You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_mem_assigner.cc 108 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/build/memory/graph_mem_assigner.h"
  17. #include <cstring>
  18. #include <set>
  19. #include "common/math/math_util.h"
  20. #include "common/util/error_manager/error_manager.h"
  21. #include "framework/common/debug/ge_log.h"
  22. #include "framework/common/debug/log.h"
  23. #include "graph/build/memory/hybrid_mem_assigner.h"
  24. #include "graph/build/memory/var_mem_assign_util.h"
  25. #include "graph/build/memory/block_mem_assigner.h"
  26. #include "graph/common/omg_util.h"
  27. #include "graph/debug/ge_attr_define.h"
  28. #include "graph/ge_attr_value.h"
  29. #include "graph/manager/graph_var_manager.h"
  30. #include "graph/utils/tensor_utils.h"
  31. #include "graph/utils/type_utils.h"
  32. #include "graph/build/memory/buffer_pool_mem_assigner.h"
  33. namespace {
  34. const int kAllInputAddrIsAtomic = -1;
  35. const int kVirtualInputNodeMemoryReuse = 0;
  36. const int kVirtualOutputNodeMemoryReuse = 1;
  37. const int kPrevNextDistanceNum = 2;
  38. const int64_t kInvalidStream = -1;
  39. const char *const kEngineNameGeLocal = "DNN_VM_GE_LOCAL_OP_STORE";
  40. // One state per bit cannot be repeated
  41. enum ContinuousType { kTypeInput = 1, kTypeInputNoPadding = 2, kTypeOutput = 4, kTypeOutputNoPadding = 8 };
  42. int64_t GetSymbolOutputOffset(const std::map<std::string, std::string> &anchor_to_symbol,
  43. const std::map<std::string, std::list<ge::NodeIndexIO>> &symbol_to_anchors,
  44. const ge::NodePtr &node, const uint32_t i) {
  45. ge::NodeIndexIO cur_node_index_io(node, i, ge::kOut);
  46. auto iter1 = anchor_to_symbol.find(cur_node_index_io.ToString());
  47. if (iter1 == anchor_to_symbol.end()) {
  48. return ge::kInvalidOffset;
  49. }
  50. auto out_symbol = iter1->second;
  51. auto iter2 = symbol_to_anchors.find(out_symbol);
  52. if (iter2 == symbol_to_anchors.end()) {
  53. return ge::kInvalidOffset;
  54. }
  55. for (const auto &node_index_io : iter2->second) {
  56. if (node_index_io.value_ == out_symbol) {
  57. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  58. vector<int64_t> symbol_output_list = node_index_io.node_->GetOpDesc()->GetOutputOffset();
  59. if (node_index_io.index_ >= symbol_output_list.size()) {
  60. return ge::kInvalidOffset;
  61. }
  62. GELOGD("Node %s %uth output offset is %ld, Symbol %s output offset is %ld.", node->GetName().c_str(), i,
  63. output_list[i], iter2->first.c_str(), symbol_output_list.at(node_index_io.index_));
  64. return symbol_output_list.at(node_index_io.index_);
  65. }
  66. }
  67. return ge::kInvalidOffset;
  68. }
  69. bool isVariableMemoryNode(const ge::NodePtr &node) {
  70. return (node->GetType() == ge::VARIABLE) || (node->GetType() == ge::CONSTANTOP);
  71. }
  72. } // namespace
  73. namespace ge {
  74. Status VariableMemoryAssigner::Assign() {
  75. Status result = ge::VarMemAssignUtil::AssignConstantOpMemory(compute_graph_);
  76. if (result != ge::SUCCESS) {
  77. return result;
  78. }
  79. result = ge::VarMemAssignUtil::AssignVarMemory(compute_graph_);
  80. if (result != ge::SUCCESS) {
  81. return result;
  82. }
  83. return ge::SUCCESS;
  84. }
  85. Status VariableMemoryAssigner::AssignVarAttr2Nodes() {
  86. Status result = ge::VarMemAssignUtil::AssignVarAttr2Nodes(compute_graph_);
  87. if (result != ge::SUCCESS) {
  88. return result;
  89. }
  90. return ge::SUCCESS;
  91. }
  92. Status VariableMemoryAssigner::AssignMemory2HasRefAttrNode() {
  93. Status result = ge::VarMemAssignUtil::AssignMemory2HasRefAttrNode(compute_graph_);
  94. if (result != ge::SUCCESS) {
  95. return result;
  96. }
  97. return ge::SUCCESS;
  98. }
  99. Status GraphMemoryAssigner::AssignMemory() {
  100. ge::HybridMemAssignerPtr mem_assigner(new(std::nothrow) HybridMemAssigner(compute_graph_));
  101. if (mem_assigner->Assign() != ge::SUCCESS) {
  102. GELOGE(ge::FAILED, "[Assign][GraphMem]graph_id:%u, graph_name:%s",
  103. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  104. return ge::FAILED;
  105. }
  106. for (auto pair : mem_assigner->GetMemOffsets()) {
  107. MemoryOffset offset(pair.first, pair.second);
  108. memory_offset_.emplace(pair.first, offset);
  109. }
  110. // base memtype offset must be exist
  111. auto it = mem_assigner->GetMemOffsets().find(RT_MEMORY_HBM);
  112. if (it == mem_assigner->GetMemOffsets().end()) {
  113. MemoryOffset memory_offset(RT_MEMORY_HBM, 0);
  114. memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);
  115. }
  116. it = mem_assigner->GetMemOffsets().find(RT_MEMORY_P2P_DDR);
  117. if (it == mem_assigner->GetMemOffsets().end()) {
  118. MemoryOffset p2p_memory_offset(RT_MEMORY_P2P_DDR, 0);
  119. memory_offset_.emplace(RT_MEMORY_P2P_DDR, p2p_memory_offset);
  120. }
  121. auto session_id = compute_graph_->GetSessionID();
  122. int64_t var_size_before_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM);
  123. auto variable_assigner =
  124. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  125. if (variable_assigner == nullptr) {
  126. GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
  127. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  128. REPORT_CALL_ERROR("E19999", "New Object:VariableMemoryAssigner failed, "
  129. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  130. return ge::FAILED;
  131. }
  132. if (variable_assigner->Assign() != ge::SUCCESS) {
  133. return ge::FAILED;
  134. }
  135. int64_t var_size_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM) - var_size_before_assign;
  136. GELOGD("GraphMemoryAssigner::AssignMemory variable size = %ld", var_size_assign);
  137. mem_assigner_ = std::move(mem_assigner);
  138. return ge::SUCCESS;
  139. }
  140. ge::Status GraphMemoryAssigner::AssignVarAttr2Nodes() {
  141. auto variable_assigner =
  142. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  143. if (variable_assigner == nullptr) {
  144. GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
  145. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  146. REPORT_CALL_ERROR("E19999", "New Object:VariableMemoryAssigner failed, "
  147. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  148. return ge::FAILED;
  149. }
  150. if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) {
  151. return ge::FAILED;
  152. }
  153. return ge::SUCCESS;
  154. }
  155. ge::Status GraphMemoryAssigner::AssignMemory2HasRefAttrNode() {
  156. auto variable_assigner =
  157. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  158. if (variable_assigner == nullptr) {
  159. GELOGE(ge::FAILED, "[New][Object:VariableMemoryAssigner]graph_id:%u, graph_name:%s",
  160. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  161. REPORT_CALL_ERROR("E19999", "New Object:VariableMemoryAssigner failed, "
