You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 30 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/rts_kernel_task_builder.h"
  31. #include "task/tbe_task_builder.h"
  32. #include "hybrid/executor/hybrid_model_executor.h"
  33. #include "hybrid/node_executor/node_executor.h"
  34. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  35. using domi::TaskDef;
  36. using std::unique_ptr;
  37. using std::vector;
  38. namespace ge {
  39. namespace {
  40. const size_t kDataOutputNum = 1;
  41. const uint32_t kOutputIndexOfData = 0;
  42. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  43. Status IfInferDepend(GeModelPtr &ge_model, bool &flag) {
  44. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  45. GE_CHECK_NOTNULL(comp_graph);
  46. for (const auto &node : comp_graph->GetAllNodes()) {
  47. auto op_desc = node->GetOpDesc();
  48. GE_CHECK_NOTNULL(op_desc);
  49. const auto &depends = op_desc->GetOpInferDepends();
  50. bool support_dynamic_shape = false;
  51. (void)AttrUtils::GetBool(op_desc, kAttrSupportDynamicShape, support_dynamic_shape);
  52. if (!depends.empty() && support_dynamic_shape) {
  53. flag = true;
  54. return SUCCESS;
  55. }
  56. }
  57. return SUCCESS;
  58. }
  59. Status NeedHybridModel(GeModelPtr &ge_model, bool &flag) {
  60. bool infer_depend_flag = false;
  61. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  62. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  63. int32_t kernel_task_num = 0;
  64. for (int i = 0; i < tasks.size(); ++i) {
  65. auto task_type = static_cast<rtModelTaskType_t>(tasks[i].type());
  66. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  67. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? tasks[i].kernel().context() :
  68. tasks[i].kernel_with_handle().context();
  69. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  70. if (kernel_type == ccKernelType::TE) {
  71. if (infer_depend_flag) {
  72. flag = true;
  73. return SUCCESS;
  74. }
  75. kernel_task_num++;
  76. if (kernel_task_num > 1) {
  77. flag = true;
  78. return SUCCESS;
  79. }
  80. }
  81. }
  82. }
  83. return SUCCESS;
  84. }
  85. } // namespace
  86. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  87. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  88. Status SingleOpModel::Init() {
  89. GE_CHK_STATUS_RET_NOLOG(InitModel());
  90. return LoadAllNodes();
  91. }
  92. Status SingleOpModel::InitModel() {
  93. ge::ModelData model;
  94. model.model_len = ori_model_size_;
  95. model.model_data = const_cast<void *>(ori_model_data_);
  96. auto ret = model_helper_.LoadModel(model);
  97. if (ret != SUCCESS) {
  98. GELOGE(ret, "[Load][Model] failed.");
  99. REPORT_CALL_ERROR("E19999", "InitModel fail for ModelHelper LoadModel failed.");
  100. return ret;
  101. }
  102. return SUCCESS;
  103. }
  104. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  105. int64_t value = 0;
  106. bool ret = false;
  107. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  108. GE_CHECK_NOTNULL_JUST_RETURN(model);
  109. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  110. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  111. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  112. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  113. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  114. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  115. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  116. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  117. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  118. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  119. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  120. param.core_type = ret ? value : 0;
  121. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu",
  122. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  123. }
  124. Status SingleOpModel::InitModelMem(StreamResource &res) {
  125. ParseOpModelParams(model_helper_, model_params_);
  126. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  127. const string purpose("malloc feature map memory on model execute.");
  128. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  129. model_params_.mem_base =
  130. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  131. if (model_params_.mem_base == nullptr) {
  132. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  133. }
  134. }
  135. if (model_params_.weight_size > 0 && has_weight_) {
  136. const string purpose("malloc weights memory on model execute.");
  137. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  138. if (model_params_.weight_base == nullptr) {
  139. // no need to free memory, for that was handled by StreamResources
  140. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  141. }
  142. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  143. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  144. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  145. model_params_.weight_size,
  146. weight_buffer.GetData(),
  147. weight_buffer.GetSize(),
  148. RT_MEMCPY_HOST_TO_DEVICE));
  149. }
  150. return SUCCESS;
  151. }
  152. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  153. vector<int64_t> offsets = op_desc->GetOutputOffset();
  154. if (offsets.size() != kDataOutputNum) {
