You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

aicpu_constant_folding_pass.cc 26 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/passes/aicpu_constant_folding_pass.h"
  17. #include <memory>
  18. #include <vector>
  19. #include "common/debug/log.h"
  20. #include "common/ge/ge_util.h"
  21. #include "common/types.h"
  22. #include "framework/common/debug/ge_log.h"
  23. #include "graph/debug/ge_attr_define.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/node_utils.h"
  26. #include "graph/utils/op_desc_utils.h"
  27. #include "graph/utils/type_utils.h"
  28. #include "init/gelib.h"
  29. #include "opskernel_manager/ops_kernel_builder_manager.h"
  30. namespace {
  31. const char *const kKernelLibName = "aicpu_tf_kernel";
  32. const char *const kNotSupported = "0";
  33. const uint64_t kReleaseFlag = 1;
  34. const uint64_t kOpsFlag = 1;
  35. const uint64_t kDouble = 2;
  36. } // namespace
  37. namespace ge {
  38. Status AicpuConstantFoldingPass::Run(ge::NodePtr &node) {
  39. GE_CHECK_NOTNULL(node);
  40. GELOGD("Start aicpu constant folding on node [%s]", node->GetName().c_str());
  41. if (IsSkipFold(node)) {
  42. return SUCCESS;
  43. }
  44. vector<ConstGeTensorPtr> weight_vec;
  45. bool flag = CheckInput(node, weight_vec);
  46. if (!flag) {
  47. return SUCCESS;
  48. }
  49. OpDescPtr node_desc = node->GetOpDesc(); // checked before
  50. vector<DataPtrInfo> data_vec;
  51. vector<AddrAndType> input_addrs;
  52. vector<uint64_t> output_addrs;
  53. Status ret = GetInputAddrs(weight_vec, input_addrs);
  54. if (ret != SUCCESS) {
  55. ReleaseMemory(input_addrs, output_addrs, data_vec);
  56. return SUCCESS;
  57. }
  58. ret = GetOutputAddrs(node_desc, output_addrs);
  59. if (ret != SUCCESS) {
  60. ReleaseMemory(input_addrs, output_addrs, data_vec);
  61. return SUCCESS;
  62. }
  63. ret = LaunchSingleOpRunTask(node, input_addrs, output_addrs);
  64. if (ret != SUCCESS) {
  65. ReleaseMemory(input_addrs, output_addrs, data_vec);
  66. return SUCCESS;
  67. }
  68. GELOGI("[Node:%s] Launch singleOpRunTask success", node->GetName().c_str());
  69. vector<uint64_t> data_infos;
  70. ret = GenerateDataPtrInfo(output_addrs, data_vec, data_infos);
  71. if (ret != SUCCESS) {
  72. ReleaseMemory(input_addrs, output_addrs, data_vec);
  73. return SUCCESS;
  74. }
  75. GELOGI("[Node:%s] Generate dataPtrInfo success", node->GetName().c_str());
  76. ret = LaunchMemCopyTask(data_infos);
  77. if (ret != SUCCESS) {
  78. ReleaseMemory(input_addrs, output_addrs, data_vec);
  79. return SUCCESS;
  80. }
  81. GELOGI("[Node:%s] Launch memCopyTask success", node->GetName().c_str());
  82. vector<GeTensorPtr> outputs;
  83. ret = GenerateGeTensor(node_desc, data_vec, outputs);
  84. if (ret != SUCCESS) {
  85. ReleaseMemory(input_addrs, output_addrs, data_vec);
  86. return SUCCESS;
  87. }
  88. ReleaseMemory(input_addrs, output_addrs, data_vec);
  89. GELOGI("[Node:%s] Generate geTensor success", node->GetName().c_str());
  90. return Folding(node, outputs);
  91. }
  92. bool AicpuConstantFoldingPass::CheckInput(const NodePtr &node, vector<ConstGeTensorPtr> &weight_vec) {
  93. OpDescPtr node_desc = node->GetOpDesc();
  94. if (node_desc == nullptr) {
  95. GELOGW("Opdesc of %s is null", node->GetName().c_str());
  96. return false;
  97. }
