You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_pipeline_executor.cc 12 kB

4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. #include "hybrid_model_pipeline_executor.h"
  2. #include "common/math/math_util.h"
  3. #include "common/dump/dump_manager.h"
  4. #include "graph/ge_context.h"
  5. #include "graph/runtime_inference_context.h"
  6. namespace ge {
  7. namespace hybrid {
  8. namespace {
  9. constexpr int kNumExecutors = 2;
  10. const int kMinLoopCount = 2;
  11. const int kIntBase = 10;
  12. const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
  13. }
  14. StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
  15. : id_(id), model_(model), pipe_config_(config) {}
  16. StageExecutor::~StageExecutor() { GELOGD("~StageExecutor(), id = %d", id_); }
  17. Status StageExecutor::Init() {
  18. GELOGD("[Executor: %d] Start to init StateExecutor", id_);
  19. context_.rt_context = pipe_config_->rt_context;
  20. GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
  21. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  22. context_.stream = stream_;
  23. root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
  24. GE_CHECK_NOTNULL(root_graph_executor_);
  25. GELOGD("[Executor: %d] Init stage executor successfully", id_);
  26. return SUCCESS;
  27. }
  28. Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
  29. GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
  30. string ctx_id = std::to_string(context.context_id);
  31. RuntimeInferenceContext::DestroyContext(ctx_id);
  32. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
  33. RuntimeInferenceContext *ctx = nullptr;
  34. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context");
  35. for (auto &host_tensor : context.model->GetHostTensors()) {
  36. auto node_id = host_tensor.first;
  37. for (const auto &output_idx_and_tensor : host_tensor.second) {
  38. auto output_idx = output_idx_and_tensor.first;
  39. GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx);
  40. ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone());
  41. }
  42. }
  43. return SUCCESS;
  44. }
  45. Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
  46. int iteration_count) {
  47. GELOGD("Start");
  48. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  49. int num_loops = iteration_count / pipe_config_->num_executors;
  50. if (id_ < iteration_count % iteration_count) {
  51. num_loops += 1;
  52. }
  53. FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
  54. num_loops *= pipe_config_->num_stages;
  55. GELOGD("[Executor: %d] loop count = %d", id_, num_loops);
  56. for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
  57. GELOGD("[Executor: %d] Start to wait for task.", id_);
  58. StageTask task_info;
  59. task_queue_.Pop(task_info);
  60. GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
  61. if (task_info.iteration >= pipe_config_->iteration_end) {
  62. GELOGE(INTERNAL_ERROR, "[Check][Range][Executor: %d] Unexpected iteration: %ld.",
  63. id_, task_info.iteration);
  64. REPORT_INNER_ERROR("E19999", "[Executor: %d] Unexpected iteration: %ld when StageExecutor %s.",
  65. id_, task_info.iteration, __FUNCTION__);
  66. return INTERNAL_ERROR;
  67. }
  68. if (task_info.event != nullptr) {
  69. GELOGD("[%d] Add StreamWaitEvent", id_);
  70. GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
  71. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] End", task_info.iteration - 1,
  72. task_info.stage);
  73. }
  74. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %lld] [Stage = %d] Start", task_info.iteration,
  75. task_info.stage);
  76. if (task_info.stage == 0) {
  77. GELOGD("[Executor: %d] To ResetExecutionContext", id_);
  78. GE_CHK_STATUS_RET(ResetExecutionContext(context_),
  79. "[Invoke][ResetExecutionContext][Executor: %d] Failed to reset context", id_);
  80. context_.iteration = task_info.iteration;
  81. GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
  82. }
  83. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
  84. GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
  85. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
  86. GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);
  87. // notify next execution unit
  88. StageTask next_task;
  89. next_task.stage = task_info.stage;
  90. next_task.iteration = task_info.iteration + 1;
  91. auto sync_result = Synchronize();
  92. if (sync_result != SUCCESS) {
  93. GELOGE(sync_result,
  94. "[Invoke][Synchronize][Executor: %d] Failed to sync result:%d. iteration = %ld",
  95. id_, sync_result, task_info.iteration);
  96. REPORT_CALL_ERROR("E19999", "[Executor: %d] Failed to sync result:%d when StageExecutor %s. iteration = %ld",
  97. id_, sync_result, __FUNCTION__, task_info.iteration);
  98. context_.profiler->Dump(std::cout);
  99. context_.callback_manager->Destroy();
  100. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  101. return sync_result;
  102. }
  103. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] End", task_info.iteration, task_info.stage);
  104. // if not end stage
  105. if (task_info.stage >= pipe_config_->num_stages - 1) {
  106. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] Schedule End", task_info.iteration);
  107. GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
  108. context_.callback_manager->Destroy();
  109. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  110. }
  111. next_executor_->ExecuteAsync(next_task);
  112. GELOGD("[Executor: %d] Push item successfully.", id_);
  113. }
  114. GELOGD("[Executor: %d] Process task ended.", id_);
  115. return SUCCESS;
  116. }
  117. Status StageExecutor::ExecuteAsync(const StageTask &args) {
  118. (void)task_queue_.Push(args);
  119. return SUCCESS;
  120. }
  121. Status StageExecutor::Synchronize() {
  122. auto ret = root_graph_executor_->Synchronize();
  123. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
  124. return ret;
  125. }
  126. HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