  162. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  163. }
  164. if (variable_assigner->AssignMemory2HasRefAttrNode() != ge::SUCCESS) {
  165. return ge::FAILED;
  166. }
  167. return ge::SUCCESS;
  168. }
  169. ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &output_desc,
  170. int64_t dim_index, int64_t &output_mem_size,
  171. int64_t &batch_dim_num, int64_t &out_size) {
  172. graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size);
  173. if (graph_status != GRAPH_SUCCESS) {
  174. GELOGE(FAILED, "[Get][TensorSize]");
  175. REPORT_CALL_ERROR("E19999", "Get tensor size failed");
  176. return FAILED;
  177. }
  178. GeShape output_shape = output_desc->GetShape();
  179. std::vector<int64_t> output_dims = output_shape.GetDims();
  180. if (dim_index >= static_cast<int64_t>(output_dims.size())) {
  181. REPORT_INNER_ERROR("E19999", "Inner param dim_index value:%ld invalid, bigger than dim size:%lu in shape:%s",
  182. dim_index, output_dims.size(), output_shape.ToString().c_str());
  183. GELOGE(FAILED, "[Check][Param:dim_index]value:%ld invalid, bigger than dim size:%lu in shape:%s",
  184. dim_index, output_dims.size(), output_shape.ToString().c_str());
  185. return FAILED;
  186. }
  187. for (int64_t index = 0; index < dim_index; index++) {
  188. FMK_INT64_MULCHECK(batch_dim_num, output_dims[index]);
  189. batch_dim_num *= output_dims[index];
  190. output_dims[index] = 1;
  191. }
  192. output_shape = GeShape(output_dims);
  193. Format out_format = output_desc->GetFormat();
  194. DataType data_type = output_desc->GetDataType();
  195. graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size);
  196. if (graph_status != GRAPH_SUCCESS) {
  197. GELOGE(graph_status, "[Calc][TensorSize]");
  198. return FAILED;
  199. }
  200. if (output_mem_size < 0) {
  201. REPORT_INNER_ERROR("E19999", "After calculating, tensor memory size:%ld invalid, less than 0. "
  202. "shape:%s, format:%s, dtype:%s, maybe has dynamic shape",
  203. output_mem_size,
  204. output_shape.ToString().c_str(),
  205. TypeUtils::FormatToSerialString(out_format).c_str(),
  206. TypeUtils::DataTypeToSerialString(data_type).c_str());
  207. GELOGE(FAILED, "[Check][TensorSize]value:%ld invalid after calc, less than 0. shape:%s, format:%s, dtype:%s, "
  208. "maybe has dynamic shape",
  209. output_mem_size,
  210. output_shape.ToString().c_str(),
  211. TypeUtils::FormatToSerialString(out_format).c_str(),
  212. TypeUtils::DataTypeToSerialString(data_type).c_str());
  213. return FAILED;
  214. }
  215. return SUCCESS;
  216. }
  217. Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<uint64_t, size_t> &mem_type_to_offset) {
  218. if (memory_offset_.empty()) {
  219. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ empty, not expected, graph_id:%u, graph_name:%s",
  220. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  221. GELOGE(FAILED, "[Check][InnerData:memory_offset_]empty is not expected, "
  222. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  223. return ge::FAILED;
  224. }
  225. GE_CHK_STATUS_RET(ReAssignContinuousMemory(is_loop_graph),
  226. "[ReAssign][ContinuousMemory] Failed! graph:%s", compute_graph_->GetName().c_str());
  227. GE_CHK_STATUS_RET(ReAssignAtomicMemory(is_loop_graph),
  228. "[ReAssign][AtomicMemory] Failed! graph:%s", compute_graph_->GetName().c_str());
  229. GE_CHK_STATUS_RET(AssignBufferPoolMemory(),
  230. "[Assign][BufferPoolMemory] Failed! graph:%s", compute_graph_->GetName().c_str());
  231. size_t total_mem_offset = 0;
  232. for (auto pair : memory_offset_) {
  233. mem_type_to_offset[pair.first] = pair.second.mem_offset_;
  234. total_mem_offset += pair.second.mem_offset_;
  235. }
  236. auto session_id = compute_graph_->GetSessionID();
  237. if (total_mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) {
  238. GELOGE(ge::FAILED, "[Check][TotalMemOffset] %zu is greater than memory manager malloc max size %zu, "
  239. "graph_id:%u, graph_name:%s, reduce your batchsize or scale your model may solve problem",
  240. total_mem_offset, VarManager::Instance(session_id)->GetGraphMemoryMaxSize(),
  241. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  242. for (auto iter : mem_type_to_offset) {
  243. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  244. iter.second, iter.first);
  245. }
  246. REPORT_INPUT_ERROR(
  247. "E19022", std::vector<std::string>({"size", "item", "maxsize"}),
  248. std::vector<std::string>({std::to_string(total_mem_offset), "featuremap",
  249. std::to_string(VarManager::Instance(session_id)->GetGraphMemoryMaxSize())}));
  250. return ge::FAILED;
  251. }
  252. return SUCCESS;
  253. }
  254. Status GraphMemoryAssigner::AssignZeroCopyMemory(map<uint64_t, size_t> &mem_offset, size_t &zero_mem_copy_size) {
  255. BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger());
  256. if (priority_assigner == nullptr) {
  257. REPORT_INNER_ERROR("E19999", "InnerData priority_assigner nullptr, not expected, graph_id:%u, graph_name:%s",
  258. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  259. GELOGE(FAILED, "[Check][InnerData:priority_assigner]nullptr is invalid, "
  260. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  261. return ge::FAILED;
  262. }
  263. size_t mem_offset_tmp = mem_offset[RT_MEMORY_HBM];
  264. // set offset for zero copy block
  265. for (auto &memory_block : priority_assigner->GetMemoryBlocks()) {
  266. if (memory_block == nullptr || memory_block->deleted_block_ || !memory_block->is_zero_copy_) {
  267. continue;
  268. }
  269. memory_block->Resize();
  270. memory_block->SetHeadOffset(mem_offset[RT_MEMORY_HBM]);
  271. mem_offset[RT_MEMORY_HBM] += memory_block->Size();
  272. memory_block->SetTailOffset(mem_offset[RT_MEMORY_HBM] - 1);
  273. }
  274. // set offset for zero copy nodes
  275. priority_assigner->SetOpMemOffset(true);
  276. zero_mem_copy_size = mem_offset[RT_MEMORY_HBM] - mem_offset_tmp;
  277. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  278. if (iter == memory_offset_.end()) {
  279. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  280. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  281. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  282. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  283. return FAILED;
  284. }
  285. iter->second.mem_offset_ = mem_offset[RT_MEMORY_HBM];
  286. GELOGD("max_mem_offset:%zu, mem_offset:%zu, zero_mem_copy_size:%zu.", mem_offset[RT_MEMORY_HBM], mem_offset_tmp,
  287. zero_mem_copy_size);
  288. return SUCCESS;
  289. }
  290. uint32_t GetContinuousMemoryType(const OpDescPtr &op_desc) {
  291. if (op_desc == nullptr) {
  292. return 0;
  293. };
  294. bool is_continuous = false;
  295. uint32_t continuous_type = 0;
  296. // If GetBool fail, is_continuous is false.
