You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 30 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/utils/graph_utils.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "graph/load/new_model_manager/davinci_model.h"
  22. using namespace std;
  23. namespace ge {
  24. extern OpDescPtr CreateOpDesc(string name, string type);
  25. class UtestDavinciModel : public testing::Test {
  26. protected:
  27. void SetUp() {}
  28. void TearDown() {}
  29. public:
  30. NodePtr MakeNode(const ComputeGraphPtr &graph, uint32_t in_num, uint32_t out_num, string name, string type) {
  31. GeTensorDesc test_desc(GeShape(), FORMAT_NCHW, DT_FLOAT);
  32. auto op_desc = std::make_shared<OpDesc>(name, type);
  33. for (auto i = 0; i < in_num; ++i) {
  34. op_desc->AddInputDesc(test_desc);
  35. }
  36. for (auto i = 0; i < out_num; ++i) {
  37. op_desc->AddOutputDesc(test_desc);
  38. }
  39. return graph->AddNode(op_desc);
  40. }
  41. };
  42. TEST_F(UtestDavinciModel, init_success) {
  43. DavinciModel model(0, nullptr);
  44. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  45. ProfilingManager::Instance().is_load_profiling_ = true;
  46. GeModelPtr ge_model = make_shared<GeModel>();
  47. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  48. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  49. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  50. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  51. ge_model->SetModelTaskDef(model_task_def);
  52. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  53. TensorUtils::SetSize(tensor, 512);
  54. OpDescPtr op_input = CreateOpDesc("data", DATA);
  55. op_input->AddInputDesc(tensor);
  56. op_input->AddOutputDesc(tensor);
  57. op_input->SetInputOffset({1024});
  58. op_input->SetOutputOffset({1024});
  59. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  60. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  61. op_kernel->AddInputDesc(tensor);
  62. op_kernel->AddOutputDesc(tensor);
  63. op_kernel->SetInputOffset({1024});
  64. op_kernel->SetOutputOffset({1024});
  65. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  66. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  67. op_memcpy->AddInputDesc(tensor);
  68. op_memcpy->AddOutputDesc(tensor);
  69. op_memcpy->SetInputOffset({1024});
  70. op_memcpy->SetOutputOffset({5120});
  71. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  72. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  73. op_output->AddInputDesc(tensor);
  74. op_output->SetInputOffset({5120});
  75. op_output->SetSrcName( { "memcpy" } );
  76. op_output->SetSrcIndex( { 0 } );
  77. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  78. domi::TaskDef *task_def1 = model_task_def->add_task();
  79. task_def1->set_stream_id(0);
  80. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  81. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  82. kernel_def->set_stub_func("stub_func");
  83. kernel_def->set_args_size(64);
  84. string args(64, '1');
  85. kernel_def->set_args(args.data(), 64);
  86. domi::KernelContext *context = kernel_def->mutable_context();
  87. context->set_op_index(1);
  88. context->set_kernel_type(2); // ccKernelType::TE
  89. uint16_t args_offset[9] = {0};
  90. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  91. domi::TaskDef *task_def2 = model_task_def->add_task();
  92. task_def2->set_stream_id(0);
  93. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  94. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  95. memcpy_async->set_src(1024);
  96. memcpy_async->set_dst(5120);
  97. memcpy_async->set_dst_max(512);
  98. memcpy_async->set_count(1);
  99. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  100. memcpy_async->set_op_index(2);
  101. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  102. EXPECT_EQ(model.Init(), SUCCESS);
  103. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  104. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  105. EXPECT_EQ(model.task_list_.size(), 2);
  106. OutputData output_data;
  107. vector<OutputTensorInfo> outputs;
  108. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  109. EXPECT_EQ(output_data.blobs.size(), 1);
  110. EXPECT_EQ(outputs.size(), 1);
  111. ProfilingManager::Instance().is_load_profiling_ = false;
  112. }
  113. TEST_F(UtestDavinciModel, init_data_op) {
  114. DavinciModel model(0, nullptr);
  115. model.ge_model_ = make_shared<GeModel>();
  116. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  117. model.runtime_param_.mem_size = 5120000;
  118. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  119. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  120. TensorUtils::SetSize(tensor, 512);
  121. OpDescPtr op_input = CreateOpDesc("data", DATA);
  122. op_input->AddInputDesc(tensor);
  123. op_input->AddOutputDesc(tensor);
  124. op_input->SetInputOffset({1024});
  125. op_input->SetOutputOffset({1024});
  126. NodePtr node_input = graph->AddNode(op_input);
  127. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  128. op_output->AddInputDesc(tensor);
  129. op_output->SetInputOffset({1024});
  130. op_output->SetSrcName( { "data" } );
  131. op_output->SetSrcIndex( { 0 } );
  132. NodePtr node_output = graph->AddNode(op_output);
  133. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  134. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  135. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  136. EXPECT_EQ(model.op_list_.size(), 2);
  137. }
  138. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  139. DavinciModel model(0, nullptr);
  140. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  141. model.runtime_param_.mem_size = 5120000;
  142. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  143. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  144. TensorUtils::SetSize(tensor, 512);
