You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 34 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/utils/graph_utils.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "graph/load/model_manager/davinci_model.h"
  22. using namespace std;
  23. namespace ge {
  24. extern OpDescPtr CreateOpDesc(string name, string type);
  25. class UtestDavinciModel : public testing::Test {
  26. protected:
  27. void SetUp() {}
  28. void TearDown() {}
  29. };
  30. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  31. return 0;
  32. }
  33. /*
  34. TEST_F(UtestDavinciModel, init_success) {
  35. DavinciModel model(0, nullptr);
  36. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  37. ProfilingManager::Instance().is_load_profiling_ = true;
  38. GeModelPtr ge_model = make_shared<GeModel>();
  39. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  40. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  41. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  42. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  43. ge_model->SetModelTaskDef(model_task_def);
  44. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  45. TensorUtils::SetSize(tensor, 512);
  46. OpDescPtr op_input = CreateOpDesc("data", DATA);
  47. op_input->AddInputDesc(tensor);
  48. op_input->AddOutputDesc(tensor);
  49. op_input->SetInputOffset({1024});
  50. op_input->SetOutputOffset({1024});
  51. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  52. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  53. op_kernel->AddInputDesc(tensor);
  54. op_kernel->AddOutputDesc(tensor);
  55. op_kernel->SetInputOffset({1024});
  56. op_kernel->SetOutputOffset({1024});
  57. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  58. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  59. op_memcpy->AddInputDesc(tensor);
  60. op_memcpy->AddOutputDesc(tensor);
  61. op_memcpy->SetInputOffset({1024});
  62. op_memcpy->SetOutputOffset({5120});
  63. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  64. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  65. op_output->AddInputDesc(tensor);
  66. op_output->SetInputOffset({5120});
  67. op_output->SetSrcName( { "memcpy" } );
  68. op_output->SetSrcIndex( { 0 } );
  69. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  70. domi::TaskDef *task_def1 = model_task_def->add_task();
  71. task_def1->set_stream_id(0);
  72. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  73. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  74. kernel_def->set_stub_func("stub_func");
  75. kernel_def->set_args_size(64);
  76. string args(64, '1');
  77. kernel_def->set_args(args.data(), 64);
  78. domi::KernelContext *context = kernel_def->mutable_context();
  79. context->set_op_index(1);
  80. context->set_kernel_type(2); // ccKernelType::TE
  81. uint16_t args_offset[9] = {0};
  82. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  83. domi::TaskDef *task_def2 = model_task_def->add_task();
  84. task_def2->set_stream_id(0);
  85. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  86. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  87. memcpy_async->set_src(1024);
  88. memcpy_async->set_dst(5120);
  89. memcpy_async->set_dst_max(512);
  90. memcpy_async->set_count(1);
  91. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  92. memcpy_async->set_op_index(2);
  93. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  94. EXPECT_EQ(model.Init(), SUCCESS);
  95. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  96. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  97. EXPECT_EQ(model.task_list_.size(), 2);
  98. OutputData output_data;
  99. vector<OutputTensorInfo> outputs;
  100. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  101. EXPECT_EQ(output_data.blobs.size(), 1);
  102. EXPECT_EQ(outputs.size(), 1);
  103. ProfilingManager::Instance().is_load_profiling_ = false;
  104. }
  105. */
  106. TEST_F(UtestDavinciModel, init_data_op) {
  107. DavinciModel model(0, nullptr);
  108. model.ge_model_ = make_shared<GeModel>();
  109. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  110. model.runtime_param_.mem_size = 5120000;
  111. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  112. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  113. TensorUtils::SetSize(tensor, 512);
  114. OpDescPtr op_input = CreateOpDesc("data", DATA);
  115. op_input->AddInputDesc(tensor);
  116. op_input->AddOutputDesc(tensor);
  117. op_input->SetInputOffset({1024});
  118. op_input->SetOutputOffset({1024});
  119. NodePtr node_input = graph->AddNode(op_input);
  120. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  121. op_output->AddInputDesc(tensor);
  122. op_output->SetInputOffset({1024});
  123. op_output->SetSrcName( { "data" } );
  124. op_output->SetSrcIndex( { 0 } );
  125. NodePtr node_output = graph->AddNode(op_output);
  126. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  127. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  128. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  129. EXPECT_EQ(model.op_list_.size(), 2);
  130. }
  131. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  132. DavinciModel model(0, nullptr);
  133. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  134. model.runtime_param_.mem_size = 5120000;
  135. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  136. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  137. TensorUtils::SetSize(tensor, 512);
  138. OpDescPtr op_input = CreateOpDesc("data", DATA);
  139. op_input->AddInputDesc(tensor);
  140. op_input->AddOutputDesc(tensor);
