You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 32 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/rts_kernel_task_builder.h"
  31. #include "task/tbe_task_builder.h"
  32. #include "hybrid/executor/hybrid_model_executor.h"
  33. #include "hybrid/node_executor/node_executor.h"
  34. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  35. using domi::TaskDef;
  36. using std::unique_ptr;
  37. using std::vector;
  38. namespace ge {
  39. namespace {
  40. const size_t kDataOutputNum = 1;
  41. const uint32_t kInputIndexOfData = 0;
  42. const uint32_t kOutputIndexOfData = 0;
  43. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  44. Status CheckHostMem(const std::vector<string> &dependencies, const NodePtr &node, bool &is_host_mem) {
  45. auto op_desc = node->GetOpDesc();
  46. for (const auto &input_name : dependencies) {
  47. int input_index = op_desc->GetInputIndexByName(input_name);
  48. if (input_index < 0) {
  49. GELOGE(INTERNAL_ERROR, "[Get][InputIndex]failed, node:[%s] inputname: %s.",
  50. node->GetName().c_str(), input_name.c_str());
  51. REPORT_CALL_ERROR("E19999", "GetInputIndexByName failed, node:[%s] inputname: %s.",
  52. node->GetName().c_str(), input_name.c_str());
  53. return INTERNAL_ERROR;
  54. }
  55. const auto &src_node = NodeUtils::GetInDataNodeByIndex(*node, input_index);
  56. GE_CHECK_NOTNULL(src_node);
  57. auto src_op_desc = src_node->GetOpDesc();
  58. GE_CHECK_NOTNULL(src_op_desc);
  59. if (src_op_desc->GetType() == DATA) {
  60. auto tensor = src_op_desc->MutableInputDesc(kInputIndexOfData);
  61. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  62. GELOGD("Get hostmem from node %s, inputname: %s.", src_node->GetName().c_str(), input_name.c_str());
  63. continue;
  64. }
  65. }
  66. is_host_mem = false;
  67. return SUCCESS;
  68. }
  69. is_host_mem = true;
  70. return SUCCESS;
  71. }
  72. Status CheckInferDepend(GeModelPtr &ge_model, bool &is_infer_depend, bool &is_host_mem) {
  73. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  74. GE_CHECK_NOTNULL(comp_graph);
  75. for (const auto &node : comp_graph->GetAllNodes()) {
  76. GE_CHECK_NOTNULL(node);
  77. auto op_desc = node->GetOpDesc();
  78. GE_CHECK_NOTNULL(op_desc);
  79. const auto &depends = op_desc->GetOpInferDepends();
  80. bool support_dynamic_shape = false;
  81. (void)AttrUtils::GetBool(op_desc, kAttrSupportDynamicShape, support_dynamic_shape);
  82. if (!depends.empty() && support_dynamic_shape) {
  83. is_infer_depend = true;
  84. return CheckHostMem(depends, node, is_host_mem);
  85. }
  86. }
  87. return SUCCESS;
  88. }
  89. Status NeedHybridModel(GeModelPtr &ge_model, bool &flag) {
  90. bool is_infer_depend = false;
  91. bool is_host_mem = false;
  92. GE_CHK_STATUS_RET(CheckInferDepend(ge_model, is_infer_depend, is_host_mem), "[Check][InferDepend] failed.");
  93. bool need_d2h_cpy = is_infer_depend && !is_host_mem;
  94. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  95. int32_t kernel_task_num = 0;
  96. for (int i = 0; i < tasks.size(); ++i) {
  97. auto task_type = static_cast<rtModelTaskType_t>(tasks[i].type());
  98. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  99. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? tasks[i].kernel().context() :
  100. tasks[i].kernel_with_handle().context();
  101. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  102. if (kernel_type == ccKernelType::TE) {
  103. if (need_d2h_cpy) {
  104. flag = true;
  105. return SUCCESS;
  106. }
  107. kernel_task_num++;
  108. if (kernel_task_num > 1) {
  109. flag = true;
  110. return SUCCESS;
  111. }
  112. }
  113. }
  114. }
  115. return SUCCESS;
  116. }
  117. } // namespace
  118. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  119. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  120. Status SingleOpModel::Init() {
  121. GE_CHK_STATUS_RET_NOLOG(InitModel());
  122. return LoadAllNodes();
  123. }
  124. Status SingleOpModel::InitModel() {
  125. ge::ModelData model;
  126. model.model_len = ori_model_size_;
  127. model.model_data = const_cast<void *>(ori_model_data_);
  128. auto ret = model_helper_.LoadModel(model);
  129. if (ret != SUCCESS) {
  130. GELOGE(ret, "[Load][Model] failed.");
  131. REPORT_CALL_ERROR("E19999", "InitModel fail for ModelHelper LoadModel failed.");
  132. return ret;
  133. }
  134. return SUCCESS;
  135. }
  136. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  137. int64_t value = 0;
  138. bool ret = false;
  139. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  140. GE_CHECK_NOTNULL_JUST_RETURN(model);
  141. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  142. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  143. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  144. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  145. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  146. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  147. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  148. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  149. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  150. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  151. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  152. param.core_type = ret ? value : 0;
