You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 21 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/tbe_task_builder.h"
  31. #include "hybrid/executor/hybrid_model_executor.h"
  32. #include "hybrid/node_executor/node_executor.h"
  33. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  34. using domi::TaskDef;
  35. using std::unique_ptr;
  36. using std::vector;
  37. namespace ge {
  38. namespace {
  39. const size_t kDataOutputNum = 1;
  40. } // namespace
  41. static Status IfInferDepend(GeModelPtr &ge_model, bool &flag) {
  42. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  43. for (const auto &node : comp_graph->GetAllNodes()) {
  44. auto op_desc = node->GetOpDesc();
  45. GE_CHECK_NOTNULL(op_desc);
  46. const auto &depends = op_desc->GetOpInferDepends();
  47. if (!depends.empty()) {
  48. flag = true;
  49. return SUCCESS;
  50. }
  51. }
  52. return SUCCESS;
  53. }
  54. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  55. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  56. Status SingleOpModel::Init() {
  57. GE_CHK_STATUS_RET_NOLOG(InitModel());
  58. return LoadAllNodes();
  59. }
  60. Status SingleOpModel::InitModel() {
  61. ge::ModelData model;
  62. model.model_len = ori_model_size_;
  63. model.model_data = const_cast<void *>(ori_model_data_);
  64. auto ret = model_helper_.LoadModel(model);
  65. if (ret != SUCCESS) {
  66. GELOGE(ret, "LoadModel failed");
  67. return ret;
  68. }
  69. return SUCCESS;
  70. }
  71. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  72. int64_t value = 0;
  73. bool ret = false;
  74. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  75. GE_CHECK_NOTNULL_JUST_RETURN(model);
  76. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  77. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  78. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  79. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  80. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  81. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  82. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  83. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  84. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  85. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  86. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  87. param.core_type = ret ? value : 0;
  88. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu. core_type = %lu",
  89. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  90. }
  91. Status SingleOpModel::InitModelMem(StreamResource &res) {
  92. ParseOpModelParams(model_helper_, model_params_);
  93. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  94. const string purpose("malloc feature map memory on model execute.");
  95. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  96. model_params_.mem_base =
  97. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  98. if (model_params_.mem_base == nullptr) {
  99. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  100. }
  101. }
  102. if (model_params_.weight_size > 0 && has_weight_) {
  103. const string purpose("malloc weights memory on model execute.");
  104. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  105. if (model_params_.weight_base == nullptr) {
  106. // no need to free memory, for that was handled by StreamResources
  107. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  108. }
  109. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  110. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  111. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  112. model_params_.weight_size,
  113. weight_buffer.GetData(),
  114. weight_buffer.GetSize(),
  115. RT_MEMCPY_HOST_TO_DEVICE));
  116. }
  117. return SUCCESS;
  118. }
  119. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  120. vector<int64_t> offsets = op_desc->GetOutputOffset();
  121. if (offsets.size() != kDataOutputNum) {
  122. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  123. "Data op should have only one output, but got %zu", op_desc->GetOutputOffset().size());
  124. return ACL_ERROR_GE_PARAM_INVALID;
  125. }
  126. auto output_desc = op_desc->GetOutputDescPtr(0);
  127. GE_CHECK_NOTNULL(output_desc);
  128. int64_t tensor_size = 0;
  129. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  130. input_offset_list_.emplace_back(offsets[0]);
  131. input_sizes_.emplace_back(tensor_size);
  132. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  133. tensor_size, static_cast<uint32_t>(offsets[0]));
  134. return SUCCESS;
  135. }
  136. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  137. vector<int64_t> offsets = op_desc->GetInputOffset();
  138. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  139. auto input_desc = op_desc->GetInputDescPtr(k);
  140. if (input_desc == nullptr) {
  141. continue;
  142. }
  143. int64_t tensor_size = 0;
  144. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  145. output_offset_list_.emplace_back(offsets[k]);
  146. output_sizes_.emplace_back(tensor_size);
  147. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  148. tensor_size, static_cast<uint32_t>(offsets[k]));
  149. }
  150. }
  151. Status SingleOpModel::LoadAllNodes() {
  152. auto ge_model = model_helper_.GetGeModel();
  153. GE_CHECK_NOTNULL(ge_model);
  154. Graph graph = ge_model->GetGraph();
  155. model_id_ = ge_model->GetModelId();
  156. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  157. if (compute_graph == nullptr) {
  158. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[%s] compute_graph is null", model_name_.c_str());
  159. return ACL_ERROR_GE_INTERNAL_ERROR;
  160. }
  161. auto nodes = compute_graph->GetDirectNode();
  162. size_t model_op_size = nodes.size();
  163. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  164. for (size_t i = 0; i < model_op_size; ++i) {
  165. auto node = nodes.at(i);
  166. auto op_desc = node->GetOpDesc();
  167. GE_CHECK_NOTNULL(op_desc);
  168. op_list_[i] = node;
  169. auto op_type = op_desc->GetType();
  170. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  171. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  172. data_ops_.emplace_back(op_desc);
  173. continue;
  174. }
  175. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  176. has_weight_ = true;
  177. continue;
  178. }
  179. if (op_type == NETOUTPUT) {