  297. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT, is_continuous);
  298. if (is_continuous) {
  299. continuous_type |= kTypeInput;
  300. } else {
  301. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, is_continuous);
  302. if (is_continuous) {
  303. bool attr_reuse = false;
  304. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  305. if (attr_reuse) {
  306. continuous_type |= kTypeInputNoPadding;
  307. }
  308. }
  309. }
  310. is_continuous = false;
  311. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_continuous);
  312. if (is_continuous) {
  313. continuous_type |= kTypeOutput;
  314. } else {
  315. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_OUTPUT, is_continuous);
  316. if (is_continuous) {
  317. bool attr_reuse = false;
  318. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  319. if (attr_reuse) {
  320. continuous_type |= kTypeOutputNoPadding;
  321. }
  322. }
  323. }
  324. if (continuous_type != 0) {
  325. GELOGI("[Get][MemType:Continuous]Current node %s, value is %d", op_desc->GetName().c_str(), continuous_type);
  326. }
  327. return continuous_type;
  328. }
  329. Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &output_desc, uint32_t continuous_type,
  330. int64_t &tensor_size, int64_t &nopadding_size) {
  331. if ((op_desc == nullptr) || (output_desc == nullptr)) {
  332. REPORT_INNER_ERROR("E19999", "InnerData param op_desc or output_desc is nullptr, not expected");
  333. GELOGE(FAILED, "[Check][Param]op_desc or output_desc is nullptr");
  334. }
  335. tensor_size = 0;
  336. nopadding_size = 0;
  337. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  338. if (is_nopadding) {
  339. int64_t attr_dim_index;
  340. bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
  341. if (!get_attr_dim_flag) {
  342. REPORT_INNER_ERROR("E19999", "Get Attr:%s failed, op_name:%s",
  343. ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX.c_str(), op_desc->GetName().c_str());
  344. GELOGE(FAILED, "[Get][Attr:%s]fail for op_name:%s",
  345. ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX.c_str(), op_desc->GetName().c_str());
  346. return FAILED;
  347. }
  348. // Calculate tensor real size of each piece of data and out size of complete data
  349. int64_t batch_dim_num = 1;
  350. if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, nopadding_size, batch_dim_num, tensor_size) !=
  351. SUCCESS) {
  352. REPORT_CALL_ERROR("E19999", "CalculateTensorRealSizeAndOutSize failed, attr_dim_index:%ld, op_name:%s",
  353. attr_dim_index, op_desc->GetName().c_str());
  354. GELOGE(FAILED, "[Calculate][NopaddingSize]failed for node %s, attr_dim_index:%ld",
  355. op_desc->GetName().c_str(), attr_dim_index);
  356. return FAILED;
  357. }
  358. } else {
  359. if (ge::TensorUtils::GetSize(*output_desc, tensor_size) != ge::SUCCESS) {
  360. REPORT_INNER_ERROR("E19999", "Get Tensor Size failed, op_name:%s", op_desc->GetName().c_str());
  361. GELOGE(FAILED, "[Get][TensorSize]failed in padding case, op_name:%s", op_desc->GetName().c_str());
  362. return FAILED;
  363. }
  364. }
  365. if ((tensor_size < 0) || (nopadding_size < 0)) {
  366. REPORT_INNER_ERROR("E19999", "GetMemorySize fail, "
  367. "tensor_size:%ld or nopadding_size:%ld less than 0, invalid, op_name:%s",
  368. tensor_size, nopadding_size, op_desc->GetName().c_str());
  369. GELOGE(FAILED, "[Get][MemorySize]tensor_size:%ld or nopadding_size:%ld less than 0, invalid, op_name:%s",
  370. tensor_size, nopadding_size, op_desc->GetName().c_str());
  371. return FAILED;
  372. }
  373. return SUCCESS;
  374. }
  375. void AlignMemOffset(int64_t &mem_align_size) {
  376. if (mem_align_size <= 0) {
  377. return;
  378. }
  379. mem_align_size = (mem_align_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
  380. }
  381. bool IsContinuousInputConflict(const ge::NodePtr &node, const OpDescPtr &peer_op_desc) {
  382. bool is_peer_output_continuous = false;
  383. // If GetBool fail, is_peer_output_continuous is false.
  384. (void) ge::AttrUtils::GetBool(peer_op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_peer_output_continuous);
  385. // Get peer node output size, if size == 1(peer node has only one output), continuous input of the node and
  386. // continuous output of the previous node is the same, we can support it. If size != 1, there may be
  387. // conflict between the two, we can not support it.
  388. auto peer_output_size = peer_op_desc->GetOutputsSize();
  389. GE_IF_BOOL_EXEC(is_peer_output_continuous && (peer_output_size != 1),
  390. std::string error = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  391. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  392. " requires continuous output. There may be conflict between the two." +
  393. "This node is not supported now.";
  394. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  395. return true;);
  396. bool is_peer_reference = false;
  397. // If GetBool fail, is_peer_reference is false.
  398. (void) AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference);
  399. GE_IF_BOOL_EXEC(is_peer_reference,
  400. std::string warning = "[Check][Continuous]Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  401. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  402. " is ref. There may be conflict between the two.";
  403. GELOGW("%s", warning.c_str());
  404. return false;);
  405. return false;
  406. }
  407. /// op1 -> node -> op2
  408. /// return true when node is ref from input, and op1 or op2 is reuse input from output
  409. bool GraphMemoryAssigner::IsRefFromInputOpCascade(const NodePtr &node) {
  410. std::unordered_set<int32_t> ref_input_index;
  411. int32_t reuse_in_index = -1;
  412. for (const auto &out_anchor : node->GetAllOutDataAnchors()) {
  413. bool reuse_input = GraphUtils::IsRefFromInput(out_anchor, reuse_in_index);
  414. if (reuse_input) {
  415. GELOGD("IsRefFromInputOpCascade: cur node:%s:%d is ref", node->GetName().c_str(), reuse_in_index);
  416. ref_input_index.insert(reuse_in_index);
  417. }
  418. }
  419. bool ref_from_input = !ref_input_index.empty();
  420. if (!ref_from_input) {
  421. return false;
  422. }
  423. for (const auto &in_anchor : node->GetAllInDataAnchors()) {
  424. const auto &peer_out_anchor = in_anchor->GetPeerOutAnchor();
  425. GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
  426. auto in_node = peer_out_anchor->GetOwnerNode();
  427. if (isVariableMemoryNode(in_node) && (ref_input_index.count(in_anchor->GetIdx()) > 0)) {
  428. GELOGD("Reuse variable memory, input node:%s, type:%s.", in_node->GetName().c_str(), in_node->GetType().c_str());
  429. return false;
  430. }
  431. if (ref_from_input && GraphUtils::IsRefFromInput(peer_out_anchor, reuse_in_index)) {
  432. GELOGD("IsRefFromInputOpCascade: in node[%s] is ref, reuse index is:%d",
  433. in_node->GetName().c_str(), reuse_in_index);
  434. return true;
  435. }
  436. }
  437. for (const auto &out_anchor : node->GetAllOutDataAnchors()) {
  438. const auto &peer_in_anchors = out_anchor->GetPeerInDataAnchors();
  439. for (const auto &peer_in_anchor : peer_in_anchors) {
  440. auto peer_in_node = peer_in_anchor->GetOwnerNode();
  441. GE_IF_BOOL_EXEC(peer_in_node == nullptr, continue);
  442. for (const auto &peer_in_node_out_anchor : peer_in_node->GetAllOutDataAnchors()) {
  443. if (ref_from_input && GraphUtils::IsRefFromInput(peer_in_node_out_anchor, reuse_in_index)) {
  444. GELOGD("IsRefFromInputOpCascade: out node[%s] is ref, reuse index is:%d",
  445. peer_in_node_out_anchor->GetOwnerNode()->GetName().c_str(), reuse_in_index);
  446. return true;
  447. }
  448. }
  449. }
  450. }
  451. return false;
  452. }
