You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ragged_conversion_ops.h 4.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_OP_RAGGED_CONVERSION_OPS_H
  17. #define GE_OP_RAGGED_CONVERSION_OPS_H
  18. #include "graph/operator_reg.h"
  19. namespace ge {
  20. /**
  21. *@brief Converts a RaggedTensor into a SparseTensor with the same values.
  22. *@par Inputs:
  23. *Two inputs, including: \n
  24. *@li rt_nested_splits: A list of at least 1 Tensor objects with the same type \n
  25. in: int32, int64. The row_splits for the RaggedTensor.
  26. *@li rt_dense_values: A Tensor. The flat_values for the RaggedTensor \n
  27. Must be one of the following types: bool, int8, int16, uint16, int32, \n
  28. int64, double, float, float16.
  29. *@par Attributes:
  30. *@li RAGGED_RANK: the dynamic of input rt_nested_splits with type int.
  31. *@li Tsplits: A required attribute, the type is int64.
  32. *@par Outputs:
  33. *@li sparse_indices: A Tensor of type int64.
  34. *@li sparse_values: A Tensor. Has the same type as rt_dense_values.
  35. *@li sparse_dense_shape: A Tensor of type int64.
  36. *@par Third-party framework compatibility
  37. * Compatible with TensorFlow operator RaggedTensorToSparse.
  38. */
  39. REG_OP(RaggedTensorToSparse)
  40. .DYNAMIC_INPUT(rt_nested_splits, TensorType({DT_INT32, DT_INT64}))
  41. .INPUT(rt_dense_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  42. .OUTPUT(sparse_indices, TensorType({DT_INT64}))
  43. .OUTPUT(sparse_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  44. .OUTPUT(sparse_dense_shape, TensorType({DT_INT64}))
  45. .ATTR(RAGGED_RANK, Int, 1)
  46. .ATTR(Tsplits, Type, DT_INT64)
  47. .OP_END_FACTORY_REG(RaggedTensorToSparse)
  48. /**
  49. *@brief Create a dense tensor from a ragged tensor, possibly altering its shape.
  50. *@par Inputs:
  51. *Six inputs, including:
  52. *@li shape:A `Tensor`. Must be one of the following types: `int64`, `int32`.
  53. *@li values:A 1D tensor representing the values of the ragged tensor.
  54. *@li default_value:A `Tensor`. Must have the same type as `values`.
  55. *@li row_partition_tensors:A list of at least 1 `Tensor` objects with the same \n
  56. type in: `int64`, `int32`.
  57. *@par Attributes:
  58. *@li num_row_partition_tensors:Numbers of row partition tensors.
  59. *@li row_partition_types: A list of `strings`. \n
  60. The types of the row partition tensors. At present, these can be: \n
  61. * "ROW_SPLITS": the row_splits tensor from the ragged tensor. \n
  62. * "VALUE_ROWIDS": the value_rowids tensor from the ragged tensor. \n
  63. * "FIRST_DIM_SIZE": if value_rowids is used for the first dimension, then it \n
  64. is preceeded by "FIRST_DIM_SIZE".
  65. *@par Outputs:
  66. *@li result: A `Tensor`. Has the same type as `values`.
  67. */
  68. REG_OP(RaggedTensorToTensor)
  69. .INPUT(shape, TensorType({DT_INT32, DT_INT64}))
  70. .INPUT(values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
  71. DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  72. .INPUT(default_value, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16,
  73. DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  74. .DYNAMIC_INPUT(row_partition_tensors, TensorType({DT_INT32, DT_INT64}))
  75. .OUTPUT(result, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
  76. DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  77. .REQUIRED_ATTR(num_row_partition_tensors, Int)
  78. .REQUIRED_ATTR(row_partition_types, ListString)
  79. .OP_END_FACTORY_REG(RaggedTensorToTensor)
  80. } // namespace ge
  81. #endif // GE_OP_RAGGED_CONVERSION_OPS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示