  141. op_input->SetInputOffset({1024});
  142. op_input->SetOutputOffset({1024});
  143. NodePtr node = graph->AddNode(op_input);
  144. uint32_t data_op_index = 0;
  145. map<uint32_t, OpDescPtr> data_by_index;
  146. set<const void *> input_outside_addrs;
  147. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  148. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  149. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  150. EXPECT_EQ(data_op_index, 0);
  151. EXPECT_TRUE(data_by_index.empty());
  152. }
  153. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  154. DavinciModel model(0, nullptr);
  155. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  156. model.runtime_param_.mem_size = 5120000;
  157. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  158. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  159. TensorUtils::SetSize(tensor, 512);
  160. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  161. op_output->AddInputDesc(tensor);
  162. op_output->SetInputOffset({1024});
  163. op_output->SetSrcName( { "data" } );
  164. op_output->SetSrcIndex( { 0 } );
  165. NodePtr node = graph->AddNode(op_output);
  166. std::vector<OpDescPtr> output_op_list;
  167. set<const void *> output_outside_addrs;
  168. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  169. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  170. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  171. EXPECT_TRUE(output_op_list.empty());
  172. }
  173. TEST_F(UtestDavinciModel, init_unknown) {
  174. DavinciModel model(0, nullptr);
  175. model.SetKnownNode(true);
  176. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  177. GeModelPtr ge_model = make_shared<GeModel>();
  178. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  179. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  180. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  181. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  182. ge_model->SetModelTaskDef(model_task_def);
  183. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  184. TensorUtils::SetSize(tensor, 512);
  185. OpDescPtr op_input = CreateOpDesc("data", DATA);
  186. op_input->AddInputDesc(tensor);
  187. op_input->AddOutputDesc(tensor);
  188. op_input->SetInputOffset({1024});
  189. op_input->SetOutputOffset({1024});
  190. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  191. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  192. op_kernel->AddInputDesc(tensor);
  193. op_kernel->AddOutputDesc(tensor);
  194. op_kernel->SetInputOffset({1024});
  195. op_kernel->SetOutputOffset({1024});
  196. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  197. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  198. op_memcpy->AddInputDesc(tensor);
  199. op_memcpy->AddOutputDesc(tensor);
  200. op_memcpy->SetInputOffset({1024});
  201. op_memcpy->SetOutputOffset({5120});
  202. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  203. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  204. op_output->AddInputDesc(tensor);
  205. op_output->SetInputOffset({5120});
  206. op_output->SetSrcName( { "memcpy" } );
  207. op_output->SetSrcIndex( { 0 } );
  208. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  209. domi::TaskDef *task_def1 = model_task_def->add_task();
  210. task_def1->set_stream_id(0);
  211. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  212. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  213. kernel_def->set_stub_func("stub_func");
  214. kernel_def->set_args_size(64);
  215. string args(64, '1');
  216. kernel_def->set_args(args.data(), 64);
  217. domi::KernelContext *context = kernel_def->mutable_context();
  218. context->set_op_index(1);
  219. context->set_kernel_type(2); // ccKernelType::TE
  220. uint16_t args_offset[9] = {0};
  221. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  222. domi::TaskDef *task_def2 = model_task_def->add_task();
  223. task_def2->set_stream_id(0);
  224. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  225. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  226. memcpy_async->set_src(1024);
  227. memcpy_async->set_dst(5120);
  228. memcpy_async->set_dst_max(512);
  229. memcpy_async->set_count(1);
  230. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  231. memcpy_async->set_op_index(2);
  232. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  233. EXPECT_EQ(model.Init(), SUCCESS);
  234. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  235. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  236. EXPECT_EQ(model.task_list_.size(), 2);
  237. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  238. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  239. vector<string> out_shape_info;
  240. model.GetModelAttr(out_shape_info);
  241. vector<InputOutputDescInfo> input_descs;
  242. vector<InputOutputDescInfo> output_descs;
  243. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  244. int32_t virtual_addr = 0;
  245. const vector<void *> inputs = { &virtual_addr };
  246. const vector<void *> outputs = { &virtual_addr };
  247. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  248. }
  249. TEST_F(UtestDavinciModel, Init_variable_op) {
  250. DavinciModel model(0, nullptr);
  251. model.ge_model_ = make_shared<GeModel>();
  252. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  253. model.runtime_param_.mem_size = 5120000;
  254. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  255. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  256. TensorUtils::SetSize(tensor, 512);
  257. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  258. var1->AddInputDesc(tensor);