  98. DataType data_type = node_desc->GetOutputDesc(0).GetDataType();
  99. Format format = node_desc->GetOutputDesc(0).GetFormat();
  100. GELOGD("Current [node:%s, type:%s] info: format: %s, datatype:%s", node->GetName().c_str(), node->GetType().c_str(),
  101. TypeUtils::FormatToSerialString(format).c_str(), TypeUtils::DataTypeToSerialString(data_type).c_str());
  102. auto input_nodes = OpDescUtils::GetConstInputNode(*node);
  103. if (input_nodes.empty() || input_nodes.size() != node_desc->GetInputsSize()) {
  104. GELOGD("Const input nodes size is %zu, and nodeDesc inputsSize is %zu, skip fold.", input_nodes.size(),
  105. node_desc->GetInputsSize());
  106. return false;
  107. }
  108. weight_vec = OpDescUtils::GetInputData(input_nodes);
  109. return true;
  110. }
  111. Status AicpuConstantFoldingPass::GetInputAddrs(const vector<ConstGeTensorPtr> &weight_vec,
  112. vector<AddrAndType> &input_addrs) {
  113. if (weight_vec.empty()) {
  114. REPORT_INNER_ERROR("E19999", "Param weight_vec is empty, check invalid");
  115. GELOGE(FAILED, "Weight is null");
  116. return FAILED;
  117. }
  118. for (const ConstGeTensorPtr &weight : weight_vec) {
  119. void *input_addr = nullptr;
  120. GE_CHK_RT_RET(rtMalloc(&input_addr, weight->GetData().size(), RT_MEMORY_HBM));
  121. rtError_t rt_ret = rtMemcpy(input_addr, weight->GetData().size(), weight->GetData().data(),
  122. weight->GetData().size(), RT_MEMCPY_HOST_TO_DEVICE);
  123. if (rt_ret != RT_ERROR_NONE) {
  124. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X",
  125. weight->GetData().size(), rt_ret);
  126. GELOGE(rt_ret, "rtMemcpy error");
  127. GE_CHK_RT(rtFree(input_addr));
  128. return FAILED;
  129. }
  130. AddrAndType input_info = {static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_addr)), kData};
  131. input_addrs.emplace_back(input_info);
  132. }
  133. return SUCCESS;
  134. }
  135. Status AicpuConstantFoldingPass::GetOutputAddrs(const OpDescPtr &node_desc, vector<uint64_t> &output_addrs) {
  136. if (node_desc->GetOutputsSize() == 0) {
  137. REPORT_INNER_ERROR("E19999", "Ouput desc size of op:%s(%s) is 0, check invalid",
  138. node_desc->GetName().c_str(), node_desc->GetType().c_str());
  139. GELOGE(FAILED, "Output size is 0 ");
  140. return FAILED;
  141. }
  142. for (size_t i = 0; i < node_desc->GetOutputsSize(); ++i) {
  143. void *summary_addr = nullptr;
  144. GE_CHK_RT_RET(rtMalloc(&summary_addr, sizeof(aicpu::FWKAdapter::ResultSummary), RT_MEMORY_HBM));
  145. output_addrs.emplace_back(static_cast<uint64_t>(reinterpret_cast<uintptr_t>(summary_addr)));
  146. }
  147. return SUCCESS;
  148. }
  149. Status AicpuConstantFoldingPass::GenerateDataPtrInfo(const vector<uint64_t> &output_addrs,
  150. vector<DataPtrInfo> &data_vec, vector<uint64_t> &data_infos) {
  151. for (uint64_t output_addr : output_addrs) {
  152. aicpu::FWKAdapter::ResultSummary result_summary;
  153. GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
  154. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(output_addr)),
  155. sizeof(aicpu::FWKAdapter::ResultSummary), RT_MEMCPY_DEVICE_TO_HOST));
  156. void *raw_data_addr = nullptr;
  157. GE_CHK_RT_RET(rtMalloc(&raw_data_addr, result_summary.raw_data_size, RT_MEMORY_HBM));
  158. void *shape_data_addr = nullptr;
  159. // shape_data_size = 0 means scalar
