You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_profiler.cc 3.2 kB

5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/hybrid_profiler.h"
  17. #include <iomanip>
  18. #include <iostream>
  19. #include <cstdarg>
  20. #include "framework/common/debug/ge_log.h"
  21. #include "securec.h"
  22. namespace ge {
  23. namespace hybrid {
  24. namespace {
  25. const int kMaxEvents = 1024 * 500;
  26. const int kEventDescMax = 512;
  27. const int kMaxEventTypes = 8;
  28. const int kIndent = 8;
  29. }
  30. HybridProfiler::HybridProfiler(): counter_(0) {
  31. Reset();
  32. }
  33. void HybridProfiler::RecordEvent(EventType event_type, const char *fmt, ...) {
  34. va_list args;
  35. va_start(args, fmt);
  36. char buf[kEventDescMax];
  37. if (vsnprintf_s(buf, kEventDescMax, kEventDescMax - 1, fmt, args) == -1) {
  38. GELOGE(FAILED, "[Parse][Param:fmt]Format %s failed.", fmt);
  39. REPORT_CALL_ERROR("E19999", "Parse Format %s failed.", fmt);
  40. va_end(args);
  41. return;
  42. }
  43. va_end(args);
  44. auto index = counter_++;
  45. if (index >= static_cast<int>(events_.size())) {
  46. GELOGE(INTERNAL_ERROR,
  47. "[Check][Range]index out of range. index = %d, max event size = %zu", index, events_.size());
  48. REPORT_INNER_ERROR("E19999", "index out of range. index = %d, max event size = %zu", index, events_.size());
  49. return;
  50. }
  51. auto &evt = events_[index];
  52. evt.timestamp = std::chrono::system_clock::now();
  53. evt.desc = std::string(buf);
  54. evt.event_type = event_type;
  55. }
  56. void HybridProfiler::Dump(std::ostream &output_stream) {
  57. if (events_.empty()) {
  58. return;
  59. }
  60. auto start_dump = std::chrono::system_clock::now();
  61. auto first_evt = events_[0];
  62. auto start = first_evt.timestamp;
  63. std::vector<decltype(start)> prev_timestamps;
  64. prev_timestamps.resize(kMaxEventTypes, start);
  65. for (int i = 0; i < counter_; ++i) {
  66. auto &evt = events_[i];
  67. auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(evt.timestamp - start).count();
  68. auto &prev_ts = prev_timestamps[evt.event_type];
  69. auto cost = std::chrono::duration_cast<std::chrono::microseconds>(evt.timestamp - prev_ts).count();
  70. prev_ts = evt.timestamp;
  71. output_stream << std::setw(kIndent) << elapsed << "\t\t" << cost << "\t\t" << evt.desc << std::endl;
  72. }
  73. auto end_dump = std::chrono::system_clock::now();
  74. auto elapsed_dump = std::chrono::duration_cast<std::chrono::microseconds>(end_dump - start).count();
  75. auto cost_dump = std::chrono::duration_cast<std::chrono::microseconds>(end_dump - start_dump).count();
  76. output_stream << std::setw(kIndent) << elapsed_dump << "\t\t" << cost_dump
  77. << "\t\t" << "[Dump profiling]" << std::endl;
  78. Reset();
  79. }
  80. void HybridProfiler::Reset() {
  81. counter_ = 0;
  82. events_.clear();
  83. events_.resize(kMaxEvents);
  84. }
  85. } // namespace hybrid
  86. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示