You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shape_inference_engine.cc 14 kB

5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/worker/shape_inference_engine.h"
  17. #include "graph/shape_refiner.h"
  18. #include "graph/utils/node_utils.h"
  19. #include "graph/utils/tensor_utils.h"
  20. #include "graph/utils/type_utils.h"
  21. #include "common/math/math_util.h"
  22. #include "hybrid/node_executor/node_executor.h"
  23. namespace ge {
  24. namespace {
  25. const int kAlignment = 32;
  26. }
  27. namespace hybrid {
  28. ShapeInferenceEngine::ShapeInferenceEngine(GraphExecutionContext *execution_context, SubgraphContext *subgraph_context)
  29. : execution_context_(execution_context),
  30. subgraph_context_(subgraph_context) {
  31. }
  32. Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
  33. // Wait for all input shape become valid
  34. GE_CHK_STATUS_RET_NOLOG(node_state.GetShapeInferenceState().AwaitShapesReady(*execution_context_));
  35. auto &node_item = *node_state.GetNodeItem();
  36. // Wait for "const input nodes" if node's shape inference function requires any.
  37. // Even if output shape is static, there are cases that the const-input will be used in OpTiling and Execution
  38. GE_CHK_STATUS_RET_NOLOG(AwaitDependentNodes(node_state));
  39. if (node_item.is_output_shape_static) {
  40. return SUCCESS;
  41. }
  42. if (node_item.fused_subgraph != nullptr) {
  43. GE_CHK_STATUS_RET_NOLOG(InferShapeForSubgraph(node_item, *node_item.fused_subgraph));
  44. GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item));
  45. return SUCCESS;
  46. }
  47. // Skip shape inference for node of type DEPEND_COMPUTE
  48. if (node_item.shape_inference_type == DEPEND_COMPUTE) {
  49. GELOGD("[%s] Skipping node with unknown shape type DEPEND_COMPUTE", node_item.NodeName().c_str());
  50. return SUCCESS;
  51. }
  52. // Clear shape range in case shape inference func forgot to do it
  53. if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE) {
  54. // in case InferFunc forgot to reset output shape
  55. for (auto &output_desc : node_item.op_desc->GetAllOutputsDescPtr()) {
  56. output_desc->SetShape(GeShape({UNKNOWN_DIM_NUM}));
  57. }
  58. }
  59. // Do shape inference
  60. GELOGD("[%s] Start to invoke InferShapeAndType", node_item.NodeName().c_str());
  61. {
  62. std::lock_guard<std::mutex> lk(mu_);
  63. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start");
  64. GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true),
  65. "Invoke InferShapeAndType failed.");
  66. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End");
  67. }
  68. // update output tensor sizes after shape inference
  69. // error if shape is still unknown and not of type DEPEND_SHAPE_RANGE
  70. RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] Start");
  71. GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item, node_item.shape_inference_type == DEPEND_SHAPE_RANGE));
  72. RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] End");
  73. GELOGD("[%s] [HybridTrace] After shape inference. Node = %s",
  74. node_item.NodeName().c_str(),
  75. node_item.DebugString().c_str());
  76. GELOGD("[%s] InferShapeAndType finished successfully.", node_item.NodeName().c_str());
  77. return SUCCESS;
  78. }
  79. Status ShapeInferenceEngine::AwaitDependentNodes(NodeState &node_state) {
  80. auto &node_item = *node_state.GetNodeItem();
  81. for (auto &src_node : node_item.dependents_for_shape_inference) {
  82. GELOGI("[%s] Start to wait for data dependent node: %s",
  83. node_item.NodeName().c_str(),
  84. src_node->GetName().c_str());
  85. RECORD_SHAPE_INFERENCE_EVENT(execution_context_,
  86. node_item.NodeName().c_str(),
  87. "[AwaitNodeDone] [%s] Start",
  88. src_node->GetName().c_str());
  89. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node), "[%s] Await node failed.", src_node->GetName().c_str());
  90. RECORD_SHAPE_INFERENCE_EVENT(execution_context_,
  91. node_item.NodeName().c_str(),
  92. "[AwaitNodeDone] [%s] End",
  93. src_node->GetName().c_str());
  94. GELOGI("[%s] Done waiting node.", src_node->GetName().c_str());
  95. }
  96. return SUCCESS;
  97. }
  98. Status ShapeInferenceEngine::PropagateOutputShapes(const NodeItem &node_item) {
  99. if (node_item.is_output_shape_static) {
  100. return SUCCESS;
  101. }
  102. // output shape will not be valid until compute is done.