  160. if (result_summary.shape_data_size != 0) {
  161. rtError_t rt_ret = rtMalloc(&shape_data_addr, result_summary.shape_data_size, RT_MEMORY_HBM);
  162. if (rt_ret != RT_ERROR_NONE) {
  163. REPORT_CALL_ERROR("E19999", "Call rtMalloc failed, size:%lu, ret = 0x%X",
  164. result_summary.shape_data_size, rt_ret);
  165. GELOGE(rt_ret, "rtMalloc error");
  166. GE_CHK_RT(rtFree(raw_data_addr));
  167. return FAILED;
  168. }
  169. }
  170. DataPtrInfo raw_data_info;
  171. raw_data_info.release_flag = kReleaseFlag;
  172. raw_data_info.data_size = result_summary.raw_data_size;
  173. raw_data_info.src_ptr = result_summary.raw_data_ptr;
  174. raw_data_info.dst_ptr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(raw_data_addr));
  175. data_vec.emplace_back(raw_data_info);
  176. DataPtrInfo shape_data_info;
  177. shape_data_info.release_flag = kReleaseFlag;
  178. shape_data_info.data_size = result_summary.shape_data_size;
  179. shape_data_info.src_ptr = result_summary.shape_data_ptr;
  180. shape_data_info.dst_ptr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(shape_data_addr));
  181. data_vec.emplace_back(shape_data_info);
  182. }
  183. for (const DataPtrInfo &data_info : data_vec) {
  184. data_infos.emplace_back(static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&data_info)));
  185. }
  186. return SUCCESS;
  187. }
  188. Status AicpuConstantFoldingPass::UpdateWorkSpaceAddr(string &task_info, STR_FWK_OP_KERNEL &task) {
  189. // Update the workspace_addr
  190. if (task_info.empty()) {
  191. REPORT_INNER_ERROR("E19999", "Param task_info is empty, check invalid");
  192. GELOGE(FAILED, "task_info is empty ");
  193. return FAILED;
  194. }
  195. void *workspace_addr = nullptr;
  196. GE_CHK_RT_RET(rtMalloc(&workspace_addr, task_info.size(), RT_MEMORY_HBM));
  197. rtError_t rt_ret =
  198. rtMemcpy(workspace_addr, task_info.size(), task_info.data(), task_info.size(), RT_MEMCPY_HOST_TO_DEVICE);
  199. if (rt_ret != RT_ERROR_NONE) {
  200. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X",
  201. task_info.size(), rt_ret);
  202. GELOGE(rt_ret, "rtMemcpy error");
  203. GE_CHK_RT(rtFree(workspace_addr));
  204. return FAILED;
  205. }
  206. uint64_t workspace_base_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(workspace_addr));
  207. task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = workspace_base_addr;
  208. return SUCCESS;
  209. }
  210. Status AicpuConstantFoldingPass::UpdateInputAndOutputAddr(const vector<uint64_t> &io_addrs, STR_FWK_OP_KERNEL &task) {
  211. auto addrs_size = sizeof(uint64_t) * (io_addrs.size());
  212. if (addrs_size <= 0) {
  213. REPORT_INNER_ERROR("E19999", "Param io_addrs size is 0, check invalid");
  214. GELOGE(FAILED, "addrs_size is less than 1 ");
  215. return FAILED;
  216. }
  217. void *input_output_addr = nullptr;
  218. GE_CHK_RT_RET(rtMalloc(&input_output_addr, addrs_size, RT_MEMORY_HBM));
  219. rtError_t rt_ret = rtMemcpy(input_output_addr, addrs_size, io_addrs.data(), addrs_size, RT_MEMCPY_HOST_TO_DEVICE);
  220. if (rt_ret != RT_ERROR_NONE) {
  221. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X",
  222. addrs_size, rt_ret);
  223. GELOGE(rt_ret, "rtMemcpy error");
  224. GE_CHK_RT(rtFree(input_output_addr));
  225. return FAILED;
  226. }
  227. uint64_t in_out_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_output_addr));
