You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dump_op.cc 14 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "common/dump/dump_op.h"
  17. #include "common/dump/dump_manager.h"
  18. #include "common/ge/datatype_util.h"
  19. #include "framework/common/debug/ge_log.h"
  20. #include "framework/common/util.h"
  21. #include "framework/common/types.h"
  22. #include "graph/anchor.h"
  23. #include "graph/ge_tensor.h"
  24. #include "graph/op_desc.h"
  25. #include "graph/utils/tensor_utils.h"
  26. #include "proto/ge_ir.pb.h"
  27. #include "proto/op_mapping_info.pb.h"
  28. #include "runtime/mem.h"
  29. #include "aicpu/common/aicpu_task_struct.h"
  30. namespace {
  31. const uint32_t kAicpuLoadFlag = 1;
  32. const char *const kDumpOutput = "output";
  33. const char *const kDumpInput = "input";
  34. const char *const kDumpAll = "all";
  35. const char *const kDumpKernelsDumpOp = "DumpDataInfo";
  36. } // namespace
  37. namespace ge {
  38. DumpOp::~DumpOp() {
  39. if (proto_dev_mem_ != nullptr) {
  40. (void)rtFree(proto_dev_mem_);
  41. }
  42. if (proto_size_dev_mem_ != nullptr) {
  43. (void)rtFree(proto_size_dev_mem_);
  44. }
  45. proto_dev_mem_ = nullptr;
  46. proto_size_dev_mem_ = nullptr;
  47. }
  48. void DumpOp::SetLoopAddr(void *global_step, void *loop_per_iter, void *loop_cond) {
  49. global_step_ = reinterpret_cast<uintptr_t>(global_step);
  50. loop_per_iter_ = reinterpret_cast<uintptr_t>(loop_per_iter);
  51. loop_cond_ = reinterpret_cast<uintptr_t>(loop_cond);
  52. }
  53. void DumpOp::SetDynamicModelInfo(const string &dynamic_model_name, const string &dynamic_om_name,
  54. uint32_t dynamic_model_id) {
  55. dynamic_model_name_ = dynamic_model_name;
  56. dynamic_om_name_ = dynamic_om_name;
  57. dynamic_model_id_ = dynamic_model_id;
  58. }
  59. static void SetOpMappingLoopAddr(uintptr_t step_id, uintptr_t loop_per_iter, uintptr_t loop_cond,
  60. aicpu::dump::OpMappingInfo &op_mapping_info) {
  61. if (step_id != 0) {
  62. GELOGI("step_id exists.");
  63. op_mapping_info.set_step_id_addr(static_cast<uint64_t>(step_id));
  64. } else {
  65. GELOGI("step_id is null.");
  66. }
  67. if (loop_per_iter != 0) {
  68. GELOGI("loop_per_iter exists.");
  69. op_mapping_info.set_iterations_per_loop_addr(static_cast<uint64_t>(loop_per_iter));
  70. } else {
  71. GELOGI("loop_per_iter is null.");
  72. }
  73. if (loop_cond != 0) {
  74. GELOGI("loop_cond exists.");
  75. op_mapping_info.set_loop_cond_addr(static_cast<uint64_t>(loop_cond));
  76. } else {
  77. GELOGI("loop_cond is null.");
  78. }
  79. }
  80. Status DumpOp::DumpOutput(aicpu::dump::Task &task) {
  81. GELOGI("Start dump output in Launch dump op");
  82. const auto &output_descs = op_desc_->GetAllOutputsDesc();
  83. for (size_t i = 0; i < output_descs.size(); ++i) {
  84. aicpu::dump::Output output;
  85. output.set_data_type(static_cast<int32_t>(DataTypeUtil::GetIrDataType(output_descs.at(i).GetDataType())));
  86. output.set_format(static_cast<int32_t>(output_descs.at(i).GetFormat()));
  87. for (auto dim : output_descs.at(i).GetShape().GetDims()) {
  88. output.mutable_shape()->add_dim(dim);
  89. }
  90. for (auto dim : output_descs.at(i).GetOriginShape().GetDims()) {
  91. output.mutable_origin_shape()->add_dim(dim);
  92. }
  93. int64_t output_size = 0;
  94. if (TensorUtils::GetTensorSizeInBytes(output_descs.at(i), output_size) != SUCCESS) {
  95. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][TensorSize]Failed, tensor name %s, "
  96. "tensor type %s, output_size %ld",
