You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stream_resource_unittest.cc 3.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <vector>
  18. #include "runtime/rt.h"
  19. #define protected public
  20. #define private public
  21. #include "single_op/stream_resource.h"
  22. #undef private
  23. #undef protected
  24. using namespace std;
  25. using namespace testing;
  26. using namespace ge;
  27. class UtestStreamResource : public testing::Test {
  28. protected:
  29. void SetUp() {}
  30. void TearDown() {}
  31. rtStream_t stream;
  32. };
  33. /*
  34. TEST_F(UtestStreamResource, test_cache_op) {
  35. StreamResource res((uintptr_t)1);
  36. auto *op = new SingleOp();
  37. string stub_name = "stubFunc";
  38. const void *key = stub_name.c_str();
  39. ASSERT_EQ(res.GetOperator(key), nullptr);
  40. res.CacheOperator(key, op);
  41. ASSERT_NE(res.GetOperator(key), nullptr);
  42. }
  43. */
  44. TEST_F(UtestStreamResource, test_malloc_memory) {
  45. StreamResource res((uintptr_t)1);
  46. string purpose("test");
  47. ASSERT_NE(res.MallocMemory(purpose, 100), nullptr);
  48. ASSERT_NE(res.MallocMemory(purpose, 100), nullptr);
  49. ASSERT_NE(res.MallocMemory(purpose, 100), nullptr);
  50. }
  51. TEST_F(UtestStreamResource, test_build_op) {
  52. StreamResource res((uintptr_t)1);
  53. ModelData model_data;
  54. SingleOp *single_op = nullptr;
  55. DynamicSingleOp *dynamic_single_op = nullptr;
  56. res.op_map_[0].reset(single_op);
  57. res.dynamic_op_map_[1].reset(dynamic_single_op);
  58. ThreadPool *thread_pool = nullptr;
  59. EXPECT_EQ(res.GetThreadPool(&thread_pool), SUCCESS);
  60. EXPECT_EQ(res.GetOperator(0), nullptr);
  61. EXPECT_EQ(res.GetDynamicOperator(1), nullptr);
  62. EXPECT_EQ(res.BuildOperator(model_data, &single_op, 0), SUCCESS);
  63. EXPECT_EQ(res.BuildDynamicOperator(model_data, &dynamic_single_op, 1), SUCCESS);
  64. }
  65. /*
  66. TEST_F(UtestStreamResource, test_do_malloc_memory) {
  67. size_t max_allocated = 0;
  68. vector<uint8_t *> allocated;
  69. string purpose("test");
  70. StreamResource res((uintptr_t)1);
  71. uint8_t *ret = res.DoMallocMemory(purpose, 100, max_allocated, allocated);
  72. ASSERT_EQ(allocated.size(), 1);
  73. ASSERT_NE(allocated.back(), nullptr);
  74. ASSERT_EQ(max_allocated, 100);
  75. res.DoMallocMemory(purpose, 50, max_allocated, allocated);
  76. res.DoMallocMemory(purpose, 99, max_allocated, allocated);
  77. res.DoMallocMemory(purpose, 100, max_allocated, allocated);
  78. ASSERT_EQ(allocated.size(), 1);
  79. ASSERT_EQ(max_allocated, 100);
  80. res.DoMallocMemory(purpose, 101, max_allocated, allocated);
  81. ASSERT_EQ(allocated.size(), 2);
  82. ASSERT_EQ(max_allocated, 101);
  83. for (auto res : allocated) {
  84. rtFree(res);
  85. }
  86. }
  87. */

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示