  228. task.fwkKernelBase.fwk_kernel.inputOutputAddr = in_out_addr;
  229. return SUCCESS;
  230. }
  231. Status AicpuConstantFoldingPass::UpdateSingleOpAddr(string &task_info, const vector<AddrAndType> &input_addrs,
  232. const vector<uint64_t> &outputs_addr_vec, STR_FWK_OP_KERNEL &task) {
  233. // Build the SingleOpAddr
  234. vector<uint64_t> inputs_addr_vec;
  235. for (const auto &item : input_addrs) {
  236. inputs_addr_vec.push_back(item.input_addr);
  237. }
  238. vector<uint64_t> io_addrs;
  239. io_addrs.insert(io_addrs.end(), inputs_addr_vec.begin(), inputs_addr_vec.end());
  240. io_addrs.insert(io_addrs.end(), outputs_addr_vec.begin(), outputs_addr_vec.end());
  241. Status ret = UpdateInputAndOutputAddr(io_addrs, task);
  242. if (ret != SUCCESS) {
  243. GELOGE(ret, "UpdateInputAndOutputAddr error");
  244. return ret;
  245. }
  246. ret = UpdateWorkSpaceAddr(task_info, task);
  247. if (ret != SUCCESS) {
  248. GELOGE(ret, "UpdateWorkSpaceAddr error");
  249. return ret;
  250. }
  251. return SUCCESS;
  252. }
  253. Status AicpuConstantFoldingPass::UpdateMemCopyAddr(string &task_info, const vector<uint64_t> &data_infos,
  254. vector<uint64_t> &internal_addrs, STR_FWK_OP_KERNEL &task) {
  255. vector<uint64_t> release_flags;
  256. vector<uint64_t> data_sizes;
  257. vector<uint64_t> src_addrs;
  258. vector<uint64_t> dst_addrs;
  259. for (auto item : data_infos) {
  260. auto *data_info_ptr = reinterpret_cast<DataPtrInfo *>(reinterpret_cast<uintptr_t>(item)); // pointer cannot be null
  261. release_flags.push_back(data_info_ptr->release_flag);
  262. data_sizes.push_back(data_info_ptr->data_size);
  263. src_addrs.push_back(data_info_ptr->src_ptr);
  264. dst_addrs.push_back(data_info_ptr->dst_ptr);
  265. }
  266. vector<vector<uint64_t>> inputs = {release_flags, data_sizes, src_addrs, dst_addrs};
  267. auto data_size = sizeof(uint64_t) * (data_infos.size());
  268. vector<uint64_t> io_addrs;
  269. if (data_infos.size() > 0) {
  270. for (const auto &item : inputs) {
  271. void *input_addr_ptr = nullptr;
  272. GE_CHK_RT_RET(rtMalloc(&input_addr_ptr, data_size, RT_MEMORY_HBM));
  273. rtError_t rt_ret = rtMemcpy(input_addr_ptr, data_size, item.data(), data_size, RT_MEMCPY_HOST_TO_DEVICE);
  274. if (rt_ret != RT_ERROR_NONE) {
  275. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X",
  276. data_size, rt_ret);
  277. GELOGE(rt_ret, "rtMemcpy error");
  278. GE_CHK_RT(rtFree(input_addr_ptr));
  279. return FAILED;
  280. }
  281. uint64_t input_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_addr_ptr));
  282. io_addrs.push_back(input_addr);
  283. }
  284. }
  285. internal_addrs = io_addrs;
  286. Status ret = UpdateInputAndOutputAddr(io_addrs, task);
  287. if (ret != SUCCESS) {
  288. GELOGE(ret, "UpdateInputAndOutputAddr error");
  289. return ret;
  290. }
  291. ret = UpdateWorkSpaceAddr(task_info, task);
  292. if (ret != SUCCESS) {
  293. GELOGE(ret, "UpdateWorkSpaceAddr error");
  294. return ret;
  295. }
  296. return SUCCESS;
  297. }
  298. Status AicpuConstantFoldingPass::LaunchSingleOpRunTask(const NodePtr &node, const vector<AddrAndType> &input_addrs,
  299. const vector<uint64_t> &output_addrs) {
  300. void *task_buf = nullptr;
  301. auto instance_ptr = ge::GELib::GetInstance();