  453. /// node:in0(in0 reuse out0) -> peer_node:out0
  454. /// update peer_node's 0th output offset with node's 0th output offset
  455. Status GraphMemoryAssigner::UpdateRefOpOffsetReverse(const NodePtr &node) {
  456. map<int32_t, int32_t> out2ins;
  457. GE_CHK_STATUS_RET(TryGetNodeRefIndexes(node, out2ins), "[Get][RefIndexes]fail for node:%s",
  458. node->GetName().c_str());
  459. auto op_desc = node->GetOpDesc();
  460. GE_CHECK_NOTNULL(op_desc);
  461. vector<int64_t> output_list = op_desc->GetOutputOffset();
  462. for (const auto &out2in : out2ins) {
  463. auto reuse_in_anchor = node->GetInDataAnchor(out2in.second);
  464. GE_CHECK_NOTNULL(reuse_in_anchor);
  465. auto peer_out_anchor = reuse_in_anchor->GetPeerOutAnchor();
  466. GE_CHECK_NOTNULL(peer_out_anchor);
  467. auto peer_node = peer_out_anchor->GetOwnerNode();
  468. GE_CHECK_NOTNULL(peer_node);
  469. if (isVariableMemoryNode(peer_node)) {
  470. GELOGW("Peer node to update is %s, skip it. Node name:%s.",
  471. peer_node->GetType().c_str(), peer_node->GetName().c_str());
  472. continue;
  473. }
  474. auto peer_op_desc = peer_node->GetOpDesc();
  475. GE_CHECK_NOTNULL(peer_op_desc);
  476. vector<int64_t> peer_output_list = peer_op_desc->GetOutputOffset();
  477. if ((peer_out_anchor->GetIdx() >= static_cast<int>(peer_output_list.size()))
  478. || (out2in.first >= static_cast<int32_t>(output_list.size()))) {
  479. GELOGW("out of range, peer_out_anchor:%d, peer_output_list size:%zu, out2in:%d, output_list size:%zu",
  480. peer_out_anchor->GetIdx(),
  481. peer_output_list.size(),
  482. out2in.first,
  483. output_list.size());
  484. continue;
  485. }
  486. peer_output_list.at(peer_out_anchor->GetIdx()) = output_list.at(out2in.first);
  487. peer_op_desc->SetOutputOffset(peer_output_list);
  488. GELOGD("UpdateRefOpOffsetReverse: Node[%s] output[%d] is set from node[%s] output index[%d] offset[%ld]",
  489. peer_node->GetName().c_str(),
  490. peer_out_anchor->GetIdx(),
  491. node->GetName().c_str(),
  492. out2in.first,
  493. output_list.at(out2in.first));
  494. }
  495. return SUCCESS;
  496. }
  497. Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
  498. Status ret;
  499. // Stored nodes which need assign continuous input memory in `reverse topo order`
  500. std::vector<NodePtr> nodes_stack;
  501. std::map<NodePtr, uint32_t> node_2_continuous_type;
  502. // Traverse nodes
  503. for (auto &node : compute_graph_->GetAllNodes()) {
  504. GE_CHECK_NOTNULL(node);
  505. uint32_t continuous_type;
  506. auto iter = node_2_continuous_type.find(node);
  507. if (iter == node_2_continuous_type.end()) {
  508. continuous_type = GetContinuousMemoryType(node->GetOpDesc());
  509. node_2_continuous_type.emplace(node, continuous_type);
  510. } else {
  511. continuous_type = iter->second;
  512. }
  513. // Assign continuous input memory
  514. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  515. if (IsRefFromInputOpCascade(node)) {
  516. nodes_stack.push_back(node);
  517. GELOGD("Ref: Push node:%s to stack", node->GetName().c_str());
  518. } else if (continuous_input) {
  519. if (AssignContinuousInputMemoryWithAtomicProcessDirectly(node, node_2_continuous_type)) {
  520. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, continuous_type),
  521. "[Assign][Memory:Continuous:Input]fail for node:%s", node->GetName().c_str())
  522. } else {
  523. nodes_stack.push_back(node);
  524. GELOGD("Continuous: Push node:%s to stack", node->GetName().c_str());
  525. }
  526. }
  527. // Assign continuous output memory
  528. int64_t memory_type = RT_MEMORY_HBM;
  529. bool continuous_output = ((continuous_type & kTypeOutput) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  530. if (continuous_output) {
  531. GE_CHK_STATUS_RET(GetNodeMemoryType(node, memory_type, "output"),
  532. "[Get][MemType]fail for node:%s", node->GetName().c_str());
  533. ret = AssignContinuousOutputMemory(node, memory_type, continuous_type);
  534. if (ret != ge::SUCCESS) {
  535. GELOGE(ret, "[Assign][Memory:Continuous:Ouput]fail for node:%s", node->GetName().c_str());
  536. return ret;
  537. }
  538. }
  539. }
  540. // Assign continuous input memory in `reverse topo order` which stored before
  541. while (!nodes_stack.empty()){
  542. auto node = nodes_stack.back();
  543. nodes_stack.pop_back();
  544. auto iter = node_2_continuous_type.find(node);
  545. if (iter == node_2_continuous_type.end()) {
  546. REPORT_INNER_ERROR("E19999", "Get ContinuousType from node_2_continuous_type map failed for node:%s",
  547. node->GetName().c_str());
  548. GELOGE(FAILED, "[Get][ContinuousType] find fail for node:%s", node->GetName().c_str());
  549. return FAILED;
  550. }
  551. if (((iter->second & kTypeInput) != 0) || ((iter->second & kTypeInputNoPadding) != 0)) {
  552. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, iter->second, true),
  553. "[Assign][Memory:Continuous:Input]fail for node:%s.", node->GetName().c_str())
  554. } else {
  555. GE_CHK_STATUS_RET(UpdateRefOpOffsetReverse(node),
  556. "[Update][Memory:Reference:Output]fail for node:%s", node->GetName().c_str())
  557. }
  558. }
  559. for (auto pair : memory_offset_) {
  560. GELOGD("[Reassign][Memory:Continuous]At last, memory type = %ld, mem offset = %zu", pair.first,
  561. pair.second.mem_offset_);
  562. }
  563. return ge::SUCCESS;
  564. }
  565. Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start,
  566. int64_t &continuous_mem_size, int64_t memory_type, uint32_t continuous_type, bool reverse_refresh) {
  567. GELOGI("[Assign][Memory:Input:Continuous]start for Current node %s", node->GetName().c_str());
  568. auto iter = memory_offset_.find(memory_type);
  569. if (iter == memory_offset_.end()) {
  570. REPORT_INNER_ERROR("E19999", "find memory offset fail for mem_type:%ld, "
  571. "for node:%s, ", memory_type, node->GetName().c_str());
  572. GELOGE(FAILED, "[Find][MemOffset]fail for mem_type:%ld, when AssignContinuousInputMemory for node:%s",
  573. memory_type, node->GetName().c_str());
  574. return FAILED;
  575. }
  576. // The head and tail of hcom continuous input should be added 512
  577. iter->second.mem_offset_ += MEM_ALIGN_SIZE;
  578. continuous_mem_start = iter->second.mem_offset_;
  579. int64_t mem_offset = iter->second.mem_offset_;
  580. int64_t extra_memory_size = 0;
  581. bool is_continuous_input_allocated = false;
  582. auto op_desc = node->GetOpDesc();
  583. GE_CHECK_NOTNULL(op_desc);
  584. vector<int64_t> output_list_this = op_desc->GetOutputOffset();
  585. if (output_list_this.empty()) {
  586. REPORT_INNER_ERROR("E19999", "No output offset in node :%s, not expected",
  587. node->GetName().c_str());
  588. GELOGE(FAILED, "[Get][OutputOffset] empty is invalid, node:%s", node->GetName().c_str());
  589. return FAILED;
  590. }
  591. (void) ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, is_continuous_input_allocated);
  592. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  593. GE_IF_BOOL_EXEC(in_data_anchor == nullptr, continue);
  594. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  595. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, continue);
  596. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  597. GE_IF_BOOL_EXEC(peer_op_desc == nullptr, continue);
  598. GE_IF_BOOL_EXEC(IsContinuousInputConflict(node, peer_op_desc), return PARAM_INVALID;);
  599. int64_t tensor_desc_size = 0;
  600. int64_t nopadding_size = 0;
  601. int64_t real_size = 0;
  602. std::vector<int64_t> offsets_of_fusion = {};
  603. bool lx_fusion = AttrUtils::GetListInt(peer_op_desc, ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, offsets_of_fusion);
