You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node_state.cc 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/node_state.h"
  17. #include <chrono>
  18. #include "framework/common/debug/log.h"
  19. #include "graph/compute_graph.h"
  20. #include "graph/utils/tensor_utils.h"
  21. #include "hybrid_execution_context.h"
  22. #include "subgraph_context.h"
  23. namespace ge {
  24. namespace hybrid {
  25. namespace {
  26. // 5s * 120, wait for 10m
  27. constexpr auto kWaitInternal = 5;
  28. constexpr auto kMaxWaitTimes = 120;
  29. }
  30. ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(node_item) {
  31. this->num_pending_shapes_ = node_item.num_inputs - node_item.num_static_input_shapes;
  32. GELOGD("[%s] ShapeInferenceState created, pending shape count = %d",
  33. node_item.NodeName().c_str(),
  34. this->num_pending_shapes_);
  35. for (int i = 0; i < node_item.num_inputs; ++i){
  36. input_tensor_desc.emplace_back(*node_item.MutableInputDesc(i));
  37. }
  38. for (int i = 0; i < node_item.num_outputs; ++i){
  39. output_tensor_desc.emplace_back(*node_item.MutableOutputDesc(i));
  40. }
  41. }
  42. Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
  43. if (node_item.IsInputShapeStatic(idx)) {
  44. GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]",
  45. node_item.NodeName().c_str(),
  46. idx,
  47. node_item.MutableInputDesc(idx)->GetShape().ToString().c_str(),
  48. target.GetShape().ToString().c_str());
  49. return SUCCESS;
  50. }
  51. int64_t tensor_size = -1;
  52. (void) TensorUtils::GetSize(target, tensor_size);
  53. GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld",
  54. node_item.NodeName().c_str(),
  55. idx,
  56. target.GetShape().ToString().c_str(),
  57. target.GetOriginShape().ToString().c_str(),
  58. tensor_size);
  59. std::lock_guard<std::mutex> lk(mu_);
  60. auto &input_desc = input_tensor_desc[idx];
  61. input_desc.SetShape(target.GetShape());
  62. input_desc.SetOriginShape(target.GetOriginShape());
  63. (void) TensorUtils::SetSize(input_desc, tensor_size);
  64. if (--num_pending_shapes_ <= 0) {
  65. ready_cv_.notify_all();
  66. }
  67. return SUCCESS;
  68. }
  69. void ShapeInferenceState::UpdateInputShapeFuture(int idx, ShapeFuture &&future) {
  70. if (node_item.IsInputShapeStatic(idx)) {
  71. GELOGD("[%s] Trying to update constant shape, idx = %d", node_item.NodeName().c_str(), idx);
  72. return;
  73. }
  74. GELOGD("[%s] Update input shape [%d] with ShapeFuture.", node_item.NodeName().c_str(), idx);
  75. std::lock_guard<std::mutex> lk(mu_);
  76. shape_futures.emplace_back(idx, std::move(future));
  77. if (--num_pending_shapes_ == 0) {
  78. ready_cv_.notify_all();
  79. }
  80. }
  81. Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &context) {
  82. if (!node_item.is_dynamic) {
  83. return SUCCESS;
  84. }
  85. std::unique_lock<std::mutex> lk(mu_);
  86. if (num_pending_shapes_ > 0) {
  87. GELOGD("[%s] Await pending shape or shape future start.", node_item.NodeName().c_str());
  88. int try_count = 0;
  89. bool wait_success = false;
  90. while (try_count++ < kMaxWaitTimes) {
  91. if (ready_cv_.wait_for(lk, std::chrono::seconds(kWaitInternal), [&]() { return num_pending_shapes_ == 0; })) {
  92. GELOGD("[%s] Await pending shape or shape future end.", node_item.NodeName().c_str());
  93. wait_success = true;
  94. break;
  95. }
  96. if (context.is_eos_) {
  97. GELOGD("[%s] Await pending shape cancelled due to end of sequence", node_item.NodeName().c_str());
  98. return END_OF_SEQUENCE;
  99. }
  100. if (context.GetStatus() != SUCCESS) {
  101. GELOGE(FAILED, "[%s] Await pending shape cancelled", node_item.NodeName().c_str());
  102. break;
  103. }
  104. }
  105. if (!wait_success) {
  106. GELOGE(FAILED, "[%s] Wait for shape timeout.", node_item.NodeName().c_str());
  107. return FAILED;
  108. }
  109. }
  110. for (size_t i = 0; i < input_tensor_desc.size(); ++i) {
  111. auto dst_tensor_desc = node_item.op_desc->MutableInputDesc(i);
  112. if (dst_tensor_desc == nullptr) {
  113. continue;
  114. }
  115. auto &tensor_desc = input_tensor_desc[i];
  116. int64_t tensor_size = -1;
  117. (void) TensorUtils::GetSize(tensor_desc, tensor_size);
  118. dst_tensor_desc->SetShape(tensor_desc.MutableShape());
  119. dst_tensor_desc->SetOriginShape(tensor_desc.GetOriginShape());
  120. (void) TensorUtils::SetSize(*dst_tensor_desc, tensor_size);
  121. }
  122. for (auto &p : shape_futures) {
  123. auto idx = p.first;
  124. auto &future = p.second;
  125. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx);
  126. const GeTensorDesc* src_tensor_desc = nullptr;