  153. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu",
  154. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  155. }
  156. Status SingleOpModel::InitModelMem(StreamResource &res) {
  157. ParseOpModelParams(model_helper_, model_params_);
  158. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  159. const string purpose("malloc feature map memory on model execute.");
  160. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  161. model_params_.mem_base =
  162. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  163. if (model_params_.mem_base == nullptr) {
  164. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  165. }
  166. }
  167. if (model_params_.weight_size > 0 && has_weight_) {
  168. const string purpose("malloc weights memory on model execute.");
  169. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  170. if (model_params_.weight_base == nullptr) {
  171. // no need to free memory, for that was handled by StreamResources
  172. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  173. }
  174. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  175. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  176. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  177. model_params_.weight_size,
  178. weight_buffer.GetData(),
  179. weight_buffer.GetSize(),
  180. RT_MEMCPY_HOST_TO_DEVICE));
  181. }
  182. return SUCCESS;
  183. }
  184. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  185. vector<int64_t> offsets = op_desc->GetOutputOffset();
  186. if (offsets.size() != kDataOutputNum) {
  187. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  188. "[Parse][InputNode]Data op should have only one output, but got %zu, op_name:%s, op_type:%s.",
  189. op_desc->GetOutputOffset().size(), op_desc->GetName().c_str(), op_desc->GetType().c_str());
  190. REPORT_INNER_ERROR("E19999", "ParseInputNode fail for Data op should have only one output, but got %zu,"
  191. "op_name:%s, op_type:%s.", op_desc->GetOutputOffset().size(),
  192. op_desc->GetName().c_str(), op_desc->GetType().c_str());
  193. return ACL_ERROR_GE_PARAM_INVALID;
  194. }
  195. auto output_desc = op_desc->GetOutputDescPtr(0);
  196. GE_CHECK_NOTNULL(output_desc);
  197. int64_t tensor_size = 0;
  198. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  199. input_offset_list_.emplace_back(offsets[0]);
  200. input_sizes_.emplace_back(tensor_size);
  201. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  202. tensor_size, static_cast<uint32_t>(offsets[0]));
  203. return SUCCESS;
  204. }
  205. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  206. vector<int64_t> offsets = op_desc->GetInputOffset();
  207. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  208. auto input_desc = op_desc->GetInputDescPtr(k);
  209. if (input_desc == nullptr) {
  210. continue;
  211. }
  212. int64_t tensor_size = 0;
  213. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  214. output_offset_list_.emplace_back(offsets[k]);
  215. output_sizes_.emplace_back(tensor_size);
  216. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  217. tensor_size, static_cast<uint32_t>(offsets[k]));
  218. }
  219. }
  220. Status SingleOpModel::LoadAllNodes() {
  221. auto ge_model = model_helper_.GetGeModel();
  222. GE_CHECK_NOTNULL(ge_model);
  223. Graph graph = ge_model->GetGraph();
  224. model_id_ = ge_model->GetModelId();
  225. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  226. if (compute_graph == nullptr) {
  227. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ComputeGraph] fail, model_name:%s.", model_name_.c_str());
  228. REPORT_CALL_ERROR("E19999", "LoadAllNodes fail for GetComputeGraph return nullptr, model_name:%s.",
  229. model_name_.c_str());
  230. return ACL_ERROR_GE_INTERNAL_ERROR;
  231. }
  232. auto nodes = compute_graph->GetDirectNode();
  233. size_t model_op_size = nodes.size();
  234. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  235. for (size_t i = 0; i < model_op_size; ++i) {
  236. auto node = nodes.at(i);
  237. auto op_desc = node->GetOpDesc();
  238. GE_CHECK_NOTNULL(op_desc);
  239. op_list_[op_desc->GetId()] = node;
  240. auto op_type = op_desc->GetType();
  241. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  242. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  243. data_ops_.emplace_back(op_desc);
  244. auto tensor = op_desc->MutableInputDesc(0);
  245. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  246. int32_t index = 0;
  247. (void) AttrUtils::GetInt(op_desc, ATTR_NAME_INDEX, index);
  248. GELOGD("Node %s, index %d, has host mem.", node->GetName().c_str(), index);
  249. op_with_hostmem_[index] = node;
  250. }
  251. continue;
  252. }
  253. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  254. has_weight_ = true;
  255. continue;
  256. }