  604. lx_fusion = lx_fusion && !offsets_of_fusion.empty();
  605. if (lx_fusion) {
  606. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(offsets_of_fusion.size())) {
  607. std::string error = "fusion: peer node:" + FmtToStr(peer_op_desc->GetName()) +
  608. " anchor_index:" + FmtToStr(peer_out_data_anchor->GetIdx()) +
  609. " is out of range:" + FmtToStr(offsets_of_fusion.size());
  610. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  611. return FAILED;
  612. }
  613. nopadding_size = offsets_of_fusion[peer_out_data_anchor->GetIdx()];
  614. tensor_desc_size = nopadding_size;
  615. } else {
  616. if (GetMemorySize(node->GetOpDesc(), peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx()),
  617. continuous_type, tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  618. return FAILED;
  619. }
  620. }
  621. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || lx_fusion;
  622. vector<int64_t> output_list = peer_op_desc->GetOutputOffset();
  623. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_list.size())) {
  624. std::string error = "peer node:" + FmtToStr(peer_op_desc->GetName()) +
  625. " anchor_index:" + FmtToStr(peer_out_data_anchor->GetIdx()) +
  626. " is out of range:" + FmtToStr(output_list.size());
  627. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  628. return FAILED;
  629. }
  630. // when continuous input has been allocated first input is beginning offset
  631. bool is_allocated_first_input = is_continuous_input_allocated && (in_data_anchor->GetIdx() == 0);
  632. if (is_allocated_first_input) {
  633. std::map<int32_t, int32_t> out2ins;
  634. GE_CHK_STATUS_RET(TryGetNodeRefIndexes(node, out2ins), "[Get][RefIndexes]fail for node: %s",
  635. node->GetName().c_str());
  636. // output is beginning offset, set offset for input; only support this case now
  637. if ((out2ins.size() == 1) && (out2ins.begin()->second == 0) && (reverse_refresh)) {
  638. auto peer_output_offset = output_list.at(peer_out_data_anchor->GetIdx());
  639. output_list.at(peer_out_data_anchor->GetIdx()) = output_list_this.at(out2ins.begin()->first);
  640. peer_op_desc->SetOutputOffset(output_list);
  641. GELOGI("[Update][Offset]Node %s out %d ref in %d input node %s, use output offset %ld update %ld",
  642. node->GetName().c_str(), out2ins.begin()->first, out2ins.begin()->second,
  643. peer_op_desc->GetName().c_str(), output_list_this.at(out2ins.begin()->first), peer_output_offset);
  644. } else {
  645. GELOGD("Node %s out %d ref in %d input node %s with total ref numbers %zu.", node->GetName().c_str(),
  646. out2ins.begin()->first, out2ins.begin()->second, peer_op_desc->GetName().c_str(), out2ins.size());
  647. }
  648. // first input is beginning offset
  649. mem_offset = output_list.at(peer_out_data_anchor->GetIdx());
  650. continuous_mem_start = output_list.at(peer_out_data_anchor->GetIdx());
  651. } else {
  652. // set offset for input
  653. output_list.at(peer_out_data_anchor->GetIdx()) = mem_offset;
  654. peer_op_desc->SetOutputOffset(output_list);
  655. }
  656. int64_t align_size = tensor_desc_size;
  657. if (is_nopadding) {
  658. mem_offset += nopadding_size;
  659. extra_memory_size += (tensor_desc_size - nopadding_size);
  660. real_size = nopadding_size;
  661. } else {
  662. ge::AlignMemOffset(align_size);
  663. mem_offset += align_size;
  664. // The head and tail of hcom continuous input should be added 512
  665. extra_memory_size = MEM_ALIGN_SIZE;
  666. real_size = tensor_desc_size;
  667. }
  668. GELOGI("[IMAS]Continuous input : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld] "
  669. "size[%zu] realsize[%ld] nopadding size[%d]", node->GetOwnerComputeGraph()->GetName().c_str(),
  670. peer_op_desc->GetName().c_str(), node->GetType().c_str(), peer_out_data_anchor->GetIdx(),
  671. output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(), memory_type,
  672. is_continuous_input_allocated ? 0UL : align_size, real_size, is_nopadding);
  673. }
  674. mem_offset += extra_memory_size;
  675. ge::AlignMemOffset(mem_offset);
  676. continuous_mem_size = mem_offset - continuous_mem_start;
  677. if (is_continuous_input_allocated) {
  678. // not allocate memory here, so no need add 512 in header
  679. iter->second.mem_offset_ -= MEM_ALIGN_SIZE;
  680. } else {
  681. iter->second.mem_offset_ = mem_offset;
  682. }
  683. return SUCCESS;
  684. }
  685. Status GetFirstInputPeerOutOutputOffset(const ge::NodePtr &node, int64_t &mem_offset) {
  686. auto in_data_anchor_list = node->GetAllInDataAnchors();
  687. if (in_data_anchor_list.empty()) {
  688. REPORT_INNER_ERROR("E19999", "InAnchor list empty in node:%s, not expect",
  689. node->GetName().c_str());
  690. GELOGE(FAILED, "[Get][InAnchor]empty is invalid, node:%s", node->GetName().c_str());
  691. return FAILED;
  692. }
  693. auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor();
  694. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr,
  695. REPORT_INNER_ERROR("E19999", "PeerAcnhor is null, not expect for node:%s",
  696. node->GetName().c_str());
  697. GELOGE(ge::FAILED, "[Check][PeerAnchor]null is invalid, node:%s", node->GetName().c_str());
  698. return ge::FAILED);
  699. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  700. GE_IF_BOOL_EXEC(peer_op_desc == nullptr,
  701. REPORT_INNER_ERROR("E19999", "PeerOpDesc is null, not expect for node:%s",
  702. node->GetName().c_str());
  703. GELOGE(ge::FAILED, "[Check][PeerOpDesc]null is invalid, node:%s", node->GetName().c_str());
  704. return ge::FAILED);
  705. vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset();
  706. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) {
  707. REPORT_INNER_ERROR("E19999", "PeerAnchorIndex:%d bigger than in_offset size:%lu, judge invalid for node:%s",
  708. peer_out_data_anchor->GetIdx(), in_node_output_offsets.size(), node->GetName().c_str());
  709. GELOGE(FAILED, "[Check][Index:PeerOutDataAnchor]PeerIndex:%d bigger than in_offset size:%lu, node:%s",
  710. peer_out_data_anchor->GetIdx(), in_node_output_offsets.size(), node->GetName().c_str());
  711. return FAILED;
  712. }
  713. mem_offset = in_node_output_offsets.at(peer_out_data_anchor->GetIdx());
  714. return SUCCESS;
  715. }
  716. Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node, int64_t memory_type,
  717. uint32_t continuous_type) {
  718. GELOGI("Current node %s needs continuous output.", node->GetName().c_str());
  719. auto out_op_desc = node->GetOpDesc();
  720. GE_IF_BOOL_EXEC(out_op_desc == nullptr,
  721. REPORT_INNER_ERROR("E19999", "OpDesc is null, not expect for node:%s",
  722. node->GetName().c_str());
  723. GELOGE(ge::FAILED, "[Check][OpDesc]null is invalid, node:%s", node->GetName().c_str()));
  724. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  725. if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) {
  726. REPORT_INNER_ERROR("E19999", "Output size:%zu more than output offset size:%zu, invalid in node:%s",
  727. out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
  728. GELOGE(ge::FAILED, "[Check][InnerData]Output size:%zu more than output offset size:%zu, invalid in node:%s",
  729. out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
  730. return ge::FAILED;
  731. }
  732. int64_t mem_offset = 0;
  733. bool is_nopadding = ((continuous_type & kTypeOutputNoPadding) != 0);
  734. if (is_nopadding) {
  735. // out tensor memory must be reused input tensor memory
  736. if (GetFirstInputPeerOutOutputOffset(node, mem_offset) != SUCCESS) {
  737. return ge::FAILED;
  738. }
  739. } else {
  740. // Get the reference type of the node, default is false
  741. bool is_ref = false;
  742. // If GetBool fail, is_ref is false.
