You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

task_generator_unittest.cc 5.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <memory>
  18. #include "graph/anchor.h"
  19. #include "graph/attr_value.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "graph/utils/graph_utils.h"
  22. #include "graph/utils/node_utils.h"
  23. #include "graph/utils/op_desc_utils.h"
  24. #include "graph/utils/tensor_utils.h"
  25. #include "omg/omg_inner_types.h"
  26. #include "../passes/graph_builder_utils.h"
  27. #define protected public
  28. #define private public
  29. #include "graph/build/task_generator.h"
  30. #include "graph/manager/graph_mem_manager.h"
  31. #include "graph/manager/graph_var_manager.h"
  32. #undef protected
  33. #undef private
  34. using namespace std;
  35. using namespace testing;
  36. using namespace ge;
  37. namespace {
  38. const char *const kIsInputVar = "INPUT_IS_VAR";
  39. const char *const kIsOutputVar = "OUTPUT_IS_VAR";
  40. }
  41. class UtestTaskGeneratorTest : public testing::Test {
  42. public:
  43. ge::ComputeGraphPtr BuildGraphFpProfiling() {
  44. ge::ut::GraphBuilder builder("graph");
  45. auto data = builder.AddNode("data", "phony", 1, 1);
  46. auto addn1 = builder.AddNode("addn1", "AddN", 1, 1);
  47. auto netoutput = builder.AddNode("netoutput", "NetOutput", 2, 0);
  48. auto op_desc = data->GetOpDesc();
  49. (void)AttrUtils::SetStr(op_desc, ATTR_NAME_FRAMEWORK_ORIGINAL_TYPE, "IteratorV2");
  50. op_desc->SetOpKernelLibName("GE");
  51. builder.AddDataEdge(data, 0, addn1, 0);
  52. builder.AddDataEdge(addn1, 0, netoutput, 0);
  53. return builder.GetGraph();
  54. }
  55. ge::ComputeGraphPtr BuildGraphBpProfiling() {
  56. ge::ut::GraphBuilder builder("graph");
  57. auto data = builder.AddNode("data", "phony", 1, 1);
  58. auto addn1 = builder.AddNode("addn1", "AddN", 1, 1);
  59. auto netoutput = builder.AddNode("netoutput", "NetOutput", 2, 0);
  60. auto op_desc = data->GetOpDesc();
  61. (void)AttrUtils::SetStr(op_desc, ATTR_NAME_FRAMEWORK_ORIGINAL_TYPE, "IteratorV2");
  62. op_desc->SetOpKernelLibName("GE");
  63. builder.AddDataEdge(data, 0, addn1, 0);
  64. builder.AddControlEdge(addn1, netoutput);
  65. return builder.GetGraph();
  66. }
  67. ge::ComputeGraphPtr BuildGraphWithVar(int64_t session_id) {
  68. // init
  69. MemManager::Instance().Initialize(std::vector<rtMemType_t>({RT_MEMORY_HBM}));
  70. VarManager::Instance(session_id)->Init(0, 0, 0, 0);
  71. ge::ut::GraphBuilder builder("graph");
  72. auto var_input = builder.AddNode("var", "Variable", 1, 1);
  73. auto const_input = builder.AddNode("const", "Const", 1, 1);
  74. auto assign = builder.AddNode("assgin", "Assign", 2, 1);
  75. // add link
  76. builder.AddDataEdge(var_input, 0, assign, 0);
  77. builder.AddDataEdge(const_input, 0, assign, 1);
  78. // set offset
  79. var_input->GetOpDesc()->SetOutputOffset({10000});
  80. const_input->GetOpDesc()->SetOutputOffset({1000});
  81. assign->GetOpDesc()->SetInputOffset({10100, 1000});
  82. assign->GetOpDesc()->SetOutputOffset({10100});
  83. // set inner offset
  84. int64_t inner_offset = 100;
  85. ge::AttrUtils::SetInt(assign->GetOpDesc()->MutableInputDesc(0), ATTR_NAME_INNER_OFFSET, inner_offset);
  86. ge::AttrUtils::SetInt(assign->GetOpDesc()->MutableOutputDesc(0), ATTR_NAME_INNER_OFFSET, inner_offset);
  87. // add var addr
  88. VarManager::Instance(session_id)->var_resource_->var_offset_map_.emplace(10000, RT_MEMORY_HBM);
  89. return builder.GetGraph();
  90. }
  91. protected:
  92. void SetUp() {}
  93. void TearDown() {}
  94. };
  95. TEST_F(UtestTaskGeneratorTest, AutoFindFpOpIndex) {
  96. auto graph = BuildGraphFpProfiling();
  97. TaskGenerator task_generator(nullptr, 0);
  98. ProfilingPoint profiling_point;
  99. profiling_point.fp_index = -1;
  100. EXPECT_EQ(task_generator.AutoFindFpOpIndex(graph, profiling_point), SUCCESS);
  101. // addn1 is fp
  102. EXPECT_EQ(profiling_point.fp_index, 2);
  103. }
  104. TEST_F(UtestTaskGeneratorTest, FindLastBpFromBpNode) {
  105. auto graph = BuildGraphBpProfiling();
  106. TaskGenerator task_generator(nullptr, 0);
  107. auto net_output = graph->FindNode("netoutput");
  108. // netoutput has no data input, return default value 0
  109. EXPECT_EQ(task_generator.FindLastBpFromBpNode(graph, net_output), 0);
  110. }
  111. TEST_F(UtestTaskGeneratorTest, UpdateOpIsVarAttr) {
  112. int64_t session_id = 0;
  113. ge::ComputeGraphPtr graph = BuildGraphWithVar(session_id);
  114. graph->SetSessionID(session_id);
  115. TaskGenerator task_generator(nullptr, 0);
  116. auto assign = graph->FindNode("assgin");
  117. task_generator.UpdateOpIsVarAttr(assign->GetOpDesc(), session_id);
  118. // input
  119. vector<bool> input_var;
  120. AttrUtils::GetListBool(assign->GetOpDesc(), kIsInputVar, input_var);
  121. EXPECT_EQ(input_var.size(), 2);
  122. EXPECT_EQ(input_var[0], true);
  123. EXPECT_EQ(input_var[1], false);
  124. // output
  125. vector<bool> output_var;
  126. AttrUtils::GetListBool(assign->GetOpDesc(), kIsOutputVar, output_var);
  127. EXPECT_EQ(output_var.size(), 1);
  128. EXPECT_EQ(output_var[0], true);
  129. MemManager::Instance().Finalize();
  130. }

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示