  259. var1->AddOutputDesc(tensor);
  260. var1->SetInputOffset({1024});
  261. var1->SetOutputOffset({1024});
  262. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  263. graph->AddNode(var1);
  264. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  265. var2->AddInputDesc(tensor);
  266. var2->AddOutputDesc(tensor);
  267. var2->SetInputOffset({1024});
  268. var2->SetOutputOffset({1024});
  269. graph->AddNode(var2);
  270. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  271. EXPECT_EQ(model.ReturnNoOutput(1), PARAM_INVALID);
  272. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  273. }
  274. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  275. DavinciModel model(0, nullptr);
  276. model.ge_model_ = make_shared<GeModel>();
  277. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  278. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  279. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  280. op_output->AddInputDesc(tensor);
  281. op_output->SetInputOffset({1024});
  282. NodePtr node_output = graph->AddNode(op_output);
  283. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  284. }
  285. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  286. DavinciModel model(0, nullptr);
  287. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  288. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  289. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  290. data1->AddInputDesc(shape_desc);
  291. data1->AddOutputDesc(shape_desc);
  292. NodePtr data1_node = graph->AddNode(data1);
  293. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  294. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  295. case_node->AddInputDesc(tensor);
  296. case_node->AddOutputDesc(tensor);
  297. NodePtr case1_node = graph->AddNode(case_node);
  298. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  299. output->AddInputDesc(tensor);
  300. output->SetSrcName( { "case1" } );
  301. output->SetSrcIndex( { 0 } );
  302. NodePtr output_node = graph->AddNode(output);
  303. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  304. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  305. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  306. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  307. model.is_getnext_sink_dynamic_ = false;
  308. model.is_online_infer_dynamic_ = true;
  309. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  310. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  311. EXPECT_EQ(ret, SUCCESS);
  312. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  313. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  314. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  315. EXPECT_EQ(ret, SUCCESS);
  316. }
  317. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  318. DavinciModel model(0, nullptr);
  319. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  320. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  321. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  322. data1->AddInputDesc(shape_desc);
  323. data1->AddOutputDesc(shape_desc);
  324. NodePtr data1_node = graph->AddNode(data1);
  325. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  326. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  327. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  328. shape_node->AddInputDesc(in_tensor);
  329. shape_node->AddOutputDesc(out_tensor);
  330. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  331. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  332. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  333. output->AddInputDesc(tensor);
  334. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  335. output->SetSrcIndex( { 0, 1 } );
  336. NodePtr output_node = graph->AddNode(output);
  337. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  338. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  339. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  340. model.is_getnext_sink_dynamic_ = true;
  341. model.is_online_infer_dynamic_ = false;
  342. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  343. EXPECT_EQ(ret, SUCCESS);
  344. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  345. model.runtime_param_.mem_size = 4;
  346. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  347. EXPECT_EQ(ret, SUCCESS);
  348. }
  349. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  350. DavinciModel model(0, nullptr);
  351. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  352. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  353. model.runtime_param_.mem_size = 5120000;
  354. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  355. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  356. TensorUtils::SetSize(tensor, 512);
  357. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  358. op_desc->AddInputDesc(tensor);
  359. op_desc->AddOutputDesc(tensor);
  360. op_desc->SetInputOffset({1024});
  361. op_desc->SetOutputOffset({1024});
  362. NodePtr node = graph->AddNode(op_desc);
  363. GeAttrValue::NAMED_ATTRS aipp_attr;
  364. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  365. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  366. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  367. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  368. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  369. AippConfigInfo aipp_info;