  257. if (op_type == NETOUTPUT) {
  258. netoutput_op_ = op_desc;
  259. continue;
  260. }
  261. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  262. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  263. }
  264. return SUCCESS;
  265. }
  266. Status SingleOpModel::ParseInputsAndOutputs() {
  267. for (auto &op_desc : data_ops_) {
  268. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  269. }
  270. if (netoutput_op_ != nullptr) {
  271. ParseOutputNode(netoutput_op_);
  272. }
  273. return SUCCESS;
  274. }
  275. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  276. int arg_index = 0;
  277. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  278. auto *addr = model_params_.mem_base + input_offset_list_[i];
  279. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  280. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  281. single_op.input_addr_list_.emplace_back(addr);
  282. }
  283. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  284. auto *addr = model_params_.mem_base + output_offset_list_[i];
  285. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  286. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  287. single_op.output_addr_list_.emplace_back(addr);
  288. }
  289. single_op.args_.resize(arg_index);
  290. return SUCCESS;
  291. }
  292. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  293. auto ge_model = model_helper_.GetGeModel();
  294. GE_CHECK_NOTNULL(ge_model);
  295. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  296. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  297. for (int i = 0; i < tasks.size(); ++i) {
  298. const TaskDef &task_def = tasks[i];
  299. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  300. task_def.DebugString().c_str());
  301. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  302. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  303. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  304. task_def.kernel_with_handle().context();
  305. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  306. if (kernel_type == ccKernelType::TE) {
  307. GELOGD("Building TBE task");
  308. TbeOpTask *tbe_task = nullptr;
  309. auto ret = BuildKernelTask(task_def, &tbe_task);
  310. if (ret != SUCCESS) {
  311. return ret;
  312. }
  313. ParseArgTable(tbe_task, single_op);
  314. tbe_task->SetModelArgs(model_name_, model_id_);
  315. if (tbe_task->tiling_buffer_ != nullptr) {
  316. tbe_task->stream_resource_ = stream_resource;
  317. }
  318. single_op.tasks_.emplace_back(tbe_task);
  319. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  320. GELOGD("Building AICPU_CC task");
  321. OpTask *task = nullptr;
  322. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  323. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  324. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id));
  325. task->SetModelArgs(model_name_, model_id_);
  326. ParseArgTable(task, single_op);
  327. single_op.tasks_.emplace_back(task);
  328. } else {
  329. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  330. "[Check][KernelType]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  331. context.kernel_type());
  332. REPORT_INNER_ERROR("E19999",
  333. "BuildTaskList fail for %u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  334. context.kernel_type());
  335. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  336. }
  337. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  338. GELOGD("Building AICPU_TF task");
  339. AiCpuTask *aicpu_task = nullptr;
  340. bool depend_compute_flag = false;
  341. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  342. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  343. GE_CHK_STATUS_RET_NOLOG(
  344. BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id));
  345. aicpu_task->SetModelArgs(model_name_, model_id_);
  346. ParseArgTable(aicpu_task, single_op);
  347. single_op.tasks_.emplace_back(aicpu_task);
  348. } else if ((task_type == RT_MODEL_TASK_MEMCPY_ASYNC) || (task_type == RT_MODEL_TASK_MEMCPY_ADDR_ASYNC)) {
  349. auto kernel_def = task_def.memcpy_async();
  350. auto node = op_list_[kernel_def.op_index()];
  351. GE_CHECK_NOTNULL(node);
  352. auto op_desc = node->GetOpDesc();
  353. GE_CHECK_NOTNULL(op_desc);
  354. std::unique_ptr<MemcpyAsyncTask> task;
  355. GE_CHK_STATUS_RET_NOLOG(RtsKernelTaskBuilder::BuildMemcpyAsyncTask(op_desc, kernel_def, model_params_, task));
  356. task->SetModelArgs(model_name_, model_id_);
  357. ParseArgTable(task.get(), single_op);
  358. single_op.tasks_.emplace_back(task.release());
  359. } else {
  360. // skip
  361. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  362. }
  363. }
  364. return SUCCESS;
  365. }
  366. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  367. if (task == nullptr) {
  368. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Parse][ArgTable] fail for input OpTask is nullptr.");
  369. REPORT_INNER_ERROR("E19999", "ParseArgTable fail for input OpTask is nullptr.");
  370. return;
  371. }
  372. // args: addr1, addr2, addr3 ...