  302. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  303. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid");
  304. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  305. return GE_CLI_GE_NOT_INITIALIZED;
  306. }
  307. auto kernel_builder = OpsKernelBuilderManager::Instance().GetOpsKernelBuilder(kKernelLibName);
  308. if (kernel_builder == nullptr) {
  309. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed",
  310. kKernelLibName);
  311. GELOGE(FAILED, "Get op kernel info store failed");
  312. return FAILED;
  313. }
  314. STR_FWK_OP_KERNEL aicpu_task;
  315. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = 0;
  316. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = 0;
  317. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  318. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  319. std::string task_info;
  320. Status ret = kernel_builder->GenSingleOpRunTask(node, aicpu_task, task_info);
  321. if (ret != SUCCESS) {
  322. return ret;
  323. }
  324. std::function<void()> callback = [&]() {
  325. void *input_output_ptr =
  326. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr));
  327. if (input_output_ptr != nullptr) {
  328. GE_CHK_RT(rtFree(input_output_ptr));
  329. }
  330. void *workspace_addr_ptr =
  331. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr));
  332. if (workspace_addr_ptr != nullptr) {
  333. GE_CHK_RT(rtFree(workspace_addr_ptr));
  334. }
  335. };
  336. GE_MAKE_GUARD(release, callback);
  337. ret = UpdateSingleOpAddr(task_info, input_addrs, output_addrs, aicpu_task);
  338. if (ret != SUCCESS) {
  339. GELOGE(ret, "UpdateSingleOpAddr error");
  340. return ret;
  341. }
  342. ret = GenerateTaskForLaunch(aicpu_task, task_buf);
  343. if (ret != SUCCESS) {
  344. GELOGE(ret, "GenerateTaskForLaunch error");
  345. return ret;
  346. }
  347. ret = KernelLaunch(task_buf);
  348. if (ret != SUCCESS) {
  349. GELOGE(ret, "KernelLaunch error");
  350. return ret;
  351. }
  352. return SUCCESS;
  353. }
  354. Status AicpuConstantFoldingPass::LaunchMemCopyTask(const vector<uint64_t> &data_infos) {
  355. void *task_buf = nullptr;
  356. auto instance_ptr = ge::GELib::GetInstance();
  357. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  358. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid");
  359. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  360. return GE_CLI_GE_NOT_INITIALIZED;
  361. }
  362. auto kernel_builder = OpsKernelBuilderManager::Instance().GetOpsKernelBuilder(kKernelLibName);
  363. if (kernel_builder == nullptr) {
  364. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed",
  365. kKernelLibName);
  366. GELOGE(FAILED, "Get op kernel info store failed");
  367. return FAILED;
  368. }
  369. STR_FWK_OP_KERNEL aicpu_task;
  370. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = 0;
  371. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = 0;
  372. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  373. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  374. std::string task_info;
  375. Status ret = kernel_builder->GenMemCopyTask(data_infos.size(), aicpu_task, task_info);
  376. if (ret != SUCCESS) {
  377. return ret;
  378. }
  379. vector<uint64_t> internal_addrs;
  380. std::function<void()> callback = [&]() {
  381. for (auto item : internal_addrs) {