  743. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  744. // If the output is ref type and refers to the ref of an input, the name of the output
  745. // and the input are the same. Ge encounters ref type, finds matching relationship according
  746. // to the names of input and output, and allocates the same memory address, eg: HCOMBroadcast
  747. if (is_ref) {
  748. GELOGI("Current node %s no needs assign continuous output because reference input by name.",
  749. node->GetName().c_str());
  750. return SUCCESS;
  751. }
  752. mem_offset = output_list[0];
  753. }
  754. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  755. output_list[out_data_anchor->GetIdx()] = mem_offset;
  756. int64_t tensor_desc_size = 0;
  757. int64_t nopadding_size = 0;
  758. if (GetMemorySize(out_op_desc, out_op_desc->GetOutputDescPtr(out_data_anchor->GetIdx()), continuous_type,
  759. tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  760. return FAILED;
  761. }
  762. if (is_nopadding) {
  763. mem_offset += nopadding_size;
  764. } else {
  765. mem_offset += tensor_desc_size;
  766. ge::AlignMemOffset(mem_offset);
  767. }
  768. GELOGI("[IMAS]Continuous output : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld]"
  769. " size[%zu] realsize[%ld] nopadding[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
  770. out_op_desc->GetName().c_str(), node->GetType().c_str(), out_data_anchor->GetIdx(),
  771. output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId(), memory_type, 0UL,
  772. is_nopadding ? nopadding_size : tensor_desc_size, is_nopadding);
  773. }
  774. out_op_desc->SetOutputOffset(output_list);
  775. return ge::SUCCESS;
  776. }
  777. Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
  778. // key:dynamic batch, batch name
  779. map<string, map<NodePtr, vector<NodePtr>>> normal_atomic_and_clean_nodes_map;
  780. map<string, vector<NodePtr>> connecting_output_atomic_nodes;
  781. Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes);
  782. if (status != SUCCESS) {
  783. GELOGE(status, "[Filter][AtomicNode]failed in graph_id:%u, graph_name:%s",
  784. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  785. return status;
  786. }
  787. auto mem_iter = memory_offset_.find(RT_MEMORY_HBM);
  788. if (mem_iter == memory_offset_.end()) {
  789. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  790. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  791. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  792. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  793. return FAILED;
  794. }
  795. int64_t batch_atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  796. int64_t batch_max_mem_offset = batch_atomic_mem_start;
  797. for (auto &iter_batch : normal_atomic_and_clean_nodes_map) {
  798. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  799. for (auto &iter : iter_batch.second) {
  800. int64_t atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  801. GELOGD("Begin to reAssign atomic memory, atomic address memory start = %ld", atomic_mem_start);
  802. for (auto &atomic_node : iter.second) {
  803. vector<int64_t> mem_offset_end;
  804. status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end);
  805. if (status != SUCCESS) {
  806. GELOGE(status, "[Assign][Memory]output atomic mem and workspace mem, fail for node name is %s.",
  807. atomic_node->GetName().c_str());
  808. return status;
  809. }
  810. }
  811. int64_t atomic_mem_size = static_cast<int64_t>(mem_iter->second.mem_offset_) - atomic_mem_start;
  812. if (atomic_mem_size != 0) {
  813. GE_CHK_STATUS_RET(SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size}, RT_MEMORY_HBM),
  814. "[Set][Attr]fail for atomic addr clean node %s.", iter.first->GetName().c_str());
  815. }
  816. }
  817. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  818. }
  819. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  820. batch_atomic_mem_start = batch_max_mem_offset;
  821. for (auto &iter_batch : connecting_output_atomic_nodes) {
  822. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  823. if (AssignConnectNetOutputAtomicMemory(iter_batch.second) != SUCCESS) {
  824. GELOGE(FAILED, "[Assign][Memory]for nodes that connect to netoutput failed."
  825. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  826. return FAILED;
  827. }
  828. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  829. }
  830. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  831. return SUCCESS;
  832. }
  833. Status GraphMemoryAssigner::FilterAtomicNodesForMemoryAssign(
  834. map<string, map<NodePtr, vector<NodePtr>>> &normal_atomic_nodes_map,
  835. map<string, vector<NodePtr>> &connecting_output_atomic_nodes) {
  836. GE_CHECK_NOTNULL(compute_graph_);
  837. for (const auto &node : compute_graph_->GetAllNodes()) {
  838. if (node->GetType() == ATOMICADDRCLEAN) {
  839. map<string, vector<NodePtr>> tmp_normal_atomic_nodes;
  840. const auto &out_control_anchor = node->GetOutControlAnchor();
  841. GE_CHECK_NOTNULL(out_control_anchor);
  842. for (const auto &peer_in_control_anchor : out_control_anchor->GetPeerInControlAnchors()) {
  843. if (peer_in_control_anchor != nullptr) {
  844. auto peer_in_node = peer_in_control_anchor->GetOwnerNode();
  845. auto peer_in_node_desc = peer_in_node->GetOpDesc();
  846. if (peer_in_node_desc != nullptr) {
  847. bool is_atomic_node = false;
  848. // If GetBool fail, is_atomic_node is false.
  849. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic_node);
  850. if (is_atomic_node) {
  851. bool is_reference = false;
  852. // If GetBool fail, is_reference is false.
  853. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference);
  854. if (is_reference) {
  855. REPORT_INNER_ERROR("E19999", "Op:%s cannot have both atomic and is_reference attribute, "
  856. "not support now", peer_in_node_desc->GetName().c_str());
  857. GELOGE(FAILED, "[Check][Attr]Op:%s cannot have both atomic and is_reference attribute, "
  858. "not support now", peer_in_node_desc->GetName().c_str());
  859. return ge::PARAM_INVALID;
  860. }
  861. std::string batch_label;
  862. (void)ge::AttrUtils::GetStr(peer_in_node_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  863. vector<int> is_connecting_output;
  864. // If GetBool fail, attr is_connecting_output is an empty vector.
  865. (void) ge::AttrUtils::GetListInt(peer_in_node_desc, ATTR_NAME_NODE_CONNECT_OUTPUT, is_connecting_output);
  866. if (is_connecting_output.empty()) {
  867. tmp_normal_atomic_nodes[batch_label].emplace_back(peer_in_node);
  868. continue;
  869. }
  870. connecting_output_atomic_nodes[batch_label].emplace_back(peer_in_node);
  871. tmp_normal_atomic_nodes[batch_label].clear();
  872. break;
  873. }
  874. }
  875. }
  876. }
  877. for (auto &it_atomic_node : tmp_normal_atomic_nodes) {
  878. if (!it_atomic_node.second.empty()) {
  879. normal_atomic_nodes_map[it_atomic_node.first][node] = it_atomic_node.second;
  880. }
  881. }
  882. }
  883. }
  884. return SUCCESS;
  885. }
  886. Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodePtr &node,
  887. vector<int64_t> &mem_offset_end) {
  888. auto node_op_desc = node->GetOpDesc();
  889. // Assign atomic node output memory
  890. Status ret = AssignAtomicOutputMemory(node, mem_offset_end);
  891. if (ret != SUCCESS) {
  892. GELOGE(ret, "[Assign][Memory:Ouput:Atomic]Failed for node:%s.", node_op_desc->GetName().c_str());
  893. return ret;
  894. }
  895. // Check and assign atomic node workspace memory
  896. map<string, map<int64_t, int64_t>> atomic_workspace_info;
  897. atomic_workspace_info = node_op_desc->TryGetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_INFO, atomic_workspace_info);
  898. if (!atomic_workspace_info.empty()) {
  899. bool is_fusion_node = false;
  900. // If GetBool fail, is_fusion_node is false.
  901. (void) ge::AttrUtils::GetBool(node_op_desc, ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
  902. if (is_fusion_node) {
  903. // Assign fusion atomic node workspace memory
  904. ret = AssignFusionAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  905. } else {
  906. // Assign single ordinary atomic node workspace memory, not include fusion node
  907. ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  908. }
  909. if (ret != SUCCESS) {
  910. GELOGE(ret, "[Assign][Memory:Atomic:Workspace]fail for node:%s.", node_op_desc->GetName().c_str());
  911. return ret;
  912. }
  913. } else {
  914. GELOGW("Current atomic node %s does not have attr ATOMIC_WORKSPACE_INFO.", node->GetName().c_str());
  915. }
  916. return SUCCESS;
  917. }
  918. Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) {
  919. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  920. if (iter == memory_offset_.end()) {
  921. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  922. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  923. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  924. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  925. return FAILED;
  926. }
  927. for (auto &node : connect_netoutput_nodes) {
  928. GE_CHECK_NOTNULL(node);
  929. if (node->GetOpDesc() == nullptr) {
  930. GELOGW("Current node %s op desc is nullptr, memory assignment is skipped.", node->GetName().c_str());
  931. continue;
  932. }
  933. // Atomic memory start addr
  934. int64_t original_atomic_mem_start = static_cast<int64_t>(iter->second.mem_offset_);
  935. GELOGD("Start to assign memory of atomic node, node name: %s, node type: %s, mem_offset: %ld.",
  936. node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start);
  937. vector<int64_t> mem_offset_end;
  938. if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) {
  939. GELOGE(FAILED, "[Assign][Memory]output atomic mem and workspace mem, fail for node name is %s.",
  940. node->GetName().c_str());
  941. return FAILED;
  942. }
  943. // All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately.