  97. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), output_size);
  98. REPORT_CALL_ERROR("E19999", "Get output_size %ld failed, tensor name %s, tensor type %s",
  99. output_size, op_desc_->GetName().c_str(), op_desc_->GetType().c_str());
  100. return ACL_ERROR_GE_INTERNAL_ERROR;
  101. }
  102. GELOGD("Get output size in lanch dump op is %ld", output_size);
  103. output.set_size(output_size);
  104. output.set_address(static_cast<uint64_t>(output_addrs_[i]));
  105. task.mutable_output()->Add(std::move(output));
  106. }
  107. return SUCCESS;
  108. }
  109. Status DumpOp::DumpInput(aicpu::dump::Task &task) {
  110. GELOGI("Start dump input in Launch dump op");
  111. const auto &input_descs = op_desc_->GetAllInputsDesc();
  112. for (size_t i = 0; i < input_descs.size(); ++i) {
  113. aicpu::dump::Input input;
  114. input.set_data_type(static_cast<int32_t>(DataTypeUtil::GetIrDataType(input_descs.at(i).GetDataType())));
  115. input.set_format(static_cast<int32_t>(input_descs.at(i).GetFormat()));
  116. for (auto dim : input_descs.at(i).GetShape().GetDims()) {
  117. input.mutable_shape()->add_dim(dim);
  118. }
  119. for (auto dim : input_descs.at(i).GetOriginShape().GetDims()) {
  120. input.mutable_origin_shape()->add_dim(dim);
  121. }
  122. int64_t input_size = 0;
  123. if (TensorUtils::GetTensorSizeInBytes(input_descs.at(i), input_size) != SUCCESS) {
  124. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][TensorSize]Failed, tesor name %s, tensor type %s, "
  125. "input_size %ld",
  126. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), input_size);
  127. REPORT_CALL_ERROR("E19999", "Get input size %ld failed, tensor name %s, tensor type %s",
  128. input_size, op_desc_->GetName().c_str(), op_desc_->GetType().c_str());
  129. return ACL_ERROR_GE_INTERNAL_ERROR;
  130. }
  131. GELOGD("Get input size in lanch dump op is %ld", input_size);
  132. input.set_size(input_size);
  133. input.set_address(static_cast<uint64_t>(input_addrs_[i]));
  134. task.mutable_input()->Add(std::move(input));
  135. }
  136. return SUCCESS;
  137. }
  138. void DumpOp::SetDumpInfo(const DumpProperties &dump_properties, const OpDescPtr &op_desc, vector<uintptr_t> input_addrs,
  139. vector<uintptr_t> output_addrs, rtStream_t stream) {
  140. dump_properties_ = dump_properties;
  141. op_desc_ = op_desc;
  142. input_addrs_ = input_addrs;
  143. output_addrs_ = output_addrs;
  144. stream_ = stream;
  145. }
  146. Status DumpOp::ExecutorDumpOp(aicpu::dump::OpMappingInfo &op_mapping_info) {
  147. std::string proto_msg;
  148. size_t proto_size = op_mapping_info.ByteSizeLong();
  149. bool ret = op_mapping_info.SerializeToString(&proto_msg);
  150. if (!ret || proto_size == 0) {
  151. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Serialize][Protobuf]Failed, proto_size is %zu",
  152. proto_size);
  153. REPORT_CALL_ERROR("E19999", "[Serialize][Protobuf]Failed, proto_size is %zu", proto_size);
  154. return ACL_ERROR_GE_INTERNAL_ERROR;
  155. }
  156. rtError_t rt_ret = rtMalloc(&proto_dev_mem_, proto_size, RT_MEMORY_HBM);
  157. if (rt_ret != RT_ERROR_NONE) {
  158. GELOGE(rt_ret, "[Call][rtMalloc]Failed, ret: 0x%X", rt_ret);
  159. REPORT_CALL_ERROR("E19999", "Call rtMalloc failed, ret: 0x%X", rt_ret);
  160. return RT_ERROR_TO_GE_STATUS(rt_ret);
  161. }
  162. rt_ret = rtMemcpy(proto_dev_mem_, proto_size, proto_msg.c_str(), proto_size, RT_MEMCPY_HOST_TO_DEVICE);
  163. if (rt_ret != RT_ERROR_NONE) {
  164. GELOGE(rt_ret, "[Call][rtMemcpy]Failed, ret: 0x%X", rt_ret);
  165. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, ret: 0x%X", rt_ret);