  382. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item)))); // pointer cannot be null
  383. }
  384. void *input_output_ptr =
  385. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr));
  386. if (input_output_ptr != nullptr) {
  387. GE_CHK_RT(rtFree(input_output_ptr));
  388. }
  389. void *workspace_addr_ptr =
  390. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr));
  391. if (workspace_addr_ptr != nullptr) {
  392. GE_CHK_RT(rtFree(workspace_addr_ptr));
  393. }
  394. };
  395. GE_MAKE_GUARD(release, callback);
  396. ret = UpdateMemCopyAddr(task_info, data_infos, internal_addrs, aicpu_task);
  397. if (ret != SUCCESS) {
  398. GELOGE(ret, "UpdateMemCopyAddr error");
  399. return ret;
  400. }
  401. ret = GenerateTaskForLaunch(aicpu_task, task_buf);
  402. if (ret != SUCCESS) {
  403. GELOGE(ret, "GenerateTaskForLaunch error");
  404. return ret;
  405. }
  406. ret = KernelLaunch(task_buf);
  407. if (ret != SUCCESS) {
  408. GELOGE(ret, "KernelLaunch error");
  409. return ret;
  410. }
  411. return SUCCESS;
  412. }
  413. Status AicpuConstantFoldingPass::GenerateTaskForLaunch(STR_FWK_OP_KERNEL &aicpu_task, void *&task_buf) {
  414. GE_CHK_RT_RET(rtMalloc(&task_buf, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
  415. rtError_t rt_ret = rtMemcpy(task_buf, sizeof(STR_FWK_OP_KERNEL), reinterpret_cast<void *>(&aicpu_task),
  416. sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE);
  417. if (rt_ret != RT_ERROR_NONE) {
  418. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X",
  419. sizeof(STR_FWK_OP_KERNEL), rt_ret);
  420. GELOGE(rt_ret, "rtMemcpy error");
  421. GE_CHK_RT(rtFree(task_buf));
  422. return FAILED;
  423. }
  424. return SUCCESS;
  425. }
  426. Status AicpuConstantFoldingPass::KernelLaunch(void *task_buf) {
  427. rtModel_t model = nullptr;
  428. rtStream_t stream = nullptr;
  429. rtStream_t stream_run = nullptr;
  430. std::function<void()> callback = [&]() {
  431. if (task_buf != nullptr) {
  432. GE_CHK_RT(rtFree(task_buf));
  433. }
  434. if (model != nullptr) {
  435. GE_CHK_RT(rtModelDestroy(model));
  436. }
  437. if (stream != nullptr) {
  438. GE_CHK_RT(rtStreamDestroy(stream));
  439. }
  440. if (stream_run != nullptr) {
  441. GE_CHK_RT(rtStreamDestroy(stream_run));
  442. }
  443. };
  444. GE_MAKE_GUARD(release, callback);
  445. rtError_t rt_ret = rtModelCreate(&model, 0);
  446. if (rt_ret != RT_ERROR_NONE) {
  447. REPORT_CALL_ERROR("E19999", "Call rtModelCreate failed, ret = 0x%X",
  448. rt_ret);
  449. GELOGE(rt_ret, "create model failed.");
  450. return FAILED;
  451. }
  452. rt_ret = rtStreamCreate(&stream, 0);
  453. if (rt_ret != RT_ERROR_NONE) {
  454. REPORT_CALL_ERROR("E19999", "Call rtStreamCreate failed, ret = 0x%X",
  455. rt_ret);
  456. GELOGE(rt_ret, "create stream failed.");
  457. return FAILED;
  458. }
  459. rt_ret = rtModelBindStream(model, stream, 0);
  460. if (rt_ret != RT_ERROR_NONE) {
  461. REPORT_CALL_ERROR("E19999", "Call rtModelBindStream failed, ret = 0x%X",
  462. rt_ret);
  463. GELOGE(rt_ret, "rtModelBindStream failed.");
  464. return FAILED;
  465. }
  466. rt_ret = rtKernelLaunchEx(task_buf, sizeof(STR_FWK_OP_KERNEL), 0, stream);
  467. if (rt_ret != RT_ERROR_NONE) {
  468. REPORT_CALL_ERROR("E19999", "Call rtModelBindStream failed, ret = 0x%X",
  469. rt_ret);