  944. if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end, RT_MEMORY_HBM) != SUCCESS) {
  945. GELOGE(FAILED, "[Set][Attr:IndependentAtomic]fail for node:%s", node->GetName().c_str());
  946. return FAILED;
  947. }
  948. }
  949. return SUCCESS;
  950. }
  951. Status GraphMemoryAssigner::AssignReferenceMemory() {
  952. for (auto &node : compute_graph_->GetDirectNode()) {
  953. // Get the reference type of the node, default is false
  954. bool is_ref = false;
  955. // If GetBool fail, is_ref is false.
  956. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  957. if (!is_ref) {
  958. continue;
  959. }
  960. GELOGI("Current node %s needs to support the reference relationship between output and input.",
  961. node->GetName().c_str());
  962. auto out_op_desc = node->GetOpDesc();
  963. GE_IF_BOOL_EXEC(out_op_desc == nullptr,
  964. REPORT_INNER_ERROR("E19999", "out_op_desc is null.");
  965. GELOGE(ge::FAILED, "[Check][Param] out_op_desc is null."); return ge::FAILED);
  966. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  967. if (out_op_desc->GetOutputsSize() > output_list.size()) {
  968. REPORT_INNER_ERROR("E19999", "Output size:%zu more than output offset size:%zu, judge invalid in node:%s",
  969. out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
  970. GELOGE(ge::FAILED, "[Check][InnerData]Output size:%zu more than output offset size:%zu, invalid in node:%s",
  971. out_op_desc->GetOutputsSize(), output_list.size(), node->GetName().c_str());
  972. return ge::FAILED;
  973. }
  974. map<string, int> input_name_index;
  975. for (const auto &input_name : out_op_desc->GetAllInputNames()) {
  976. int index = out_op_desc->GetInputIndexByName(input_name);
  977. input_name_index.emplace(input_name, index);
  978. }
  979. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  980. string out_data_anchor_name = out_op_desc->GetOutputNameByIndex(out_data_anchor->GetIdx());
  981. auto iter = input_name_index.find(out_data_anchor_name);
  982. if (iter != input_name_index.end()) {
  983. int index = iter->second;
  984. GELOGI("Reference memory: input anchor index = %d, input anchor name = %s, output anchor name = %s.", index,
  985. iter->first.c_str(), out_data_anchor_name.c_str());
  986. GE_CHECK_NOTNULL(node->GetInDataAnchor(index));
  987. auto peer_out_anchor = node->GetInDataAnchor(index)->GetPeerOutAnchor();
  988. GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
  989. int peer_out_anchor_index = peer_out_anchor->GetIdx();
  990. auto peer_out_node = peer_out_anchor->GetOwnerNode();
  991. auto peer_out_op_desc = peer_out_node->GetOpDesc();
  992. GE_CHECK_NOTNULL(peer_out_op_desc);
  993. output_list[out_data_anchor->GetIdx()] = peer_out_op_desc->GetOutputOffset()[peer_out_anchor_index];
  994. GELOGI("Reference output : Set %s name[%s] output[%d] offset to [%ld] stream_id[%ld]",
  995. node->GetOwnerComputeGraph()->GetName().c_str(), peer_out_op_desc->GetName().c_str(),
  996. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], peer_out_op_desc->GetStreamId());
  997. } else {
  998. GELOGI("Reference output : origin %s name[%s] output[%d] offset is [%ld] stream_id[%ld]",
  999. node->GetOwnerComputeGraph()->GetName().c_str(), out_op_desc->GetName().c_str(),
  1000. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId());
  1001. }
  1002. }
  1003. out_op_desc->SetOutputOffset(output_list);
  1004. }
  1005. return ge::SUCCESS;
  1006. }
  1007. bool GraphMemoryAssigner::CheckInputIsSupportAtomic(const ge::NodePtr &node) {
  1008. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  1009. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  1010. if (peer_out_data_anchor == nullptr) {
  1011. continue;
  1012. }
  1013. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  1014. if (peer_op_desc == nullptr) {
  1015. continue;
  1016. }
  1017. if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) ||
  1018. (peer_op_desc->GetType() == VARIABLE)) {
  1019. REPORT_INNER_ERROR("E19999", "node(type:%s, name:%s) link to atomic node(name:%s), "
  1020. "this situation not supported now",
  1021. peer_op_desc->GetType().c_str(), peer_op_desc->GetName().c_str(), node->GetName().c_str());
  1022. GELOGE(ge::FAILED, "[Check][Link]node(type:%s, name:%s) link to atomic node(name:%s), "
  1023. "this situation not supported now",
  1024. peer_op_desc->GetType().c_str(), peer_op_desc->GetName().c_str(), node->GetName().c_str());
  1025. return false;
  1026. }
  1027. }
  1028. return true;
  1029. }
  1030. Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, vector<int64_t> &mem_offset_end) {
  1031. auto op_desc = node->GetOpDesc();
  1032. GE_IF_BOOL_EXEC(op_desc == nullptr, GELOGE(ge::FAILED, "op_desc is null."); return ge::FAILED);
  1033. mem_offset_end.clear();
  1034. GELOGD("Begin to assign atomic output memory, node = %s.", op_desc->GetName().c_str());
  1035. vector<int64_t> atomic_output_index;
  1036. // If GetListInt fail, atomic_output_index is empty.
  1037. (void) ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
  1038. // Check atomic output
  1039. vector<int64_t> output_list = op_desc->GetOutputOffset();
  1040. if (atomic_output_index.size() > output_list.size()) {
  1041. std::string error =
  1042. "Op:" + FmtToStr(node->GetName()) + "'s size:" + FmtToStr(atomic_output_index.size()) +
  1043. " of atomic_output_index is more than the size:" + FmtToStr(output_list.size()) + " of output_list";
  1044. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1045. return ge::FAILED;
  1046. }
  1047. auto output_list_size = static_cast<int64_t>(output_list.size());
  1048. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  1049. if (iter == memory_offset_.end()) {
  1050. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  1051. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1052. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  1053. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1054. return FAILED;
  1055. }
  1056. for (auto &output_index : atomic_output_index) {
  1057. if (output_index >= output_list_size) {
  1058. std::string error =
  1059. "Op:" + FmtToStr(node->GetName()) + "'s atomic_output index:" + FmtToStr(output_index) +
  1060. " is more than the size:" + FmtToStr(output_list_size) + " of output_list.";
  1061. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  1062. return ge::PARAM_INVALID;
  1063. }
  1064. // If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here
  1065. bool is_assigned_mem = false;
  1066. if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) {
  1067. GELOGE(ge::FAILED, "[Get][MemoryAssignmentStatus]fail for node %s, out_index:%ld",
  1068. node->GetName().c_str(), output_index);
  1069. return ge::FAILED;
  1070. }
  1071. // If you have already assigned an atomic address, skip it, and you don't need to reassign it.