  166. return RT_ERROR_TO_GE_STATUS(rt_ret);
  167. }
  168. rt_ret = rtMalloc(&proto_size_dev_mem_, sizeof(size_t), RT_MEMORY_HBM);
  169. if (rt_ret != RT_ERROR_NONE) {
  170. GELOGE(rt_ret, "[Call][rtMalloc]Failed, ret: 0x%X", rt_ret);
  171. REPORT_CALL_ERROR("E19999", "Call rtMalloc failed, ret: 0x%X", rt_ret);
  172. return RT_ERROR_TO_GE_STATUS(rt_ret);
  173. }
  174. rt_ret = rtMemcpy(proto_size_dev_mem_, sizeof(size_t), &proto_size, sizeof(size_t), RT_MEMCPY_HOST_TO_DEVICE);
  175. if (rt_ret != RT_ERROR_NONE) {
  176. GELOGE(rt_ret, "[Call][rtMemcpy]Failed, ret: 0x%X", rt_ret);
  177. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, ret: 0x%X", rt_ret);
  178. return RT_ERROR_TO_GE_STATUS(rt_ret);
  179. }
  180. constexpr int32_t io_addr_num = 2;
  181. constexpr uint32_t args_size = sizeof(aicpu::AicpuParamHead) + io_addr_num * sizeof(uint64_t);
  182. char args[args_size] = {0};
  183. auto param_head = reinterpret_cast<aicpu::AicpuParamHead *>(args);
  184. param_head->length = args_size;
  185. param_head->ioAddrNum = io_addr_num;
  186. auto io_addr = reinterpret_cast<uint64_t *>(args + sizeof(aicpu::AicpuParamHead));
  187. io_addr[0] = reinterpret_cast<uintptr_t>(proto_dev_mem_);
  188. io_addr[1] = reinterpret_cast<uintptr_t>(proto_size_dev_mem_);
  189. rt_ret = rtCpuKernelLaunch(nullptr, kDumpKernelsDumpOp,
  190. 1, // blockDim default 1
  191. args, args_size,
  192. nullptr, // no need smDesc
  193. stream_);
  194. if (rt_ret != RT_ERROR_NONE) {
  195. GELOGE(rt_ret, "Call rtCpuKernelLaunch failed, ret:0x%X", rt_ret);
  196. REPORT_CALL_ERROR("E19999", "Call rtCpuKernelLaunch failed, ret: 0x%X", rt_ret);
  197. return RT_ERROR_TO_GE_STATUS(rt_ret);
  198. }
  199. GELOGI("Kernel launch dump op success");
  200. return SUCCESS;
  201. }
  202. Status DumpOp::SetDumpModelName(aicpu::dump::OpMappingInfo &op_mapping_info) {
  203. std::set<std::string> model_list = dump_properties_.GetAllDumpModel();
  204. bool not_find_by_omname = model_list.find(dynamic_om_name_) == model_list.end();
  205. bool not_find_by_modelname = model_list.find(dynamic_model_name_) == model_list.end();
  206. std::string dump_model_name = not_find_by_omname ? dynamic_model_name_ : dynamic_om_name_;
  207. if (model_list.find(DUMP_ALL_MODEL) == model_list.end()) {
  208. if (not_find_by_omname && not_find_by_modelname) {
  209. std::string model_list_str;
  210. for (auto &model : model_list) {
  211. model_list_str += "[" + model + "].";
  212. }
  213. GELOGW("Model %s will not be set to dump, dump list: %s", dump_model_name.c_str(), model_list_str.c_str());
  214. return FAILED;
  215. }
  216. }
  217. if (!dump_model_name.empty() && dump_properties_.IsDumpOpen()) {
  218. GELOGD("Dump model name is %s", dump_model_name.c_str());
  219. op_mapping_info.set_model_name(dump_model_name);
  220. }
  221. return SUCCESS;
  222. }
  223. Status DumpOp::LaunchDumpOp() {
  224. GELOGI("Start to launch dump op %s", op_desc_->GetName().c_str());
  225. int32_t device_id = 0;
  226. rtError_t rt_ret = rtGetDevice(&device_id);
  227. if (rt_ret != RT_ERROR_NONE) {
  228. GELOGE(rt_ret, "[Call][rtGetDevice]Failed, ret 0x%X", rt_ret);
  229. REPORT_CALL_ERROR("E19999", "[Call][rtGetDevice]Failed, ret 0x%X", rt_ret);
  230. return RT_ERROR_TO_GE_STATUS(rt_ret);
  231. }
  232. if (device_id < 0) {
  233. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][DeviceId]Failed, device_id %d", device_id);
  234. REPORT_INNER_ERROR("E19999","Check device_id %d failed", device_id);
  235. return ACL_ERROR_GE_INTERNAL_ERROR;
  236. }