  180. netoutput_op_ = op_desc;
  181. continue;
  182. }
  183. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  184. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  185. }
  186. return SUCCESS;
  187. }
  188. Status SingleOpModel::ParseInputsAndOutputs() {
  189. for (auto &op_desc : data_ops_) {
  190. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  191. }
  192. ParseOutputNode(netoutput_op_);
  193. return SUCCESS;
  194. }
  195. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  196. int arg_index = 0;
  197. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  198. auto *addr = model_params_.mem_base + input_offset_list_[i];
  199. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  200. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  201. single_op.input_addr_list_.emplace_back(addr);
  202. }
  203. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  204. auto *addr = model_params_.mem_base + output_offset_list_[i];
  205. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  206. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  207. single_op.output_addr_list_.emplace_back(addr);
  208. }
  209. single_op.args_.resize(arg_index);
  210. return SUCCESS;
  211. }
  212. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  213. auto ge_model = model_helper_.GetGeModel();
  214. GE_CHECK_NOTNULL(ge_model);
  215. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  216. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  217. for (int i = 0; i < tasks.size(); ++i) {
  218. const TaskDef &task_def = tasks[i];
  219. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  220. task_def.DebugString().c_str());
  221. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  222. if (task_type == RT_MODEL_TASK_KERNEL) {
  223. const domi::KernelDef &kernel_def = task_def.kernel();
  224. const auto &context = kernel_def.context();
  225. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  226. if (kernel_type == ccKernelType::TE) {
  227. GELOGD("Building TBE task");
  228. TbeOpTask *tbe_task = nullptr;
  229. auto ret = BuildKernelTask(task_def.kernel(), &tbe_task);
  230. if (ret != SUCCESS) {
  231. return ret;
  232. }
  233. ParseArgTable(tbe_task, single_op);
  234. tbe_task->SetModelArgs(model_name_, model_id_);
  235. if (tbe_task->tiling_buffer_ != nullptr) {
  236. tbe_task->stream_resource_ = stream_resource;
  237. }
  238. single_op.tasks_.emplace_back(tbe_task);
  239. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  240. GELOGD("Building AICPU_CC task");
  241. OpTask *task = nullptr;
  242. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  243. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  244. auto ret = BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id);
  245. if (ret != SUCCESS) {
  246. return ret;
  247. }
  248. task->SetModelArgs(model_name_, model_id_);
  249. ParseArgTable(task, single_op);
  250. single_op.tasks_.emplace_back(task);
  251. } else {
  252. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  253. "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", context.kernel_type());
  254. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  255. }
  256. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  257. GELOGD("Building AICPU_TF task");
  258. AiCpuTask *aicpu_task = nullptr;
  259. bool depend_compute_flag = false;
  260. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  261. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  262. auto ret = BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id);
  263. if (ret != SUCCESS) {
  264. return ret;
  265. }
  266. aicpu_task->SetModelArgs(model_name_, model_id_);
  267. ParseArgTable(aicpu_task, single_op);
  268. single_op.tasks_.emplace_back(aicpu_task);
  269. } else {
  270. // skip
  271. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  272. }
  273. }
  274. return SUCCESS;
  275. }
  276. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  277. if (task == nullptr) {
  278. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "tbe op task is nullptr");
  279. return;
  280. }
  281. // args: addr1, addr2, addr3 ...
  282. uintptr_t *arg_base = nullptr;
  283. size_t arg_num = 0;
  284. task->GetIoAddr(arg_base, arg_num);
  285. for (size_t i = 0; i < arg_num; ++i) {
  286. uintptr_t *ptr_to_addr = arg_base + i;
  287. uintptr_t addr = *ptr_to_addr;
  288. auto iter = model_params_.addr_mapping_.find(addr);
  289. if (iter != model_params_.addr_mapping_.end()) {
  290. int arg_index = iter->second;
  291. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  292. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  293. }
  294. }
  295. }
  296. Status SingleOpModel::BuildKernelTask(const domi::KernelDef &kernel_def, TbeOpTask **task) {
  297. GE_CHECK_NOTNULL(task);
  298. const auto &context = kernel_def.context();
  299. auto iter = op_list_.find(context.op_index());
  300. if (iter == op_list_.end()) {
  301. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", context.op_index());
  302. return ACL_ERROR_GE_INTERNAL_ERROR;
  303. }
  304. auto *tbe_task = new (std::nothrow) TbeOpTask();
  305. if (tbe_task == nullptr) {
  306. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create tbe op task failed");
  307. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  308. }
  309. auto builder = TbeTaskBuilder(model_name_, iter->second, kernel_def);
  310. auto ret = builder.BuildTask(*tbe_task, model_params_);
  311. if (ret != SUCCESS) {
  312. delete tbe_task;
  313. tbe_task = nullptr;
  314. return ret;
  315. }
  316. *task = tbe_task;
  317. return SUCCESS;
  318. }
  319. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  320. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  321. auto iter = op_list_.find(kernel_def.op_index());
  322. if (iter == op_list_.end()) {
  323. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", kernel_def.op_index());
  324. return ACL_ERROR_GE_INTERNAL_ERROR;
  325. }
  326. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  327. if (aicpu_task == nullptr) {
  328. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create aicpu_TF op task failed");
  329. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  330. }
  331. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  332. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  333. if (ret != SUCCESS) {