  145. OpDescPtr op_input = CreateOpDesc("data", DATA);
  146. op_input->AddInputDesc(tensor);
  147. op_input->AddOutputDesc(tensor);
  148. op_input->SetInputOffset({1024});
  149. op_input->SetOutputOffset({1024});
  150. NodePtr node = graph->AddNode(op_input);
  151. uint32_t data_op_index = 0;
  152. map<uint32_t, OpDescPtr> data_by_index;
  153. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index), SUCCESS);
  154. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  155. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  156. EXPECT_EQ(data_op_index, 0);
  157. EXPECT_TRUE(data_by_index.empty());
  158. }
  159. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  160. DavinciModel model(0, nullptr);
  161. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  162. model.runtime_param_.mem_size = 5120000;
  163. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  164. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  165. TensorUtils::SetSize(tensor, 512);
  166. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  167. op_output->AddInputDesc(tensor);
  168. op_output->SetInputOffset({1024});
  169. op_output->SetSrcName( { "data" } );
  170. op_output->SetSrcIndex( { 0 } );
  171. NodePtr node = graph->AddNode(op_output);
  172. std::vector<OpDescPtr> output_op_list;
  173. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list), SUCCESS);
  174. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  175. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  176. EXPECT_TRUE(output_op_list.empty());
  177. }
  178. TEST_F(UtestDavinciModel, init_unknown) {
  179. DavinciModel model(0, nullptr);
  180. model.SetKnownNode(true);
  181. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  182. GeModelPtr ge_model = make_shared<GeModel>();
  183. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  184. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  185. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  186. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  187. ge_model->SetModelTaskDef(model_task_def);
  188. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  189. TensorUtils::SetSize(tensor, 512);
  190. OpDescPtr op_input = CreateOpDesc("data", DATA);
  191. op_input->AddInputDesc(tensor);
  192. op_input->AddOutputDesc(tensor);
  193. op_input->SetInputOffset({1024});
  194. op_input->SetOutputOffset({1024});
  195. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  196. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  197. op_kernel->AddInputDesc(tensor);
  198. op_kernel->AddOutputDesc(tensor);
  199. op_kernel->SetInputOffset({1024});
  200. op_kernel->SetOutputOffset({1024});
  201. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  202. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  203. op_memcpy->AddInputDesc(tensor);
  204. op_memcpy->AddOutputDesc(tensor);
  205. op_memcpy->SetInputOffset({1024});
  206. op_memcpy->SetOutputOffset({5120});
  207. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  208. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  209. op_output->AddInputDesc(tensor);
  210. op_output->SetInputOffset({5120});
  211. op_output->SetSrcName( { "memcpy" } );
  212. op_output->SetSrcIndex( { 0 } );
  213. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  214. domi::TaskDef *task_def1 = model_task_def->add_task();
  215. task_def1->set_stream_id(0);
  216. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  217. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  218. kernel_def->set_stub_func("stub_func");
  219. kernel_def->set_args_size(64);
  220. string args(64, '1');
  221. kernel_def->set_args(args.data(), 64);
  222. domi::KernelContext *context = kernel_def->mutable_context();
  223. context->set_op_index(1);
  224. context->set_kernel_type(2); // ccKernelType::TE
  225. uint16_t args_offset[9] = {0};
  226. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  227. domi::TaskDef *task_def2 = model_task_def->add_task();
  228. task_def2->set_stream_id(0);
  229. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  230. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  231. memcpy_async->set_src(1024);
  232. memcpy_async->set_dst(5120);
  233. memcpy_async->set_dst_max(512);
  234. memcpy_async->set_count(1);
  235. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  236. memcpy_async->set_op_index(2);
  237. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  238. EXPECT_EQ(model.Init(), SUCCESS);
  239. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  240. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  241. EXPECT_EQ(model.task_list_.size(), 2);
  242. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  243. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  244. vector<string> out_shape_info;
  245. model.GetModelAttr(out_shape_info);
  246. vector<InputOutputDescInfo> input_descs;
  247. vector<InputOutputDescInfo> output_descs;
  248. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  249. int32_t virtual_addr = 0;
  250. const vector<void *> inputs = { &virtual_addr };
  251. const vector<void *> outputs = { &virtual_addr };
  252. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  253. }
  254. TEST_F(UtestDavinciModel, ReturnNoOutput_test) {
  255. DavinciModel model(0, nullptr);
  256. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  257. TensorUtils::SetSize(tensor, 512);
  258. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  259. var1->AddInputDesc(tensor);
  260. var1->AddOutputDesc(tensor);
  261. var1->SetInputOffset({1024});
  262. var1->SetOutputOffset({1024});
  263. model.variable_op_list_.push_back(var1);
  264. EXPECT_EQ(model.ReturnNoOutput(1), PARAM_INVALID);
  265. }
  266. TEST_F(UtestDavinciModel, SyncVarData_test) {
  267. DavinciModel model(0, nullptr);