  127. : model_(model), device_id_(device_id) {
  128. config_.num_executors = kNumExecutors;
  129. config_.num_stages = model_->GetRootGraphItem()->NumGroups();
  130. config_.device_id = device_id_;
  131. }
  132. Status StageExecutor::InitExecutionContext() {
  133. GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
  134. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  135. context_.model = model_;
  136. context_.session_id = ::ge::GetContext().SessionId();
  137. GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
  138. context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
  139. GE_CHECK_NOTNULL(context_.allocator);
  140. context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
  141. GE_CHECK_NOTNULL(context_.callback_manager);
  142. context_.dump_properties = DumpManager::GetInstance().GetDumpProperties(context_.session_id);
  143. if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
  144. context_.trace_enabled = true;
  145. }
  146. return SUCCESS;
  147. }
  148. Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
  149. root_graph_executor_->InitForPartialExecution(inputs, input_desc);
  150. return SUCCESS;
  151. }
  152. Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
  153. return root_graph_executor_->GetOutputs(outputs, output_desc);
  154. }
  155. void StageExecutor::Reset() {
  156. task_queue_.Stop();
  157. task_queue_.Clear();
  158. task_queue_.Restart();
  159. }
  160. Status HybridModelPipelineExecutor::Init() {
  161. const char *profiling_level = std::getenv(kEnvProfilingLevel);
  162. if (profiling_level != nullptr) {
  163. context_.profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
  164. GELOGD("Got profiling level = %ld", context_.profiling_level);
  165. if (context_.profiling_level > 0) {
  166. context_.profiler.reset(new (std::nothrow) HybridProfiler());
  167. GE_CHECK_NOTNULL(context_.profiler);
  168. }
  169. }
  170. GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
  171. GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
  172. GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
  173. return SUCCESS;
  174. }
  175. Status HybridModelPipelineExecutor::InitStageExecutors() {
  176. for (int i = 0; i < config_.num_executors; ++i) {
  177. auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
  178. GE_CHECK_NOTNULL(stage_executor);
  179. GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());
  180. if (context_.profiler != nullptr) {
  181. // will call unique_ptr::release later
  182. stage_executor->context_.profiler.reset(context_.profiler.get());
  183. stage_executor->context_.profiling_level = context_.profiling_level;
  184. }
  185. stage_executors_.emplace_back(std::move(stage_executor));
  186. }
  187. // build propagation loop
  188. for (int i = 0; i < config_.num_executors - 1; ++i) {
  189. stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
  190. }
  191. stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
  192. return SUCCESS;
  193. }
  194. Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
  195. int loop_count = args.num_loops;
  196. GE_CHECK_GE(loop_count, kMinLoopCount);
  197. auto &inputs = args.inputs;
  198. auto &input_desc = args.input_desc;
  199. // Start schedulers
  200. std::vector<std::future<Status>> futures;
  201. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  202. GELOGD("Starting executor %zu", i);
  203. auto executor = stage_executors_[i].get();
  204. executor->Reset();
  205. auto future = std::async(
  206. [loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });
  207. futures.emplace_back(std::move(future));
  208. }
  209. // Push initial tasks
  210. GELOGD("Start to execute with loops, loop count = %d", loop_count);
  211. config_.iteration_end = iteration_ + loop_count;
  212. for (int i = 0; i < config_.num_stages; ++i) {
  213. StageExecutor::StageTask task_info;
  214. task_info.stage = i;
  215. task_info.iteration = iteration_;
  216. stage_executors_[0]->ExecuteAsync(task_info);
  217. }
  218. // Wait for end of iterations
  219. bool has_error = false;
  220. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  221. GELOGD("Start to sync result of executor[%zu]", i);
  222. auto ret = futures[i].get();
  223. if (ret != SUCCESS) {
  224. GELOGE(ret, "[Check][Result][Executor: %zu] Failed to schedule tasks.", i);
  225. REPORT_INNER_ERROR("E19999", "[Executor: %zu] Failed to schedule tasks when HybridModelPipelineExecutor %s.",
  226. i, __FUNCTION__);
  227. has_error = true;
  228. continue;
  229. }
  230. ret = stage_executors_[i]->Synchronize();
  231. if (ret != SUCCESS) {
  232. GELOGE(ret, "[Invoke][Synchronize] failed for [Executor: %zu].", i);
  233. REPORT_CALL_ERROR("E19999", "[Executor: %zu] failed to Synchronize result when HybridModelPipelineExecutor %s.",
  234. i, __FUNCTION__);
  235. has_error = true;
  236. continue;
  237. }
  238. }
  239. // record for profiling analyzer
  240. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");
  241. if (context_.profiler != nullptr) {
  242. context_.profiler->Dump(std::cout);
  243. }
  244. iteration_ = config_.iteration_end;
  245. if (has_error) {
  246. GELOGE(FAILED, "[Check][Error]Error occurred while execution.");
  247. REPORT_INNER_ERROR("E19999", "Error occurred while execution when HybridModelPipelineExecutor %s.", __FUNCTION__);
  248. return FAILED;
  249. }
  250. auto last_iter_executor_idx = loop_count % stage_executors_.size();
  251. GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
  252. "[Get][Outputs]Failed from executor[%zu]", last_iter_executor_idx);
  253. return SUCCESS;
  254. }
  255. HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
  256. GELOGD("~HybridModelPipelineExecutor()");
  257. for (auto &executor : stage_executors_) {
  258. (void)executor->context_.profiler.release();
  259. }
  260. }
  261. } // namespace hybrid
  262. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示