  155. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  156. "[Parse][InputNode]Data op should have only one output, but got %zu, op_name:%s, op_type:%s.",
  157. op_desc->GetOutputOffset().size(), op_desc->GetName().c_str(), op_desc->GetType().c_str());
  158. REPORT_INNER_ERROR("E19999", "ParseInputNode fail for Data op should have only one output, but got %zu,"
  159. "op_name:%s, op_type:%s.", op_desc->GetOutputOffset().size(),
  160. op_desc->GetName().c_str(), op_desc->GetType().c_str());
  161. return ACL_ERROR_GE_PARAM_INVALID;
  162. }
  163. auto output_desc = op_desc->GetOutputDescPtr(0);
  164. GE_CHECK_NOTNULL(output_desc);
  165. int64_t tensor_size = 0;
  166. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  167. input_offset_list_.emplace_back(offsets[0]);
  168. input_sizes_.emplace_back(tensor_size);
  169. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  170. tensor_size, static_cast<uint32_t>(offsets[0]));
  171. return SUCCESS;
  172. }
  173. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  174. vector<int64_t> offsets = op_desc->GetInputOffset();
  175. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  176. auto input_desc = op_desc->GetInputDescPtr(k);
  177. if (input_desc == nullptr) {
  178. continue;
  179. }
  180. int64_t tensor_size = 0;
  181. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  182. output_offset_list_.emplace_back(offsets[k]);
  183. output_sizes_.emplace_back(tensor_size);
  184. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  185. tensor_size, static_cast<uint32_t>(offsets[k]));
  186. }
  187. }
  188. Status SingleOpModel::LoadAllNodes() {
  189. auto ge_model = model_helper_.GetGeModel();
  190. GE_CHECK_NOTNULL(ge_model);
  191. Graph graph = ge_model->GetGraph();
  192. model_id_ = ge_model->GetModelId();
  193. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  194. if (compute_graph == nullptr) {
  195. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ComputeGraph] fail, model_name:%s.", model_name_.c_str());
  196. REPORT_CALL_ERROR("E19999", "LoadAllNodes fail for GetComputeGraph return nullptr, model_name:%s.",
  197. model_name_.c_str());
  198. return ACL_ERROR_GE_INTERNAL_ERROR;
  199. }
  200. auto nodes = compute_graph->GetDirectNode();
  201. size_t model_op_size = nodes.size();
  202. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  203. for (size_t i = 0; i < model_op_size; ++i) {
  204. auto node = nodes.at(i);
  205. auto op_desc = node->GetOpDesc();
  206. GE_CHECK_NOTNULL(op_desc);
  207. op_list_[op_desc->GetId()] = node;
  208. auto op_type = op_desc->GetType();
  209. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  210. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  211. data_ops_.emplace_back(op_desc);
  212. auto tensor = op_desc->MutableInputDesc(0);
  213. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  214. int32_t index = 0;
  215. (void) AttrUtils::GetInt(op_desc, ATTR_NAME_INDEX, index);
  216. GELOGD("Node %s, index %d, has host mem.", node->GetName().c_str(), index);
  217. op_with_hostmem_[index] = node;
  218. }
  219. continue;
  220. }
  221. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  222. has_weight_ = true;
  223. continue;
  224. }
  225. if (op_type == NETOUTPUT) {
  226. netoutput_op_ = op_desc;
  227. continue;
  228. }
  229. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  230. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  231. }
  232. return SUCCESS;
  233. }
  234. Status SingleOpModel::ParseInputsAndOutputs() {
  235. for (auto &op_desc : data_ops_) {
  236. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  237. }
  238. if (netoutput_op_ != nullptr) {
  239. ParseOutputNode(netoutput_op_);
  240. }
  241. return SUCCESS;
  242. }
  243. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  244. int arg_index = 0;
  245. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  246. auto *addr = model_params_.mem_base + input_offset_list_[i];
  247. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  248. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  249. single_op.input_addr_list_.emplace_back(addr);
  250. }
  251. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  252. auto *addr = model_params_.mem_base + output_offset_list_[i];
  253. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  254. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  255. single_op.output_addr_list_.emplace_back(addr);
  256. }
  257. single_op.args_.resize(arg_index);
  258. return SUCCESS;
  259. }
  260. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  261. auto ge_model = model_helper_.GetGeModel();
  262. GE_CHECK_NOTNULL(ge_model);
  263. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  264. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  265. for (int i = 0; i < tasks.size(); ++i) {
  266. const TaskDef &task_def = tasks[i];
  267. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  268. task_def.DebugString().c_str());
  269. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  270. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  271. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  272. task_def.kernel_with_handle().context();
  273. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  274. if (kernel_type == ccKernelType::TE) {
  275. GELOGD("Building TBE task");
  276. TbeOpTask *tbe_task = nullptr;
  277. auto ret = BuildKernelTask(task_def, &tbe_task);