  470. GELOGE(rt_ret, "rtKernelLaunchEx failed.");
  471. return FAILED;
  472. }
  473. rt_ret = rtModelLoadComplete(model);
  474. if (rt_ret != RT_ERROR_NONE) {
  475. REPORT_CALL_ERROR("E19999", "Call rtModelLoadComplete failed, ret = 0x%X",
  476. rt_ret);
  477. GELOGE(rt_ret, "rtModelLoadComplete failed.");
  478. return FAILED;
  479. }
  480. rt_ret = rtStreamCreate(&stream_run, 0);
  481. if (rt_ret != RT_ERROR_NONE) {
  482. REPORT_CALL_ERROR("E19999", "Call rtStreamCreate failed, ret = 0x%X",
  483. rt_ret);
  484. GELOGE(rt_ret, "create run stream failed.");
  485. return FAILED;
  486. }
  487. rt_ret = rtModelExecute(model, stream_run, 0);
  488. if (rt_ret != RT_ERROR_NONE) {
  489. REPORT_CALL_ERROR("E19999", "Call rtModelExecute failed, ret = 0x%X",
  490. rt_ret);
  491. GELOGE(rt_ret, "rtModelExecute failed.");
  492. return FAILED;
  493. }
  494. rt_ret = rtStreamSynchronize(stream_run);
  495. if (rt_ret != RT_ERROR_NONE) {
  496. REPORT_CALL_ERROR("E19999", "Call rtStreamSynchronize failed, ret = 0x%X",
  497. rt_ret);
  498. GELOGE(rt_ret, "rtStreamSynchronize failed.");
  499. return FAILED;
  500. }
  501. return SUCCESS;
  502. }
  503. Status AicpuConstantFoldingPass::GenerateGeTensor(const OpDescPtr &node_desc, const vector<DataPtrInfo> &data_vec,
  504. vector<GeTensorPtr> &outputs) {
  505. if ((node_desc->GetOutputsSize() * kDouble) != data_vec.size()) {
  506. REPORT_INNER_ERROR("E19999", "Output desc size:%zu of op:%s(%s), after multi 2, not equal to data_vec.size:%zu, "
  507. "check invalid", node_desc->GetOutputsSize(),
  508. node_desc->GetName().c_str(), node_desc->GetType().c_str(), data_vec.size());
  509. GELOGE(FAILED, "node[%s] something wrong with output size", node_desc->GetName().c_str());
  510. return FAILED;
  511. }
  512. for (size_t i = 0; i < node_desc->GetOutputsSize(); i++) {
  513. auto output_tensor_desc = node_desc->GetOutputDesc(static_cast<uint32_t>(i));
  514. GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
  515. if (output_ptr == nullptr) {
  516. REPORT_CALL_ERROR("E19999", "New GeTensor failed");
  517. GELOGE(FAILED, "node[%s] something wrong with construct GeTensor", node_desc->GetName().c_str());
  518. return FAILED;
  519. }
  520. const DataPtrInfo &raw_data_info = data_vec.at(i * kDouble);
  521. uint64_t raw_data_size = raw_data_info.data_size;
  522. std::unique_ptr<uint8_t[]> data_addr(new (std::nothrow) uint8_t[raw_data_size]());
  523. if (data_addr == nullptr) {
  524. REPORT_CALL_ERROR("E19999", "New Buffer failed, size:%lu",
  525. raw_data_size);
  526. GELOGE(MEMALLOC_FAILED, "new data_addr failed");
  527. return INTERNAL_ERROR;
  528. }
  529. GE_CHK_RT_RET(rtMemcpy(data_addr.get(), raw_data_size,
  530. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(raw_data_info.dst_ptr)), raw_data_size,
  531. RT_MEMCPY_DEVICE_TO_HOST));
  532. GE_IF_BOOL_EXEC(output_ptr->SetData(data_addr.get(), raw_data_size) != GRAPH_SUCCESS,
  533. GELOGE(FAILED, "set data failed");
  534. return FAILED);
  535. GELOGD("GenerateGeTensor: raw_data_size %lu", raw_data_size);
  536. const DataPtrInfo &shape_data_info = data_vec.at(i * kDouble + 1);
  537. uint64_t shape_data_size = shape_data_info.data_size;
  538. GELOGD("GenerateGeTensor: shape_data_size %lu", shape_data_size);
  539. if (shape_data_size == 0) {