  334. GELOGE(ret, "build aicpu_TF op task failed");
  335. return ret;
  336. }
  337. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  338. *task = aicpu_task.release();
  339. return SUCCESS;
  340. }
  341. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  342. const auto &context = kernel_def.context();
  343. auto iter = op_list_.find(context.op_index());
  344. if (iter == op_list_.end()) {
  345. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", context.op_index());
  346. return ACL_ERROR_GE_INTERNAL_ERROR;
  347. }
  348. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  349. if (aicpucc_task == nullptr) {
  350. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create aicpu_CC op task failed");
  351. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  352. }
  353. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  354. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  355. if (ret != SUCCESS) {
  356. GELOGE(ret, "build aicpu_CC op task failed");
  357. return ret;
  358. }
  359. *task = aicpucc_task.release();
  360. return SUCCESS;
  361. }
  362. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  363. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  364. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  365. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  366. GE_CHECK_NOTNULL(single_op.running_param_);
  367. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  368. return BuildTaskList(&resource, single_op);
  369. }
  370. Status SingleOpModel::BuildModelTaskKernel(const TaskDef &task_def, DynamicSingleOp &single_op) {
  371. const domi::KernelDef &kernel_def = task_def.kernel();
  372. const auto &context = kernel_def.context();
  373. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  374. if (kernel_type == ccKernelType::TE) {
  375. GELOGD("Building TBE task");
  376. TbeOpTask *tbe_task = nullptr;
  377. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def.kernel(), &tbe_task));
  378. tbe_task->SetModelArgs(model_name_, model_id_);
  379. single_op.op_task_.reset(tbe_task);
  380. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  381. GELOGD("Building AICPU_CC task");
  382. OpTask *task = nullptr;
  383. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  384. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  385. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  386. task->SetModelArgs(model_name_, model_id_);
  387. single_op.op_task_.reset(task);
  388. } else {
  389. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  390. "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", context.kernel_type());
  391. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  392. }
  393. return SUCCESS;
  394. }
  395. Status SingleOpModel::BuildTaskListForDynamicOp(DynamicSingleOp &single_op) {
  396. auto ge_model = model_helper_.GetGeModel();
  397. GE_CHECK_NOTNULL(ge_model);
  398. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  399. for (int i = 0; i < tasks.size(); ++i) {
  400. const TaskDef &task_def = tasks[i];
  401. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  402. task_def.DebugString().c_str());
  403. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  404. if (task_type == RT_MODEL_TASK_KERNEL) {
  405. if (single_op.op_task_ != nullptr) {
  406. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "Do not support dynamic op with multiple tasks.");
  407. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  408. }
  409. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(task_def, single_op));
  410. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  411. if (single_op.op_task_ != nullptr) {
  412. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "Do not support dynamic op with multiple tasks.");
  413. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  414. }
  415. GELOGD("Building AICPU_TF task");
  416. AiCpuTask *aicpu_task = nullptr;
  417. bool depend_compute_flag = false;
  418. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  419. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  420. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  421. depend_compute_flag, dynamic_singleop_kernel_id));
  422. if (depend_compute_flag) {
  423. if (i >= tasks.size() - 1) {
  424. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "The copy task of the fourth operator was not found.");
  425. return ACL_ERROR_GE_PARAM_INVALID;
  426. }
  427. ++i;
  428. const TaskDef &copy_task_def = tasks[i];
  429. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  430. }
  431. aicpu_task->SetModelArgs(model_name_, model_id_);
  432. single_op.op_task_.reset(aicpu_task);
  433. } else {
  434. // skip
  435. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  436. }
  437. }
  438. return SUCCESS;
  439. }
  440. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  441. single_op.num_inputs_ = data_ops_.size();
  442. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  443. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  444. model_params_.memory_size = UINT_MAX;
  445. auto ge_model = model_helper_.GetGeModel();
  446. GE_CHECK_NOTNULL(ge_model);
  447. bool infer_depend_flag = false;
  448. GE_CHK_STATUS_RET_NOLOG(IfInferDepend(ge_model, infer_depend_flag));
  449. if (ge_model->GetModelTaskDefPtr()->task_size() > 1 || infer_depend_flag) {
  450. GELOGD("Build single op HybridModel.");
  451. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  452. auto root_model = model_helper_.GetGeRootModel();
  453. GE_CHECK_NOTNULL(root_model);
  454. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  455. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  456. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  457. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  458. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "Failed to init hybrid model");
  459. int32_t device_id = 0;
  460. GE_CHK_RT_RET(rtGetDevice(&device_id));
  461. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  462. device_id,
  463. resource.GetStream()));
  464. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  465. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "Failed to init hybrid model");
  466. return SUCCESS;
  467. }
  468. return BuildTaskListForDynamicOp(single_op);
  469. }
  470. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示