  278. if (ret != SUCCESS) {
  279. return ret;
  280. }
  281. ParseArgTable(tbe_task, single_op);
  282. tbe_task->SetModelArgs(model_name_, model_id_);
  283. if (tbe_task->tiling_buffer_ != nullptr) {
  284. tbe_task->stream_resource_ = stream_resource;
  285. }
  286. single_op.tasks_.emplace_back(tbe_task);
  287. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  288. GELOGD("Building AICPU_CC task");
  289. OpTask *task = nullptr;
  290. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  291. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  292. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id));
  293. task->SetModelArgs(model_name_, model_id_);
  294. ParseArgTable(task, single_op);
  295. single_op.tasks_.emplace_back(task);
  296. } else {
  297. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  298. "[Check][KernelType]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  299. context.kernel_type());
  300. REPORT_INNER_ERROR("E19999",
  301. "BuildTaskList fail for %u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  302. context.kernel_type());
  303. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  304. }
  305. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  306. GELOGD("Building AICPU_TF task");
  307. AiCpuTask *aicpu_task = nullptr;
  308. bool depend_compute_flag = false;
  309. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  310. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  311. GE_CHK_STATUS_RET_NOLOG(
  312. BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id));
  313. aicpu_task->SetModelArgs(model_name_, model_id_);
  314. ParseArgTable(aicpu_task, single_op);
  315. single_op.tasks_.emplace_back(aicpu_task);
  316. } else if ((task_type == RT_MODEL_TASK_MEMCPY_ASYNC) || (task_type == RT_MODEL_TASK_MEMCPY_ADDR_ASYNC)) {
  317. auto kernel_def = task_def.memcpy_async();
  318. auto node = op_list_[kernel_def.op_index()];
  319. GE_CHECK_NOTNULL(node);
  320. auto op_desc = node->GetOpDesc();
  321. GE_CHECK_NOTNULL(op_desc);
  322. std::unique_ptr<MemcpyAsyncTask> task;
  323. GE_CHK_STATUS_RET_NOLOG(RtsKernelTaskBuilder::BuildMemcpyAsyncTask(op_desc, kernel_def, model_params_, task));
  324. task->SetModelArgs(model_name_, model_id_);
  325. ParseArgTable(task.get(), single_op);
  326. single_op.tasks_.emplace_back(task.release());
  327. } else {
  328. // skip
  329. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  330. }
  331. }
  332. return SUCCESS;
  333. }
  334. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  335. if (task == nullptr) {
  336. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Parse][ArgTable] fail for input OpTask is nullptr.");
  337. REPORT_INNER_ERROR("E19999", "ParseArgTable fail for input OpTask is nullptr.");
  338. return;
  339. }
  340. // args: addr1, addr2, addr3 ...
  341. uintptr_t *arg_base = nullptr;
  342. size_t arg_num = 0;
  343. task->GetIoAddr(arg_base, arg_num);
  344. for (size_t i = 0; i < arg_num; ++i) {
  345. uintptr_t *ptr_to_addr = arg_base + i;
  346. uintptr_t addr = *ptr_to_addr;
  347. auto iter = model_params_.addr_mapping_.find(addr);
  348. if (iter != model_params_.addr_mapping_.end()) {
  349. int arg_index = iter->second;
  350. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  351. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  352. }
  353. }
  354. }
  355. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  356. GE_CHECK_NOTNULL(task);
  357. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  358. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  359. task_def.kernel_with_handle().context();
  360. auto iter = op_list_.find(context.op_index());
  361. if (iter == op_list_.end()) {
  362. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Param:TaskDef]op desc not found. op index = %u", context.op_index());
  363. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for op desc not found. op index = %u", context.op_index());
  364. return ACL_ERROR_GE_INTERNAL_ERROR;
  365. }
  366. auto *tbe_task = new (std::nothrow) TbeOpTask();
  367. if (tbe_task == nullptr) {
  368. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][TbeOpTask]failed.");
  369. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for new TbeOpTask.");
  370. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  371. }
  372. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  373. auto ret = builder.BuildTask(*tbe_task, model_params_);
  374. if (ret != SUCCESS) {
  375. delete tbe_task;
  376. tbe_task = nullptr;
  377. return ret;
  378. }
  379. *task = tbe_task;
  380. return SUCCESS;
  381. }
  382. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  383. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  384. auto iter = op_list_.find(kernel_def.op_index());
  385. if (iter == op_list_.end()) {
  386. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  387. "[Check][Param:KernelExDef]op not found. op index = %u", kernel_def.op_index());
  388. REPORT_INNER_ERROR("E19999",
  389. "BuildKernelExTask fail for param kernel_def, because op of kernel_def not found, op index:%u.",
  390. kernel_def.op_index());
  391. return ACL_ERROR_GE_INTERNAL_ERROR;
  392. }
  393. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  394. if (aicpu_task == nullptr) {
  395. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuTask] failed.");