  370. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  371. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  372. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  373. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  374. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  375. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  376. EXPECT_EQ(model.op_list_.size(), 1);
  377. }
  378. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  379. DavinciModel model(0, nullptr);
  380. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  381. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  382. model.runtime_param_.mem_size = 5120000;
  383. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  384. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  385. TensorUtils::SetSize(tensor, 512);
  386. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  387. op_desc->AddInputDesc(tensor);
  388. op_desc->AddOutputDesc(tensor);
  389. op_desc->SetInputOffset({1024});
  390. op_desc->SetOutputOffset({1024});
  391. NodePtr node = graph->AddNode(op_desc);
  392. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  393. InputAippType aipp_type;
  394. size_t aipp_index = 0;
  395. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  396. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  397. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  398. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  399. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  400. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  401. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  402. EXPECT_EQ(model.op_list_.size(), 1);
  403. }
  404. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  405. DavinciModel model(0, nullptr);
  406. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  407. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  408. model.runtime_param_.mem_size = 5120000;
  409. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  410. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  411. TensorUtils::SetSize(tensor, 512);
  412. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  413. op_desc->AddInputDesc(tensor);
  414. op_desc->AddOutputDesc(tensor);
  415. op_desc->SetInputOffset({1024});
  416. op_desc->SetOutputOffset({1024});
  417. NodePtr node = graph->AddNode(op_desc); // op_index 0
  418. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  419. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  420. InputAippType aipp_type;
  421. size_t aipp_index = 0;
  422. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  423. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  424. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  425. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  426. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  427. EXPECT_EQ(model.op_list_.size(), 1);
  428. }
  429. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  430. DavinciModel model(0, nullptr);
  431. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  432. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  433. model.runtime_param_.mem_size = 5120000;
  434. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  435. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  436. TensorUtils::SetSize(tensor, 512);
  437. {
  438. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  439. op_desc->AddInputDesc(tensor);
  440. op_desc->AddOutputDesc(tensor);
  441. op_desc->SetInputOffset({1024});
  442. op_desc->SetOutputOffset({1024});
  443. NodePtr node = graph->AddNode(op_desc); // op_index 0
  444. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  445. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  446. }
  447. {
  448. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  449. op_desc->AddInputDesc(tensor);
  450. op_desc->AddOutputDesc(tensor);
  451. op_desc->SetInputOffset({1024});
  452. op_desc->SetOutputOffset({1024});
  453. NodePtr node = graph->AddNode(op_desc); // op_index 1
  454. }
  455. InputAippType aipp_type;
  456. size_t aipp_index = 0;
  457. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  458. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  459. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  460. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  461. EXPECT_EQ(aipp_index, 1);
  462. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  463. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  464. EXPECT_EQ(model.op_list_.size(), 2);
  465. }
  466. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  467. DavinciModel model(0, nullptr);
  468. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  469. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  470. model.runtime_param_.mem_size = 5120000;
  471. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  472. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  473. TensorUtils::SetSize(tensor, 512);
  474. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  475. op_desc->AddInputDesc(tensor);
  476. op_desc->AddOutputDesc(tensor);
  477. op_desc->SetInputOffset({1024});
  478. op_desc->SetOutputOffset({1024});
  479. NodePtr node = graph->AddNode(op_desc); // op_index 0
  480. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  481. InputAippType aipp_type;
  482. size_t aipp_index = 0;
  483. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  484. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  485. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  486. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  487. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  488. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  489. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  490. EXPECT_EQ(model.op_list_.size(), 1);
