT_NE(memory_assigner.AssignMemory(false, mem_offset, zero_memory_size), GRAPH_SUCCESS);
  280. }
  281. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_set_input_offset) {
  282. ge::ComputeGraphPtr graph = MakeRefNodeGraph();
  283. auto assgin = graph->FindNode("assgin");
  284. EXPECT_EQ(assgin->GetOpDesc()->GetOutputOffset()[0], 10000);
  285. EXPECT_EQ(assgin->GetOpDesc()->GetInputOffset()[0], 100);
  286. EXPECT_EQ(assgin->GetOpDesc()->GetInputOffset()[1], 0);
  287. GraphMemoryAssigner memoryAssigner(graph);
  288. MemoryOffset memory_offset(RT_MEMORY_HBM, 0);
  289. memoryAssigner.memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);
  290. EXPECT_EQ(memoryAssigner.SetInputOffset(), GRAPH_SUCCESS);
  291. EXPECT_EQ(assgin->GetOpDesc()->GetOutputOffset()[0], 10100);
  292. EXPECT_EQ(assgin->GetOpDesc()->GetInputOffset()[0], 10100);
  293. EXPECT_EQ(assgin->GetOpDesc()->GetInputOffset()[1], 0);
  294. EXPECT_EQ(memoryAssigner.CheckOffset(), GRAPH_SUCCESS);
  295. }
  296. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_update_ref_op_offset_reverse) {
  297. ge::ut::GraphBuilder builder("graph");
  298. auto data_input = builder.AddNode("data", "Data", 1, 1);
  299. auto const_input = builder.AddNode("const", "Const", 1, 1);
  300. auto add = builder.AddNode("add", "Add", 2, 1);
  301. // add link
  302. builder.AddDataEdge(data_input, 0, add, 0);
  303. builder.AddDataEdge(const_input, 0, add, 1);
  304. // set ref
  305. uint32_t reuse_input_index = 0;
  306. auto output_tensordesc = data_input->GetOpDesc()->MutableOutputDesc(0);
  307. ge::TensorUtils::SetReuseInput(*output_tensordesc, true);
  308. ge::TensorUtils::SetReuseInputIndex(*output_tensordesc, reuse_input_index);
  309. auto output_tensordesc1 = add->GetOpDesc()->MutableOutputDesc(0);
  310. ge::TensorUtils::SetReuseInput(*output_tensordesc1, true);
  311. ge::TensorUtils::SetReuseInputIndex(*output_tensordesc1, reuse_input_index);
  312. ge::ComputeGraphPtr graph = builder.GetGraph();
  313. GraphMemoryAssigner memoryAssigner(graph);
  314. EXPECT_EQ(memoryAssigner.UpdateRefOpOffsetReverse(add), SUCCESS);
  315. }
  316. TEST_F(UtestMemoryAssignerTest, graph_memory_assign_atomic_output_and_workspace) {
  317. ge::ut::GraphBuilder builder("graph");
  318. auto data_input = builder.AddNode("data", "Data", 1, 1);
  319. auto const_input = builder.AddNode("const", "Const", 1, 1);
  320. auto add = builder.AddNode("add", "Add", 2, 1);
  321. // add link
  322. builder.AddDataEdge(data_input, 0, add, 0);
  323. builder.AddDataEdge(const_input, 0, add, 1);
  324. ge::ComputeGraphPtr graph = builder.GetGraph();
  325. auto node = graph->FindNode("add");
  326. EXPECT_NE(node, nullptr);
  327. auto output_tensor_desc = node->GetOpDesc()->MutableOutputDesc(0);
  328. ge::TensorUtils::SetSize(*output_tensor_desc, 100);
  329. vector<int64_t> output_list = {0};
  330. node->GetOpDesc()->SetOutputOffset(output_list);
  331. vector<int64_t> workspace_list = {0};
  332. node->GetOpDesc()->SetWorkspace(workspace_list);
  333. vector<int64_t> atomic_output_index = {0};
  334. bool set_attr = ge::AttrUtils::SetListInt(node->GetOpDesc(), ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
  335. EXPECT_EQ(set_attr, true);
  336. map<string, map<int64_t, int64_t>> workspace_info;
  337. workspace_info["add"][0] = 100;
  338. set_attr = node->GetOpDesc()->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_INFO, workspace_info);
  339. EXPECT_EQ(set_attr, true);
  340. {
  341. bool is_fusion_node = false;
  342. set_attr = ge::AttrUtils::SetBool(node->GetOpDesc(), ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
  343. EXPECT_EQ(set_attr, true);
  344. GraphMemoryAssigner graph_memory_assigner(graph);
  345. graph_memory_assigner.memory_offset_.insert({RT_MEMORY_HBM, MemoryOffset(RT_MEMORY_HBM, 0)});
  346. vector<int64_t> mem_offset_end;
  347. Status ret = graph_memory_assigner.AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end);
  348. EXPECT_EQ(ret, SUCCESS);
  349. EXPECT_EQ(mem_offset_end.size(), 2);
  350. MemoryOffset mem_offset = graph_memory_assigner.memory_offset_.at(RT_MEMORY_HBM);
  351. EXPECT_EQ(mem_offset.mem_offset_, 1024);
  352. }
  353. {
  354. bool is_fusion_node = true;
  355. set_attr = ge::AttrUtils::SetBool(node->GetOpDesc(), ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
  356. EXPECT_EQ(set_attr, true);
  357. GraphMemoryAssigner graph_memory_assigner(graph);
  358. graph_memory_assigner.memory_offset_.insert({RT_MEMORY_HBM, MemoryOffset(RT_MEMORY_HBM, 0)});
  359. vector<int64_t> mem_offset_end;
  360. Status ret = graph_memory_assigner.AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end);
  361. EXPECT_EQ(ret, SUCCESS);
  362. EXPECT_EQ(mem_offset_end.size(), 2);
  363. MemoryOffset mem_offset = graph_memory_assigner.memory_offset_.at(RT_MEMORY_HBM);
  364. EXPECT_EQ(mem_offset.mem_offset_, 1024);
  365. }
  366. }

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示