  540. GELOGW("node[%s] outshape is scalar, skip copy shape", node_desc->GetName().c_str());
  541. output_ptr->MutableTensorDesc().SetShape(GeShape());
  542. outputs.emplace_back(output_ptr);
  543. continue;
  544. }
  545. uint64_t dim_num = shape_data_size / sizeof(uint64_t);
  546. std::unique_ptr<int64_t[]> shape_addr(new (std::nothrow) int64_t[dim_num]());
  547. if (shape_addr == nullptr) {
  548. REPORT_CALL_ERROR("E19999", "New Buffer failed, size:%lu",
  549. dim_num);
  550. GELOGE(MEMALLOC_FAILED, "new shape_addr failed");
  551. return INTERNAL_ERROR;
  552. }
  553. GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), shape_data_size,
  554. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(shape_data_info.dst_ptr)),
  555. shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
  556. std::vector<int64_t> shape_dims;
  557. for (size_t j = 0; j < dim_num; j++) {
  558. shape_dims.push_back(shape_addr[j]);
  559. GELOGD("GenerateGeTensor: dim %ld", shape_addr[j]);
  560. }
  561. output_ptr->MutableTensorDesc().SetShape(GeShape(shape_dims));
  562. outputs.emplace_back(output_ptr);
  563. }
  564. return SUCCESS;
  565. }
  566. void AicpuConstantFoldingPass::ReleaseMemory(const vector<AddrAndType> &input_addrs,
  567. const vector<uint64_t> &output_addrs,
  568. const vector<DataPtrInfo> &data_vec) {
  569. for (const auto &item : input_addrs) {
  570. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item.input_addr))));
  571. }
  572. for (auto item : output_addrs) {
  573. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item))));
  574. }
  575. for (const auto &item : data_vec) {
  576. auto dst_ptr = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item.dst_ptr));
  577. if (dst_ptr != nullptr) {
  578. GE_CHK_RT(rtFree(dst_ptr));
  579. }
  580. }
  581. }
  582. bool AicpuConstantFoldingPass::IsSkipFold(const ge::NodePtr &node) {
  583. GE_CHECK_NOTNULL(node);
  584. string type = node->GetType();
  585. if (type == ge::FRAMEWORKOP) {
  586. if (!ge::AttrUtils::GetStr(node->GetOpDesc(), ge::ATTR_NAME_FRAMEWORK_ORIGINAL_TYPE, type)) {
  587. GELOGW("Skip aicpu constant folding on frameworkop node [%s]", node->GetName().c_str());
  588. return true;
  589. }
  590. }
  591. auto instance_ptr = ge::GELib::GetInstance();
  592. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  593. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid");
  594. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  595. return true;
  596. }
  597. OpsKernelInfoStorePtr kernel_info = instance_ptr->OpsKernelManagerObj().GetOpsKernelInfoStore(kKernelLibName);
  598. if (kernel_info == nullptr) {
  599. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed",
  600. kKernelLibName);
  601. GELOGE(FAILED, "Get op kernel info store failed");
  602. return true;
  603. }
  604. std::string check_result;
  605. kernel_info->opsFlagCheck(*node, check_result);
  606. if (check_result.empty()) {
  607. REPORT_CALL_ERROR("E19999", "Call opsFlagCheck faled, ops kernel name:%s, op:%s(%s)",
  608. kKernelLibName, node->GetName().c_str(), node->GetType().c_str());
  609. GELOGE(FAILED, "Get op check_result failed");
  610. return true;
  611. }
  612. return check_result.substr(0, kOpsFlag) == kNotSupported;
  613. }
  614. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示