  491. }
  492. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  493. DavinciModel model(0, nullptr);
  494. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  495. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  496. model.runtime_param_.mem_size = 5120000;
  497. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  498. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  499. TensorUtils::SetSize(tensor, 512);
  500. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  501. op_desc->AddInputDesc(tensor);
  502. op_desc->AddOutputDesc(tensor);
  503. op_desc->SetInputOffset({1024});
  504. op_desc->SetOutputOffset({1024});
  505. NodePtr node = graph->AddNode(op_desc); // op_index 0
  506. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  507. InputAippType aipp_type;
  508. size_t aipp_index = 0;
  509. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  510. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  511. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  512. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  513. EXPECT_EQ(model.op_list_.size(), 1);
  514. }
  515. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  516. DavinciModel model(0, nullptr);
  517. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  518. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  519. model.runtime_param_.mem_size = 5120000;
  520. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  521. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  522. TensorUtils::SetSize(tensor, 512);
  523. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  524. op_desc->AddInputDesc(tensor);
  525. op_desc->AddOutputDesc(tensor);
  526. op_desc->SetInputOffset({1024});
  527. op_desc->SetOutputOffset({1024});
  528. NodePtr node = graph->AddNode(op_desc); // op_index 0
  529. vector<string> inputs = {};
  530. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  531. vector<string> outputs = {};
  532. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  533. OriginInputInfo orig_input_info;
  534. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  535. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  536. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  537. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  538. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  539. EXPECT_EQ(model.op_list_.size(), 1);
  540. }
  541. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  542. DavinciModel model(0, nullptr);
  543. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  544. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  545. model.runtime_param_.mem_size = 5120000;
  546. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  547. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  548. TensorUtils::SetSize(tensor, 512);
  549. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  550. op_desc->AddInputDesc(tensor);
  551. op_desc->AddOutputDesc(tensor);
  552. op_desc->SetInputOffset({1024});
  553. op_desc->SetOutputOffset({1024});
  554. NodePtr node = graph->AddNode(op_desc); // op_index 0
  555. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  556. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  557. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  558. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  559. OriginInputInfo orig_input_info;
  560. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  561. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  562. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  563. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  564. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  565. EXPECT_EQ(model.op_list_.size(), 1);
  566. }
  567. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  568. DavinciModel model(0, nullptr);
  569. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  570. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  571. model.runtime_param_.mem_size = 5120000;
  572. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  573. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  574. TensorUtils::SetSize(tensor, 512);
  575. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  576. op_desc->AddInputDesc(tensor);
  577. op_desc->AddOutputDesc(tensor);
  578. op_desc->SetInputOffset({1024});
  579. op_desc->SetOutputOffset({1024});
  580. NodePtr node = graph->AddNode(op_desc); // op_index 0
  581. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  582. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  583. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  584. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  585. OriginInputInfo orig_input_info;
  586. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  587. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  588. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  589. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  590. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  591. EXPECT_EQ(model.op_list_.size(), 1);
  592. }
  593. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  594. DavinciModel model(0, nullptr);
  595. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  596. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  597. model.runtime_param_.mem_size = 5120000;
  598. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  599. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  600. TensorUtils::SetSize(tensor, 512);
  601. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  602. op_desc->AddInputDesc(tensor);
  603. op_desc->AddOutputDesc(tensor);