  268. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  269. TensorUtils::SetSize(tensor, 512);
  270. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  271. var1->AddInputDesc(tensor);
  272. var1->AddOutputDesc(tensor);
  273. var1->SetInputOffset({1024});
  274. var1->SetOutputOffset({1024});
  275. model.variable_op_list_.push_back(var1);
  276. EXPECT_NE(model.SyncVarData(), SUCCESS);
  277. }
  278. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  279. DavinciModel model(0, nullptr);
  280. model.ge_model_ = make_shared<GeModel>();
  281. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  282. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  283. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  284. op_output->AddInputDesc(tensor);
  285. op_output->SetInputOffset({1024});
  286. NodePtr node_output = graph->AddNode(op_output);
  287. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  288. }
  289. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  290. DavinciModel model(0, nullptr);
  291. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  292. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  293. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  294. data1->AddInputDesc(shape_desc);
  295. data1->AddOutputDesc(shape_desc);
  296. NodePtr data1_node = graph->AddNode(data1);
  297. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  298. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  299. case_node->AddInputDesc(tensor);
  300. case_node->AddOutputDesc(tensor);
  301. NodePtr case1_node = graph->AddNode(case_node);
  302. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  303. output->AddInputDesc(tensor);
  304. output->SetSrcName( { "case1" } );
  305. output->SetSrcIndex( { 0 } );
  306. NodePtr output_node = graph->AddNode(output);
  307. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  308. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  309. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  310. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  311. model.is_getnext_sink_dynamic_ = false;
  312. model.is_online_infer_dynamic_ = true;
  313. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  314. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  315. EXPECT_EQ(ret, SUCCESS);
  316. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  317. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  318. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  319. EXPECT_EQ(ret, SUCCESS);
  320. }
  321. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  322. DavinciModel model(0, nullptr);
  323. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  324. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  325. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  326. data1->AddInputDesc(shape_desc);
  327. data1->AddOutputDesc(shape_desc);
  328. NodePtr data1_node = graph->AddNode(data1);
  329. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  330. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  331. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  332. shape_node->AddInputDesc(in_tensor);
  333. shape_node->AddOutputDesc(out_tensor);
  334. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  335. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  336. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  337. output->AddInputDesc(tensor);
  338. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  339. output->SetSrcIndex( { 0, 1 } );
  340. NodePtr output_node = graph->AddNode(output);
  341. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  342. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  343. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  344. model.is_getnext_sink_dynamic_ = true;
  345. model.is_online_infer_dynamic_ = false;
  346. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  347. EXPECT_EQ(ret, SUCCESS);
  348. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  349. model.runtime_param_.mem_size = 4;
  350. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  351. EXPECT_EQ(ret, SUCCESS);
  352. }
  353. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  354. DavinciModel model(0, nullptr);
  355. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  356. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  357. model.runtime_param_.mem_size = 5120000;
  358. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  359. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  360. TensorUtils::SetSize(tensor, 512);
  361. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  362. op_desc->AddInputDesc(tensor);
  363. op_desc->AddOutputDesc(tensor);
  364. op_desc->SetInputOffset({1024});
  365. op_desc->SetOutputOffset({1024});
  366. NodePtr node = graph->AddNode(op_desc);
  367. GeAttrValue::NAMED_ATTRS aipp_attr;
  368. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  369. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  370. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  371. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  372. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  373. AippConfigInfo aipp_info;
  374. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  375. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  376. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  377. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  378. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  379. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  380. EXPECT_EQ(model.op_list_.size(), 1);
  381. }
  382. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  383. DavinciModel model(0, nullptr);
  384. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  385. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  386. model.runtime_param_.mem_size = 5120000;