  396. REPORT_INNER_ERROR("E19999", "BuildKernelExTask fail for new AiCpuTask, model_name:%s.", model_name_.c_str());
  397. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  398. }
  399. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  400. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  401. if (ret != SUCCESS) {
  402. GELOGE(ret, "[Build][Task] failed, kernel_id:%lu.", kernel_id);
  403. return ret;
  404. }
  405. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  406. *task = aicpu_task.release();
  407. return SUCCESS;
  408. }
  409. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  410. const auto &context = kernel_def.context();
  411. auto iter = op_list_.find(context.op_index());
  412. if (iter == op_list_.end()) {
  413. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  414. "[Check][Param:KernelDef] op desc not found. op index = %u", context.op_index());
  415. REPORT_INNER_ERROR("E19999",
  416. "BuildCpuKernelTask fail for kernel_def is invalid, because op of kernel_def not found, op index:%u.",
  417. context.op_index());
  418. return ACL_ERROR_GE_INTERNAL_ERROR;
  419. }
  420. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  421. if (aicpucc_task == nullptr) {
  422. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuCCTask] failed");
  423. REPORT_INNER_ERROR("E19999", "BuildCpuKernelTask fail for new AiCpuCCTask, model_name:%s.", model_name_.c_str());
  424. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  425. }
  426. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  427. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  428. if (ret != SUCCESS) {
  429. GELOGE(ret, "[Build][AiCpuCCTask]failed, kernel_id:%lu.", kernel_id);
  430. REPORT_CALL_ERROR("E19999", "BuildCpuKernelTask fail for build AiCpuTask, kernel_id:%lu.", kernel_id);
  431. return ret;
  432. }
  433. *task = aicpucc_task.release();
  434. return SUCCESS;
  435. }
  436. Status SingleOpModel::InitHybridModelExecutor(const StreamResource &resource, const GeModelPtr &ge_model,
  437. SingleOp &single_op) {
  438. for (const auto &op_desc : data_ops_) {
  439. auto output_tensor_desc = op_desc->GetOutputDesc(kOutputIndexOfData);
  440. GeTensorDesc tensor_desc(output_tensor_desc);
  441. single_op.inputs_desc_.emplace_back(tensor_desc);
  442. GELOGD("Init inputs desc from %s.", op_desc->GetName().c_str());
  443. }
  444. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  445. auto root_model = model_helper_.GetGeRootModel();
  446. GE_CHECK_NOTNULL(root_model);
  447. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  448. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  449. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  450. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  451. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  452. int32_t device_id = 0;
  453. GE_CHK_RT_RET(rtGetDevice(&device_id));
  454. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  455. device_id,
  456. resource.GetStream()));
  457. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  458. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  459. return SUCCESS;
  460. }
  461. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  462. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  463. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  464. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  465. GE_CHECK_NOTNULL(single_op.running_param_);
  466. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  467. auto ge_model = model_helper_.GetGeModel();
  468. GE_CHECK_NOTNULL(ge_model);
  469. bool infer_depend_flag = false;
  470. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  471. if (infer_depend_flag) {
  472. // construct single_op, do single op with HybridModelExecutor
  473. GELOGD("Init hybrid model params of single op, and will do execute with hybrid model executor.");
  474. return InitHybridModelExecutor(resource, ge_model, single_op);
  475. }
  476. return BuildTaskList(&resource, single_op);
  477. }
  478. Status SingleOpModel::BuildModelTaskKernel(StreamResource *stream_resource, const TaskDef &task_def,
  479. DynamicSingleOp &single_op) {
  480. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  481. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  482. task_def.kernel_with_handle().context();
  483. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  484. if (kernel_type == ccKernelType::TE) {
  485. GELOGD("Building TBE task.");
  486. TbeOpTask *tbe_task = nullptr;
  487. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  488. tbe_task->SetModelArgs(model_name_, model_id_);
  489. if (tbe_task->tiling_buffer_ != nullptr) {
  490. GELOGD("tiling buffer is not nullptr.");
  491. tbe_task->stream_resource_ = stream_resource;
  492. }
  493. single_op.op_task_.reset(tbe_task);
  494. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  495. GELOGD("Building AICPU_CC task");
  496. OpTask *task = nullptr;
  497. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  498. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  499. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  500. task->SetModelArgs(model_name_, model_id_);
  501. single_op.op_task_.reset(task);
  502. } else {
  503. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  504. "[Check][Param:TaskDef]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  505. context.kernel_type());