  373. uintptr_t *arg_base = nullptr;
  374. size_t arg_num = 0;
  375. task->GetIoAddr(arg_base, arg_num);
  376. for (size_t i = 0; i < arg_num; ++i) {
  377. uintptr_t *ptr_to_addr = arg_base + i;
  378. uintptr_t addr = *ptr_to_addr;
  379. auto iter = model_params_.addr_mapping_.find(addr);
  380. if (iter != model_params_.addr_mapping_.end()) {
  381. int arg_index = iter->second;
  382. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  383. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  384. }
  385. }
  386. }
  387. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  388. GE_CHECK_NOTNULL(task);
  389. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  390. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  391. task_def.kernel_with_handle().context();
  392. auto iter = op_list_.find(context.op_index());
  393. if (iter == op_list_.end()) {
  394. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Param:TaskDef]op desc not found. op index = %u", context.op_index());
  395. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for op desc not found. op index = %u", context.op_index());
  396. return ACL_ERROR_GE_INTERNAL_ERROR;
  397. }
  398. auto *tbe_task = new (std::nothrow) TbeOpTask();
  399. if (tbe_task == nullptr) {
  400. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][TbeOpTask]failed.");
  401. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for new TbeOpTask.");
  402. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  403. }
  404. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  405. auto ret = builder.BuildTask(*tbe_task, model_params_);
  406. if (ret != SUCCESS) {
  407. delete tbe_task;
  408. tbe_task = nullptr;
  409. return ret;
  410. }
  411. *task = tbe_task;
  412. return SUCCESS;
  413. }
  414. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  415. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  416. auto iter = op_list_.find(kernel_def.op_index());
  417. if (iter == op_list_.end()) {
  418. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  419. "[Check][Param:KernelExDef]op not found. op index = %u", kernel_def.op_index());
  420. REPORT_INNER_ERROR("E19999",
  421. "BuildKernelExTask fail for param kernel_def, because op of kernel_def not found, op index:%u.",
  422. kernel_def.op_index());
  423. return ACL_ERROR_GE_INTERNAL_ERROR;
  424. }
  425. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  426. if (aicpu_task == nullptr) {
  427. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuTask] failed.");
  428. REPORT_INNER_ERROR("E19999", "BuildKernelExTask fail for new AiCpuTask, model_name:%s.", model_name_.c_str());
  429. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  430. }
  431. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  432. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  433. if (ret != SUCCESS) {
  434. GELOGE(ret, "[Build][Task] failed, kernel_id:%lu.", kernel_id);
  435. return ret;
  436. }
  437. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  438. *task = aicpu_task.release();
  439. return SUCCESS;
  440. }
  441. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  442. const auto &context = kernel_def.context();
  443. auto iter = op_list_.find(context.op_index());
  444. if (iter == op_list_.end()) {
  445. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  446. "[Check][Param:KernelDef] op desc not found. op index = %u", context.op_index());
  447. REPORT_INNER_ERROR("E19999",
  448. "BuildCpuKernelTask fail for kernel_def is invalid, because op of kernel_def not found, op index:%u.",
  449. context.op_index());
  450. return ACL_ERROR_GE_INTERNAL_ERROR;
  451. }
  452. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  453. if (aicpucc_task == nullptr) {
  454. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuCCTask] failed");
  455. REPORT_INNER_ERROR("E19999", "BuildCpuKernelTask fail for new AiCpuCCTask, model_name:%s.", model_name_.c_str());
  456. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  457. }
  458. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  459. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  460. if (ret != SUCCESS) {
  461. GELOGE(ret, "[Build][AiCpuCCTask]failed, kernel_id:%lu.", kernel_id);
  462. REPORT_CALL_ERROR("E19999", "BuildCpuKernelTask fail for build AiCpuTask, kernel_id:%lu.", kernel_id);
  463. return ret;
  464. }
  465. *task = aicpucc_task.release();
  466. return SUCCESS;