  387. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  388. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  389. TensorUtils::SetSize(tensor, 512);
  390. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  391. op_desc->AddInputDesc(tensor);
  392. op_desc->AddOutputDesc(tensor);
  393. op_desc->SetInputOffset({1024});
  394. op_desc->SetOutputOffset({1024});
  395. NodePtr node = graph->AddNode(op_desc);
  396. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  397. InputAippType aipp_type;
  398. size_t aipp_index = 0;
  399. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  400. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  401. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  402. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  403. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  404. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  405. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  406. EXPECT_EQ(model.op_list_.size(), 1);
  407. }
  408. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  409. DavinciModel model(0, nullptr);
  410. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  411. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  412. model.runtime_param_.mem_size = 5120000;
  413. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  414. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  415. TensorUtils::SetSize(tensor, 512);
  416. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  417. op_desc->AddInputDesc(tensor);
  418. op_desc->AddOutputDesc(tensor);
  419. op_desc->SetInputOffset({1024});
  420. op_desc->SetOutputOffset({1024});
  421. NodePtr node = graph->AddNode(op_desc); // op_index 0
  422. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  423. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  424. InputAippType aipp_type;
  425. size_t aipp_index = 0;
  426. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  427. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  428. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  429. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  430. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  431. EXPECT_EQ(model.op_list_.size(), 1);
  432. }
  433. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  434. DavinciModel model(0, nullptr);
  435. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  436. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  437. model.runtime_param_.mem_size = 5120000;
  438. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  439. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  440. TensorUtils::SetSize(tensor, 512);
  441. {
  442. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  443. op_desc->AddInputDesc(tensor);
  444. op_desc->AddOutputDesc(tensor);
  445. op_desc->SetInputOffset({1024});
  446. op_desc->SetOutputOffset({1024});
  447. NodePtr node = graph->AddNode(op_desc); // op_index 0
  448. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  449. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  450. }
  451. {
  452. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  453. op_desc->AddInputDesc(tensor);
  454. op_desc->AddOutputDesc(tensor);
  455. op_desc->SetInputOffset({1024});
  456. op_desc->SetOutputOffset({1024});
  457. NodePtr node = graph->AddNode(op_desc); // op_index 1
  458. }
  459. InputAippType aipp_type;
  460. size_t aipp_index = 0;
  461. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  462. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  463. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  464. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  465. EXPECT_EQ(aipp_index, 1);
  466. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  467. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  468. EXPECT_EQ(model.op_list_.size(), 2);
  469. }
  470. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  471. DavinciModel model(0, nullptr);
  472. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  473. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  474. model.runtime_param_.mem_size = 5120000;
  475. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  476. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  477. TensorUtils::SetSize(tensor, 512);
  478. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  479. op_desc->AddInputDesc(tensor);
  480. op_desc->AddOutputDesc(tensor);
  481. op_desc->SetInputOffset({1024});
  482. op_desc->SetOutputOffset({1024});
  483. NodePtr node = graph->AddNode(op_desc); // op_index 0
  484. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  485. InputAippType aipp_type;
  486. size_t aipp_index = 0;
  487. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  488. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  489. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  490. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  491. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  492. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  493. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  494. EXPECT_EQ(model.op_list_.size(), 1);
  495. }
  496. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  497. DavinciModel model(0, nullptr);
  498. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  499. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  500. model.runtime_param_.mem_size = 5120000;
  501. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  502. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  503. TensorUtils::SetSize(tensor, 512);
  504. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  505. op_desc->AddInputDesc(tensor);
  506. op_desc->AddOutputDesc(tensor);
  507. op_desc->SetInputOffset({1024});
  508. op_desc->SetOutputOffset({1024});
  509. NodePtr node = graph->AddNode(op_desc); // op_index 0