  604. op_desc->SetInputOffset({1024});
  605. op_desc->SetOutputOffset({1024});
  606. NodePtr node = graph->AddNode(op_desc); // op_index 0
  607. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  608. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  609. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  610. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  611. vector<InputOutputDims> input_dims;
  612. vector<InputOutputDims> output_dims;
  613. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  614. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  615. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  616. EXPECT_EQ(input_dims.size(), 1);
  617. EXPECT_EQ(output_dims.size(), 1);
  618. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  619. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  620. EXPECT_EQ(model.op_list_.size(), 1);
  621. }
  622. /*
  623. // test label_set_task Init
  624. TEST_F(UtestDavinciModel, label_task_success) {
  625. DavinciModel model(0, nullptr);
  626. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  627. GeModelPtr ge_model = make_shared<GeModel>();
  628. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  629. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  630. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  631. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  632. ge_model->SetModelTaskDef(model_task_def);
  633. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  634. TensorUtils::SetSize(tensor, 64);
  635. uint32_t op_index = 0;
  636. {
  637. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  638. op_desc->AddInputDesc(tensor);
  639. op_desc->SetInputOffset({1024});
  640. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  641. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  642. domi::TaskDef *task_def1 = model_task_def->add_task();
  643. task_def1->set_stream_id(0);
  644. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  645. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  646. label_task_def->set_op_index(op_index++);
  647. label_task_def->set_label_max(2);
  648. }
  649. {
  650. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  651. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  652. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  653. domi::TaskDef *task_def1 = model_task_def->add_task();
  654. task_def1->set_stream_id(0);
  655. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  656. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  657. label_task_def->set_op_index(op_index++);
  658. }
  659. {
  660. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  661. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  662. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  663. domi::TaskDef *task_def2 = model_task_def->add_task();
  664. task_def2->set_stream_id(0);
  665. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  666. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  667. label_task_def->set_op_index(op_index++);
  668. }
  669. {
  670. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  671. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  672. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  673. domi::TaskDef *task_def1 = model_task_def->add_task();
  674. task_def1->set_stream_id(0);
  675. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  676. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  677. label_task_def->set_op_index(op_index++);
  678. }
  679. {
  680. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  681. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  682. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  683. domi::TaskDef *task_def1 = model_task_def->add_task();
  684. task_def1->set_stream_id(0);
  685. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  686. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  687. label_task_def->set_op_index(op_index++);
  688. }
  689. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  690. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  691. EXPECT_EQ(model.Init(), SUCCESS);
  692. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  693. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  694. EXPECT_EQ(model.task_list_.size(), 5);
  695. }
  696. */
  697. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  698. DavinciModel model(0, nullptr);
  699. model.ge_model_ = make_shared<GeModel>();
  700. model.input_queue_ids_.emplace_back(0);
  701. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  702. EXPECT_EQ(model.input_data_info_.size(), 0);
  703. ZeroCopyOffset zero_copy_offset;
  704. model.input_data_info_[0] = zero_copy_offset;
  705. model.output_queue_ids_.emplace_back(0);
  706. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  707. EXPECT_EQ(model.output_data_info_.size(), 0);
  708. model.output_data_info_[0] = zero_copy_offset;
  709. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  710. EXPECT_EQ(model.active_stream_list_.size(), 0);
  711. }
  712. TEST_F(UtestDavinciModel, Sink_model_profile) {
  713. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  714. ProfileInfo profile;
  715. profile.fusion_info.op_name = "relu";
  716. DavinciModel model(0, nullptr);
  717. model.profile_list_.emplace_back(profile);
  718. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  719. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  720. model.profiler_report_op_info_ = op_info;
  721. model.SinkModelProfile();
  722. }
  723. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示