  127. GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(&src_tensor_desc));
  128. GE_CHECK_NOTNULL(src_tensor_desc);
  129. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx);
  130. auto input_desc = node_item.MutableInputDesc(idx);
  131. GE_CHECK_NOTNULL(input_desc);
  132. int64_t tensor_size = -1;
  133. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  134. GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s], index = %zu",
  135. node_item.NodeName().c_str(),
  136. idx,
  137. src_tensor_desc->GetShape().ToString().c_str(),
  138. src_tensor_desc->GetOriginShape().ToString().c_str(),
  139. tensor_size);
  140. input_desc->SetShape(src_tensor_desc->GetShape());
  141. input_desc->SetOriginShape(src_tensor_desc->GetOriginShape());
  142. (void) TensorUtils::SetSize(*input_desc, tensor_size);
  143. }
  144. return SUCCESS;
  145. }
  146. const vector<GeTensorDesc> &ShapeInferenceState::GetOutputTensorDesc() const {
  147. return output_tensor_desc;
  148. }
  149. Status ShapeInferenceState::UpdateOutputDesc() {
  150. for (size_t i = 0; i < output_tensor_desc.size(); ++i) {
  151. auto src_tensor_desc = node_item.MutableOutputDesc(i);
  152. GE_CHECK_NOTNULL(src_tensor_desc);
  153. auto &dst_tensor_desc = output_tensor_desc[i];
  154. dst_tensor_desc.SetShape(src_tensor_desc->MutableShape());
  155. dst_tensor_desc.SetOriginShape(src_tensor_desc->GetOriginShape());
  156. int64_t tensor_size = -1;
  157. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  158. (void) TensorUtils::SetSize(dst_tensor_desc, tensor_size);
  159. }
  160. return SUCCESS;
  161. }
  162. ShapeFuture::ShapeFuture(NodeState *src_node,
  163. uint32_t src_index,
  164. SubgraphContext *subgraph_context)
  165. : src_node_(src_node), src_index_(src_index), subgraph_context_(subgraph_context) {
  166. }
  167. NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context)
  168. : node_item_(&node_item), shape_inference_state_(node_item), subgraph_context_(subgraph_context) {
  169. this->op_desc_ = node_item.node->GetOpDesc();
  170. }
  171. Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const {
  172. for (auto &src_node : node_item_->dependents_for_execution) {
  173. GELOGD("[%s] Start to wait for data dependent node: [%s]",
  174. node_item_->NodeName().c_str(),
  175. src_node->GetName().c_str());
  176. RECORD_EXECUTION_EVENT(&context,
  177. node_item_->NodeName().c_str(),
  178. "[AwaitNodeDone] [%s] Start",
  179. src_node->GetName().c_str());
  180. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node),
  181. "[%s] Await node [%s] failed.",
  182. GetName().c_str(),
  183. src_node->GetName().c_str());
  184. RECORD_EXECUTION_EVENT(&context,
  185. node_item_->NodeName().c_str(),
  186. "[AwaitNodeDone] [%s] End",
  187. src_node->GetName().c_str());
  188. GELOGD("[%s] Done waiting node.", src_node->GetName().c_str());
  189. }
  190. return SUCCESS;
  191. }
  192. Status NodeState::WaitForPrepareDone() {
  193. if (prepare_future_.valid()) {
  194. GELOGD("[%s] Start to wait for prepare future.", GetName().c_str());
  195. GE_CHK_STATUS_RET(prepare_future_.get(),
  196. "[%s] PreRun failed.", GetName().c_str());
  197. }
  198. return SUCCESS;
  199. }
  200. Status NodeState::UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape) {
  201. auto self_tensor_desc = op_desc_->MutableOutputDesc(index);
  202. GE_CHECK_NOTNULL(self_tensor_desc);
  203. self_tensor_desc->SetShape(shape);
  204. self_tensor_desc->SetOriginShape(ori_shape);
  205. return SUCCESS;
  206. }
  207. void NodeState::SetTaskContext(std::shared_ptr<TaskContext> &task_context) {
  208. task_context_ = task_context;
  209. }
  210. std::shared_ptr<TaskContext> NodeState::GetTaskContext() {
  211. return task_context_;
  212. }
  213. Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) {
  214. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  215. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  216. auto &output_desc = src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  217. shape = output_desc.GetShape();
  218. ori_shape = output_desc.GetOriginShape();
  219. GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str());
  220. return SUCCESS;
  221. }
  222. Status ShapeFuture::GetTensorDesc(const GeTensorDesc **tensor_desc) {
  223. GE_CHECK_NOTNULL(tensor_desc);
  224. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  225. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  226. *tensor_desc = &src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  227. return SUCCESS;
  228. }
  229. } // namespace hybrid
  230. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示