  510. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  511. InputAippType aipp_type;
  512. size_t aipp_index = 0;
  513. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  514. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  515. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  516. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  517. EXPECT_EQ(model.op_list_.size(), 1);
  518. }
  519. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  520. DavinciModel model(0, nullptr);
  521. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  522. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  523. model.runtime_param_.mem_size = 5120000;
  524. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  525. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  526. TensorUtils::SetSize(tensor, 512);
  527. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  528. op_desc->AddInputDesc(tensor);
  529. op_desc->AddOutputDesc(tensor);
  530. op_desc->SetInputOffset({1024});
  531. op_desc->SetOutputOffset({1024});
  532. NodePtr node = graph->AddNode(op_desc); // op_index 0
  533. vector<string> inputs = {};
  534. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  535. vector<string> outputs = {};
  536. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  537. OriginInputInfo orig_input_info;
  538. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  539. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  540. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  541. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  542. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  543. EXPECT_EQ(model.op_list_.size(), 1);
  544. }
  545. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  546. DavinciModel model(0, nullptr);
  547. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  548. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  549. model.runtime_param_.mem_size = 5120000;
  550. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  551. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  552. TensorUtils::SetSize(tensor, 512);
  553. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  554. op_desc->AddInputDesc(tensor);
  555. op_desc->AddOutputDesc(tensor);
  556. op_desc->SetInputOffset({1024});
  557. op_desc->SetOutputOffset({1024});
  558. NodePtr node = graph->AddNode(op_desc); // op_index 0
  559. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  560. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  561. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  562. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  563. OriginInputInfo orig_input_info;
  564. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  565. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  566. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  567. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  568. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  569. EXPECT_EQ(model.op_list_.size(), 1);
  570. }
  571. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  572. DavinciModel model(0, nullptr);
  573. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  574. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  575. model.runtime_param_.mem_size = 5120000;
  576. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  577. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  578. TensorUtils::SetSize(tensor, 512);
  579. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  580. op_desc->AddInputDesc(tensor);
  581. op_desc->AddOutputDesc(tensor);
  582. op_desc->SetInputOffset({1024});
  583. op_desc->SetOutputOffset({1024});
  584. NodePtr node = graph->AddNode(op_desc); // op_index 0
  585. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  586. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  587. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  588. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  589. OriginInputInfo orig_input_info;
  590. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  591. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  592. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  593. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  594. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  595. EXPECT_EQ(model.op_list_.size(), 1);
  596. }
  597. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  598. DavinciModel model(0, nullptr);
  599. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  600. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  601. model.runtime_param_.mem_size = 5120000;
  602. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  603. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  604. TensorUtils::SetSize(tensor, 512);
  605. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  606. op_desc->AddInputDesc(tensor);
  607. op_desc->AddOutputDesc(tensor);
  608. op_desc->SetInputOffset({1024});
  609. op_desc->SetOutputOffset({1024});
  610. NodePtr node = graph->AddNode(op_desc); // op_index 0
  611. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  612. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  613. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  614. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  615. vector<InputOutputDims> input_dims;
  616. vector<InputOutputDims> output_dims;
  617. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  618. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  619. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  620. EXPECT_EQ(input_dims.size(), 1);
  621. EXPECT_EQ(output_dims.size(), 1);
  622. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  623. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  624. EXPECT_EQ(model.op_list_.size(), 1);
  625. }
  626. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示