  237. aicpu::dump::OpMappingInfo op_mapping_info;
  238. auto dump_path = dump_properties_.GetDumpPath() + std::to_string(device_id) + "/";
  239. op_mapping_info.set_dump_path(dump_path);
  240. op_mapping_info.set_flag(kAicpuLoadFlag);
  241. op_mapping_info.set_dump_step(dump_properties_.GetDumpStep());
  242. op_mapping_info.set_model_id(dynamic_model_id_);
  243. if (SetDumpModelName(op_mapping_info) != SUCCESS) {
  244. return SUCCESS;
  245. }
  246. SetOpMappingLoopAddr(global_step_, loop_per_iter_, loop_cond_, op_mapping_info);
  247. GELOGI("Dump step is %s ,dump path is %s in Launch dump op", dump_properties_.GetDumpStep().c_str(),
  248. dump_path.c_str());
  249. uint32_t task_id = 0;
  250. uint32_t stream_id = 0;
  251. rt_ret = rtGetTaskIdAndStreamID(&task_id, &stream_id);
  252. if (rt_ret != RT_ERROR_NONE) {
  253. GELOGW("call rtGetTaskIdAndStreamID failed, ret = 0x%X", rt_ret);
  254. }
  255. aicpu::dump::Task task;
  256. task.set_task_id(task_id);
  257. task.set_stream_id(stream_id);
  258. task.mutable_op()->set_op_name(op_desc_->GetName());
  259. task.mutable_op()->set_op_type(op_desc_->GetType());
  260. if (dump_properties_.GetDumpMode() == kDumpOutput) {
  261. auto ret = DumpOutput(task);
  262. if (ret != SUCCESS) {
  263. GELOGE(ret, "[Dump][Output]Failed, tensor name %s, tensor type %s, ret 0x%X",
  264. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  265. REPORT_CALL_ERROR("E19999", "Dump Output failed, tensor name %s, tensor type %s, ret 0x%X",
  266. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  267. return ret;
  268. }
  269. op_mapping_info.mutable_task()->Add(std::move(task));
  270. }
  271. if (dump_properties_.GetDumpMode() == kDumpInput) {
  272. auto ret = DumpInput(task);
  273. if (ret != SUCCESS) {
  274. GELOGE(ret, "[Dump][Input]Failed, tensor name %s, tensor type %s, ret 0x%X",
  275. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  276. REPORT_CALL_ERROR("E19999", "Dump Input failed, tensor name %s, tensor type %s, ret 0x%X",
  277. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  278. return ret;
  279. }
  280. op_mapping_info.mutable_task()->Add(std::move(task));
  281. }
  282. if (dump_properties_.GetDumpMode() == kDumpAll || dump_properties_.IsOpDebugOpen()) {
  283. auto ret = DumpOutput(task);
  284. if (ret != SUCCESS) {
  285. GELOGE(ret, "[Dump][Output]Failed when in dumping all, tensor name %s, tensor type %s, "
  286. "ret 0x%X", op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  287. REPORT_CALL_ERROR("E19999", "Dump Output failed when in dumping all, tensor name %s, "
  288. "tensor type %s,ret 0x%X",
  289. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  290. return ret;
  291. }
  292. ret = DumpInput(task);
  293. if (ret != SUCCESS) {
  294. GELOGE(ret, "[Dump][Input]Failed when in dumping all, tensor name %s, "
  295. "tensor type %s, ret 0x%X",
  296. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  297. REPORT_CALL_ERROR("E19999", "Dump Input failed when in dumping all, tensor name %s, "
  298. "tensor type %s, ret 0x%X",
  299. op_desc_->GetName().c_str(), op_desc_->GetType().c_str(), ret);
  300. return ret;
  301. }
  302. op_mapping_info.mutable_task()->Add(std::move(task));
  303. }
  304. auto ret = ExecutorDumpOp(op_mapping_info);
  305. if (ret != SUCCESS) {
  306. GELOGE(ret, "[Dump][Op]Failed, ret 0x%X", ret);
  307. REPORT_CALL_ERROR("E19999", "Executor dump op failed, ret 0x%X", ret);
  308. return ret;
  309. }
  310. return SUCCESS;
  311. }
  312. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示