  467. }
  468. Status SingleOpModel::InitHybridModelExecutor(const StreamResource &resource, const GeModelPtr &ge_model,
  469. SingleOp &single_op) {
  470. for (const auto &op_desc : data_ops_) {
  471. auto output_tensor_desc = op_desc->GetOutputDesc(kOutputIndexOfData);
  472. GeTensorDesc tensor_desc(output_tensor_desc);
  473. single_op.inputs_desc_.emplace_back(tensor_desc);
  474. GELOGD("Init inputs desc from %s.", op_desc->GetName().c_str());
  475. }
  476. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  477. auto root_model = model_helper_.GetGeRootModel();
  478. GE_CHECK_NOTNULL(root_model);
  479. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  480. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  481. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  482. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  483. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  484. int32_t device_id = 0;
  485. GE_CHK_RT_RET(rtGetDevice(&device_id));
  486. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  487. device_id,
  488. resource.GetStream()));
  489. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  490. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  491. return SUCCESS;
  492. }
  493. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  494. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  495. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  496. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  497. GE_CHECK_NOTNULL(single_op.running_param_);
  498. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  499. auto ge_model = model_helper_.GetGeModel();
  500. GE_CHECK_NOTNULL(ge_model);
  501. bool infer_depend_flag = false;
  502. bool is_host_mem = false;
  503. GE_CHK_STATUS_RET(CheckInferDepend(ge_model, infer_depend_flag, is_host_mem), "[Check][InferDepend] failed.");
  504. if (infer_depend_flag) {
  505. // construct single_op, do single op with HybridModelExecutor
  506. GELOGD("Init hybrid model params of single op, and will do execute with hybrid model executor.");
  507. return InitHybridModelExecutor(resource, ge_model, single_op);
  508. }
  509. return BuildTaskList(&resource, single_op);
  510. }
  511. Status SingleOpModel::BuildModelTaskKernel(StreamResource *stream_resource, const TaskDef &task_def,
  512. DynamicSingleOp &single_op) {
  513. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  514. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  515. task_def.kernel_with_handle().context();
  516. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  517. if (kernel_type == ccKernelType::TE) {
  518. GELOGD("Building TBE task.");
  519. TbeOpTask *tbe_task = nullptr;
  520. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  521. tbe_task->SetModelArgs(model_name_, model_id_);
  522. if (tbe_task->tiling_buffer_ != nullptr) {
  523. GELOGD("tiling buffer is not nullptr.");
  524. tbe_task->stream_resource_ = stream_resource;
  525. }
  526. single_op.op_task_.reset(tbe_task);
  527. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  528. GELOGD("Building AICPU_CC task");
  529. OpTask *task = nullptr;
  530. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  531. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  532. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  533. task->SetModelArgs(model_name_, model_id_);
  534. single_op.op_task_.reset(task);
  535. } else {
  536. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  537. "[Check][Param:TaskDef]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  538. context.kernel_type());
  539. REPORT_INNER_ERROR("E19999",
  540. "BuildModelTaskKernel fail for got:%u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  541. context.kernel_type());
  542. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  543. }
  544. return SUCCESS;
  545. }
  546. Status SingleOpModel::BuildTaskListForDynamicOp(StreamResource *stream_resource, DynamicSingleOp &single_op) {
  547. auto ge_model = model_helper_.GetGeModel();
  548. GE_CHECK_NOTNULL(ge_model);
  549. auto compute_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  550. GE_CHECK_NOTNULL(compute_graph);
  551. single_op.compute_graph_ = compute_graph;
  552. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  553. for (int i = 0; i < tasks.size(); ++i) {
  554. const TaskDef &task_def = tasks[i];
  555. GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(),