  103. bool shape_is_future =
  104. node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE;
  105. GELOGD("[%s] Start to propagate output shapes. shape_type = %d",
  106. node_item.NodeName().c_str(),
  107. node_item.shape_inference_type);
  108. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[PropagateOutputShapes] Start");
  109. // propagate each output
  110. for (int i = 0; i < node_item.num_outputs; ++i) {
  111. auto output_desc = node_item.op_desc->MutableOutputDesc(i);
  112. auto &output_nodes = node_item.outputs[i];
  113. // propagate output to all sub-inputs
  114. for (auto &dst_input_index_and_node : output_nodes) {
  115. auto &dst_node_item = dst_input_index_and_node.second;
  116. auto dst_node_state = subgraph_context_->GetOrCreateNodeState(dst_node_item);
  117. GE_CHECK_NOTNULL(dst_node_state);
  118. GELOGI("[%s] Update dst node [%s], input index = %d",
  119. node_item.NodeName().c_str(),
  120. dst_node_item->NodeName().c_str(),
  121. dst_input_index_and_node.first);
  122. // in case type 3 and 4, shape will be valid after computing is done
  123. auto &infer_state = dst_node_state->GetShapeInferenceState();
  124. if (shape_is_future) {
  125. ShapeFuture future(node_item.node, i, subgraph_context_);
  126. infer_state.UpdateInputShapeFuture(dst_input_index_and_node.first,
  127. std::move(future));
  128. } else {
  129. GE_CHK_STATUS_RET_NOLOG(infer_state.UpdateInputShape(dst_input_index_and_node.first, *output_desc));
  130. }
  131. }
  132. }
  133. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[PropagateOutputShapes] End");
  134. GELOGD("[%s] Propagating output shapes finished successfully.", node_item.NodeName().c_str());
  135. return SUCCESS;
  136. }
  137. Status ShapeInferenceEngine::InferShapeForSubgraph(const NodeItem &node_item, const FusedSubgraph &fused_subgraph) {
  138. GELOGD("[%s] Start to infer shape by fused subgraph", node_item.NodeName().c_str());
  139. for (auto &it : fused_subgraph.input_mapping) {
  140. auto parent_tensor_desc = node_item.MutableInputDesc(it.first);
  141. GE_CHECK_NOTNULL(parent_tensor_desc);
  142. GELOGD("Start to update shape by input[%d]", it.first);
  143. GELOGD("Update shape to [%s]", parent_tensor_desc->GetShape().ToString().c_str());
  144. GELOGD("Update original shape to [%s]", parent_tensor_desc->GetOriginShape().ToString().c_str());
  145. for (auto &tensor_desc : it.second) {
  146. tensor_desc->SetShape(parent_tensor_desc->GetShape());
  147. tensor_desc->SetOriginShape(parent_tensor_desc->GetOriginShape());
  148. }
  149. }
  150. for (auto &node : fused_subgraph.nodes) {
  151. GELOGD("[%s] Start to invoke InferShapeAndType", node->GetName().c_str());
  152. GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndType(node));
  153. GELOGD("[%s] Done invoking InferShapeAndType", node->GetName().c_str());
  154. GE_CHK_STATUS_RET(UpdatePeerNodeShape(*node),
  155. "[%s] Failed to update shapes of peer node.",
  156. node->GetName().c_str());
  157. }
  158. for (auto &it : fused_subgraph.output_mapping) {
  159. int parent_output_idx = it.first;
  160. const auto &op_desc = it.second;
  161. GELOGD("Update parent output[%d] by [%s]", parent_output_idx, op_desc->GetName().c_str());
  162. auto input_desc = op_desc->MutableInputDesc(0);
  163. GE_CHECK_NOTNULL(input_desc);
  164. auto parent_output_tensor_desc = node_item.MutableOutputDesc(parent_output_idx);
  165. GE_CHECK_NOTNULL(parent_output_tensor_desc);
  166. GELOGD("Update shape to [%s]", input_desc->GetShape().ToString().c_str());
  167. GELOGD("Update original shape to [%s]", input_desc->GetOriginShape().ToString().c_str());
  168. parent_output_tensor_desc->SetOriginShape(input_desc->GetOriginShape());
  169. parent_output_tensor_desc->SetShape(input_desc->GetShape());
  170. }
  171. GELOGD("[%s] Done shape inference by subgraph successfully.", node_item.NodeName().c_str());
  172. return SUCCESS;
  173. }
  174. Status ShapeInferenceEngine::UpdatePeerNodeShape(const Node &node) {
  175. auto op_desc = node.GetOpDesc();
  176. for (const auto &out_anchor : node.GetAllOutDataAnchors()) {
  177. auto output_tensor = op_desc->MutableOutputDesc(out_anchor->GetIdx());
  178. for (const auto &peer_anchor : out_anchor->GetPeerInDataAnchors()) {
  179. auto peer_node = peer_anchor->GetOwnerNode();
  180. GE_CHECK_NOTNULL(peer_node);
  181. auto peer_op_desc = peer_node->GetOpDesc();
  182. GE_CHECK_NOTNULL(peer_op_desc);