  506. REPORT_INNER_ERROR("E19999",
  507. "BuildModelTaskKernel fail for got:%u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  508. context.kernel_type());
  509. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  510. }
  511. return SUCCESS;
  512. }
  513. Status SingleOpModel::BuildTaskListForDynamicOp(StreamResource *stream_resource, DynamicSingleOp &single_op) {
  514. auto ge_model = model_helper_.GetGeModel();
  515. GE_CHECK_NOTNULL(ge_model);
  516. auto compute_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  517. GE_CHECK_NOTNULL(compute_graph);
  518. single_op.compute_graph_ = compute_graph;
  519. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  520. for (int i = 0; i < tasks.size(); ++i) {
  521. const TaskDef &task_def = tasks[i];
  522. GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(),
  523. task_def.DebugString().c_str());
  524. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  525. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  526. if (single_op.op_task_ != nullptr) {
  527. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  528. REPORT_INNER_ERROR("E19999",
  529. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  530. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  531. }
  532. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(stream_resource, task_def, single_op));
  533. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  534. if (single_op.op_task_ != nullptr) {
  535. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  536. REPORT_INNER_ERROR("E19999",
  537. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  538. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  539. }
  540. GELOGD("Building AICPU_TF task");
  541. AiCpuTask *aicpu_task = nullptr;
  542. bool depend_compute_flag = false;
  543. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  544. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  545. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  546. depend_compute_flag, dynamic_singleop_kernel_id));
  547. if (depend_compute_flag) {
  548. if (i >= tasks.size() - 1) {
  549. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  550. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  551. return ACL_ERROR_GE_PARAM_INVALID;
  552. }
  553. ++i;
  554. const TaskDef &copy_task_def = tasks[i];
  555. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  556. }
  557. aicpu_task->SetModelArgs(model_name_, model_id_);
  558. single_op.op_task_.reset(aicpu_task);
  559. } else {
  560. // skip
  561. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  562. }
  563. }
  564. return SUCCESS;
  565. }
  566. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  567. single_op.num_inputs_ = data_ops_.size();
  568. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  569. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  570. model_params_.memory_size = UINT64_MAX;
  571. model_params_.graph_is_dynamic = true;
  572. auto ge_model = model_helper_.GetGeModel();
  573. GE_CHECK_NOTNULL(ge_model);
  574. bool need_hybrid_model = false;
  575. GE_CHK_STATUS_RET(NeedHybridModel(ge_model, need_hybrid_model), "[Check][NeedHybridModel] failed.");
  576. if (need_hybrid_model) {
  577. GELOGD("Build single op HybridModel.");
  578. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  579. GE_CHK_STATUS(SetHostMemTensor(single_op), "[Init][HostMem]Failed.");
  580. auto root_model = model_helper_.GetGeRootModel();
  581. GE_CHECK_NOTNULL(root_model);
  582. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  583. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  584. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  585. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  586. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  587. int32_t device_id = 0;
  588. GE_CHK_RT_RET(rtGetDevice(&device_id));
  589. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  590. device_id,
  591. resource.GetStream()));
  592. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  593. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  594. return SUCCESS;
  595. }
  596. return BuildTaskListForDynamicOp(&resource, single_op);
  597. }
  598. Status SingleOpModel::SetHostMemTensor(DynamicSingleOp &single_op) {
  599. for (auto &node_map : op_with_hostmem_) {
  600. auto node = node_map.second;
  601. auto out_anchor = node->GetOutDataAnchor(0);
  602. GE_CHECK_NOTNULL(out_anchor);
  603. auto in_anchors = out_anchor->GetPeerInDataAnchors();
  604. vector<GeTensorDescPtr> tensor_descs;
  605. auto idx = node_map.first;
  606. for (auto anchor : in_anchors) {
  607. GE_CHECK_NOTNULL(anchor);
  608. auto output_node = anchor->GetOwnerNode();
  609. GE_CHECK_NOTNULL(output_node);
  610. auto op_desc = output_node->GetOpDesc();
  611. GE_CHECK_NOTNULL(op_desc);
  612. auto tensor_desc = op_desc->MutableInputDesc(anchor->GetIdx());
  613. tensor_descs.emplace_back(tensor_desc);
  614. GELOGD("Get %d th input tensor desc of %s by %d data node: %s.", anchor->GetIdx(),
  615. output_node->GetName().c_str(), idx, node->GetName().c_str());
  616. }
  617. single_op.tensor_with_hostmem_[idx] = tensor_descs;
  618. }
  619. return SUCCESS;
  620. }
  621. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示