  556. task_def.DebugString().c_str());
  557. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  558. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  559. if (single_op.op_task_ != nullptr) {
  560. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  561. REPORT_INNER_ERROR("E19999",
  562. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  563. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  564. }
  565. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(stream_resource, task_def, single_op));
  566. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  567. if (single_op.op_task_ != nullptr) {
  568. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  569. REPORT_INNER_ERROR("E19999",
  570. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  571. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  572. }
  573. GELOGD("Building AICPU_TF task");
  574. AiCpuTask *aicpu_task = nullptr;
  575. bool depend_compute_flag = false;
  576. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  577. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  578. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  579. depend_compute_flag, dynamic_singleop_kernel_id));
  580. if (depend_compute_flag) {
  581. if (i >= tasks.size() - 1) {
  582. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  583. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  584. return ACL_ERROR_GE_PARAM_INVALID;
  585. }
  586. ++i;
  587. const TaskDef &copy_task_def = tasks[i];
  588. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  589. }
  590. aicpu_task->SetModelArgs(model_name_, model_id_);
  591. single_op.op_task_.reset(aicpu_task);
  592. } else {
  593. // skip
  594. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  595. }
  596. }
  597. return SUCCESS;
  598. }
  599. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  600. single_op.num_inputs_ = data_ops_.size();
  601. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  602. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  603. model_params_.memory_size = UINT64_MAX;
  604. model_params_.graph_is_dynamic = true;
  605. auto ge_model = model_helper_.GetGeModel();
  606. GE_CHECK_NOTNULL(ge_model);
  607. bool need_hybrid_model = false;
  608. GE_CHK_STATUS_RET(NeedHybridModel(ge_model, need_hybrid_model), "[Check][NeedHybridModel] failed.");
  609. if (need_hybrid_model) {
  610. GELOGD("Build single op HybridModel.");
  611. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  612. GE_CHK_STATUS(SetHostMemTensor(single_op), "[Init][HostMem]Failed.");
  613. auto root_model = model_helper_.GetGeRootModel();
  614. GE_CHECK_NOTNULL(root_model);
  615. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  616. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  617. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  618. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  619. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  620. int32_t device_id = 0;
  621. GE_CHK_RT_RET(rtGetDevice(&device_id));
  622. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  623. device_id,
  624. resource.GetStream()));
  625. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  626. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  627. return SUCCESS;
  628. }
  629. return BuildTaskListForDynamicOp(&resource, single_op);
  630. }
  631. Status SingleOpModel::SetHostMemTensor(DynamicSingleOp &single_op) {
  632. for (auto &node_map : op_with_hostmem_) {
  633. auto node = node_map.second;
  634. auto out_anchor = node->GetOutDataAnchor(0);
  635. GE_CHECK_NOTNULL(out_anchor);
  636. auto in_anchors = out_anchor->GetPeerInDataAnchors();
  637. vector<GeTensorDescPtr> tensor_descs;
  638. auto idx = node_map.first;
  639. for (auto anchor : in_anchors) {
  640. GE_CHECK_NOTNULL(anchor);
  641. auto output_node = anchor->GetOwnerNode();
  642. GE_CHECK_NOTNULL(output_node);
  643. auto op_desc = output_node->GetOpDesc();
  644. GE_CHECK_NOTNULL(op_desc);
  645. auto tensor_desc = op_desc->MutableInputDesc(anchor->GetIdx());
  646. tensor_descs.emplace_back(tensor_desc);
  647. GELOGD("Get %d th input tensor desc of %s by %d data node: %s.", anchor->GetIdx(),
  648. output_node->GetName().c_str(), idx, node->GetName().c_str());
  649. }
  650. single_op.tensor_with_hostmem_[idx] = tensor_descs;
  651. }
  652. return SUCCESS;
  653. }
  654. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示