  183. auto peer_input_desc = peer_op_desc->MutableInputDesc(peer_anchor->GetIdx());
  184. if (peer_input_desc == nullptr) {
  185. GELOGE(GRAPH_FAILED, "peer_input_desc is nullptr");
  186. continue;
  187. }
  188. GELOGI("Peer input op desc name is %s, need to flush: shape size is %zu, datatype is %d, original datatype is %d",
  189. peer_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  190. output_tensor->GetShape().GetDimNum(), output_tensor->GetDataType(),
  191. output_tensor->GetOriginDataType());
  192. peer_input_desc->SetOriginShape(output_tensor->GetOriginShape());
  193. peer_input_desc->SetShape(output_tensor->GetShape());
  194. GELOGI("Peer input op desc name is %s, shape size is %zu, datatype is %d, original datatype is %d",
  195. peer_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  196. peer_input_desc->GetShape().GetDimNum(), peer_input_desc->GetDataType(),
  197. peer_input_desc->GetOriginDataType());
  198. }
  199. }
  200. return SUCCESS;
  201. }
  202. Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc,
  203. std::vector<int64_t> &shape,
  204. bool fallback_with_range) {
  205. const auto &tensor_shape = tensor_desc.MutableShape();
  206. if (tensor_shape.IsUnknownShape()) {
  207. if (!fallback_with_range) {
  208. GELOGE(INTERNAL_ERROR, "Output shape is still unknown after shape inference. shape = [%s]",
  209. tensor_shape.ToString().c_str());
  210. return INTERNAL_ERROR;
  211. }
  212. GELOGD("Calc output size by range");
  213. std::vector<std::pair<int64_t, int64_t>> shape_range;
  214. GE_CHK_GRAPH_STATUS_RET(tensor_desc.GetShapeRange(shape_range), "Failed to get shape range");
  215. if (shape_range.size() != shape.size()) {
  216. GELOGE(INTERNAL_ERROR, "Number of shape ranges (%zu) mismatches that of dims (%zu)",
  217. shape_range.size(),
  218. shape.size());
  219. return INTERNAL_ERROR;
  220. }
  221. for (size_t dim_index = 0; dim_index < shape.size(); ++dim_index) {
  222. if (shape[dim_index] == ge::UNKNOWN_DIM) {
  223. shape[dim_index] = shape_range[dim_index].second;
  224. }
  225. }
  226. GELOGD("After canonicalization, shape = [%s], before = [%s]",
  227. GeShape(shape).ToString().c_str(),
  228. tensor_shape.ToString().c_str());
  229. }
  230. return SUCCESS;
  231. }
  232. Status ShapeInferenceEngine::CalcTensorSize(DataType data_type,
  233. const std::vector<int64_t> &shape,
  234. int64_t &tensor_size) {
  235. GELOGD("To calc tensor size by shape = [%s]", GeShape(shape).ToString().c_str());
  236. uint32_t type_size;
  237. if (!TypeUtils::GetDataTypeLength(data_type, type_size)) {
  238. GELOGE(INTERNAL_ERROR, "Failed to get data type size");
  239. return INTERNAL_ERROR;
  240. }
  241. tensor_size = type_size;
  242. for (const auto &dim : shape) {
  243. GE_CHECK_GE(dim, 0);
  244. GE_CHK_STATUS_RET(Int64MulCheckOverflow(tensor_size, dim),
  245. "Shape size overflow, shape = [%s]",
  246. GeShape(shape).ToString().c_str());
  247. tensor_size *= dim;
  248. }
  249. GE_CHK_STATUS_RET(CheckInt64AddOverflow(tensor_size, kAlignment - 1),
  250. "Tensor size is too large: %ld, shape = [%s]",
  251. tensor_size,
  252. GeShape(shape).ToString().c_str());
  253. tensor_size = (tensor_size + kAlignment - 1) / kAlignment * kAlignment;
  254. return SUCCESS;
  255. }
  256. Status ShapeInferenceEngine::CalcOutputTensorSizes(const NodeItem &node_item, bool fallback_with_range) {
  257. auto op_desc = node_item.GetOpDesc();
  258. for (size_t output_index = 0; output_index < op_desc->GetOutputsSize(); ++output_index) {
  259. auto tensor_desc = op_desc->MutableOutputDesc(output_index);
  260. GE_CHECK_NOTNULL(tensor_desc);
  261. const auto &shape = tensor_desc->MutableShape();
  262. // modify on copy
  263. auto dims = shape.GetDims();
  264. GE_CHK_STATUS_RET(CanonicalizeShape(*tensor_desc, dims, fallback_with_range),
  265. "[%s] Failed to canonicalize shape for output %zu",
  266. node_item.NodeName().c_str(),
  267. output_index);
  268. int64_t tensor_size;
  269. GE_CHK_STATUS_RET(CalcTensorSize(tensor_desc->GetDataType(), dims, tensor_size),
  270. "[%s] Failed to calc tensor size for output %zu",
  271. node_item.NodeName().c_str(),
  272. output_index);
  273. GELOGD("[%s] Tensor size of output %zu = %ld", node_item.NodeName().c_str(), output_index, tensor_size);
  274. (void) TensorUtils::SetSize(*tensor_desc, tensor_size);
  275. }
  276. return SUCCESS;
  277. }
  278. } // namespace hybrid
  279. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示