  1072. if (is_assigned_mem) {
  1073. GELOGI(
  1074. "Node %s atomic output : we have assigned atomic memory as the input of next node in "
  1075. "ReAssignContinuousMemory function.",
  1076. op_desc->GetName().c_str());
  1077. continue;
  1078. }
  1079. auto output_desc = op_desc->GetAllOutputsDescPtr().at(output_index);
  1080. int64_t size = 0;
  1081. if (ge::TensorUtils::GetSize(*output_desc, size) != SUCCESS) {
  1082. GELOGI("Get size failed");
  1083. }
  1084. output_list[output_index] = iter->second.mem_offset_;
  1085. std::string batch_label;
  1086. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  1087. GELOGI("[IMAS]Atomic output : Set %s name[%s] optype[%s] output[%ld] offset to [%zu] stream_id[%ld] memtype[%u] "
  1088. "size[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(), op_desc->GetName().c_str(),
  1089. node->GetType().c_str(), output_index, iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM,
  1090. size, size, batch_label.c_str());
  1091. iter->second.mem_offset_ += size;
  1092. AlignMemOffset(MEM_ALIGN_SIZE, RT_MEMORY_HBM);
  1093. mem_offset_end.emplace_back(iter->second.mem_offset_);
  1094. }
  1095. op_desc->SetOutputOffset(output_list);
  1096. return ge::SUCCESS;
  1097. }
  1098. Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index,
  1099. bool &is_mem_assigned) {
  1100. if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) {
  1101. std::string error =
  1102. "Op:" + FmtToStr(node->GetName()) + "'s output index:" + FmtToStr(output_index) +
  1103. " is more than the size:" + FmtToStr(node->GetAllOutDataAnchors().size()) + " of node's AllOutDataAnchors.";
  1104. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  1105. return ge::PARAM_INVALID;
  1106. }
  1107. auto out_data_anchor = node->GetAllOutDataAnchors().at(output_index);
  1108. GE_CHECK_NOTNULL(out_data_anchor);
  1109. auto input_anchors = out_data_anchor->GetPeerInDataAnchors();
  1110. for (auto &input_anchor : input_anchors) {
  1111. auto output_node = input_anchor->GetOwnerNode();
  1112. /// Get input atomic attr of peer output op, if atomic_input_index[0] = -1, indicates that the atomic address
  1113. /// has been assigned
  1114. vector<int64_t> atomic_input_index;
  1115. (void) ge::AttrUtils::GetListInt(output_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, atomic_input_index);
  1116. if (!atomic_input_index.empty() && (atomic_input_index[0] == kAllInputAddrIsAtomic)) {
  1117. is_mem_assigned = true;
  1118. break;
  1119. }
  1120. }
  1121. return SUCCESS;
  1122. }
  1123. Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  1124. map<string, map<int64_t, int64_t>> &workspace_info,
  1125. vector<int64_t> &mem_offset_end) {
  1126. GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str());
  1127. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  1128. if (mem_type_iter == memory_offset_.end()) {
  1129. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  1130. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1131. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  1132. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1133. return FAILED;
  1134. }
  1135. vector<int64_t> workspace_vector = op_desc->GetWorkspace();
  1136. for (auto iter = workspace_info.begin(); iter != workspace_info.end(); ++iter) {
  1137. if (op_desc->GetName() != iter->first) {
  1138. std::string error = "The node name" + FmtToStr(op_desc->GetName()) +
  1139. " and the node name" + FmtToStr(iter->first) + " in workspace info are inconsistent.";
  1140. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  1141. return ge::PARAM_INVALID;
  1142. }
  1143. if (iter->second.empty()) {
  1144. continue;
  1145. }
  1146. for (auto &info_iter : iter->second) {
  1147. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  1148. auto workspace_size = info_iter.second;
  1149. if (workspace_index >= workspace_vector.size()) {
  1150. std::string error = "The workspace index:" + FmtToStr(workspace_index) +
  1151. " is more than the size:" + FmtToStr(workspace_vector.size()) + " of workspace vector in op:" +
  1152. op_desc->GetName().c_str();
  1153. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  1154. return ge::PARAM_INVALID;
  1155. }
  1156. workspace_vector[workspace_index] = mem_type_iter->second.mem_offset_;
  1157. std::string batch_label;
  1158. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  1159. GELOGI(
  1160. "[IMAS]Atomic ordinary workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  1161. "memtype[%u] size[%ld] real_size[%ld] batch[%s].",
  1162. compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index,
  1163. mem_type_iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size,
  1164. batch_label.c_str());
  1165. mem_type_iter->second.mem_offset_ += workspace_size;
  1166. AlignMemOffset(MEM_ALIGN_SIZE, RT_MEMORY_HBM);
  1167. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  1168. }
  1169. }
  1170. op_desc->SetWorkspace(workspace_vector);
  1171. return SUCCESS;
  1172. }
  1173. Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  1174. map<string, map<int64_t, int64_t>> &workspace_info,
  1175. vector<int64_t> &mem_offset_end) {
  1176. GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str());
  1177. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  1178. if (mem_type_iter == memory_offset_.end()) {
  1179. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ does not have type[HBM], not expected, "
  1180. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1181. GELOGE(FAILED, "[Check][InnerData]memory_offset_ does not have memory type[HBM]"
  1182. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1183. return FAILED;
  1184. }
  1185. map<string, map<int64_t, int64_t>> sub_node_workspace_offset;
  1186. for (auto &iter : workspace_info) {
  1187. if (iter.second.empty()) {
  1188. continue;
  1189. }
  1190. map<int64_t, int64_t> index_offset;
  1191. for (auto &info_iter : iter.second) {
  1192. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  1193. auto workspace_size = info_iter.second;
  1194. size_t workspace_offset = mem_type_iter->second.mem_offset_;
  1195. std::string batch_label;
  1196. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  1197. GELOGI(
  1198. "[IMAS]Atomic fusion workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  1199. "memtype[%u] ssize[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(),
  1200. op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index, mem_type_iter->second.mem_offset_,
  1201. op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size, batch_label.c_str());
  1202. mem_type_iter->second.mem_offset_ += workspace_size;
  1203. AlignMemOffset(MEM_ALIGN_SIZE, RT_MEMORY_HBM);
  1204. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  1205. index_offset.insert(std::make_pair(workspace_index, workspace_offset));
  1206. }
  1207. sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset));
  1208. }
  1209. if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) {
  1210. REPORT_INNER_ERROR("E19999", "Set Attr:%s fail for node:%s",
  1211. EXT_ATTR_ATOMIC_WORKSPACE_OFFSET.c_str(), op_desc->GetName().c_str());
  1212. GELOGE(FAILED, "[Set][Attr:%s]fail for node:%s.",
  1213. EXT_ATTR_ATOMIC_WORKSPACE_OFFSET.c_str(), op_desc->GetName().c_str());
  1214. return FAILED;
  1215. }
  1216. return SUCCESS;
  1217. }
  1218. Status GraphMemoryAssigner::CheckOffset() {
  1219. std::map<std::string, std::string> anchor_to_symbol;
  1220. std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
  1221. if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) {
  1222. REPORT_CALL_ERROR("E19999", "Get ref-mapping for graph %s failed", compute_graph_->GetName().c_str());
  1223. GELOGE(FAILED, "[Get][RefMapping]fail for graph %s", compute_graph_->GetName().c_str());
  1224. return FAILED;
  1225. }
  1226. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1227. GE_CHECK_NOTNULL(node->GetOpDesc());
  1228. vector<int64_t> input_list = node->GetOpDesc()->GetInputOffset();
  1229. for (auto input : input_list) {
  1230. if (input == ge::kInvalidOffset) {
  1231. std::string error = "Invalid input offset" + FmtToStr(ge::kInvalidOffset) +
  1232. + " in node" + FmtToStr(node->GetName());
  1233. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1234. return FAILED;
  1235. }
  1236. }
  1237. bool need_update_output = false;
  1238. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  1239. for (uint32_t i = 0; i < output_list.size(); ++i) {
  1240. if (output_list[i] == ge::kInvalidOffset) {
  1241. std::string error = "Invalid output offset" + FmtToStr(ge::kInvalidOffset) +
  1242. + " in node" + FmtToStr(node->GetName());
  1243. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1244. return FAILED;
  1245. }
  1246. if (node->GetType() == IDENTITY || node->GetType() == READVARIABLEOP) {
  1247. auto symbol_offset = GetSymbolOutputOffset(anchor_to_symbol, symbol_to_anchors, node, i);
  1248. if (symbol_offset != ge::kInvalidOffset && output_list[i] != symbol_offset) {
  1249. output_list[i] = symbol_offset;
  1250. need_update_output = true;
  1251. }
  1252. }
  1253. }
  1254. if (need_update_output) {
  1255. node->GetOpDesc()->SetOutputOffset(output_list);
  1256. }
  1257. vector<int64_t> workspace_list = node->GetOpDesc()->GetWorkspace();
  1258. for (auto workspace : workspace_list) {
  1259. if (workspace == ge::kInvalidOffset) {
  1260. std::string error = "Invalid workspace" + FmtToStr(ge::kInvalidOffset) +
  1261. + " in node" + FmtToStr(node->GetName());
  1262. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1263. return FAILED;
  1264. }
  1265. }
  1266. // check reuse input and output
  1267. GE_CHK_STATUS_RET(CheckRefNodeOffset(node), "[Check][Offset]fail for node: %s", node->GetName().c_str());
  1268. }
  1269. return SUCCESS;
  1270. }
  1271. ge::Status GraphMemoryAssigner::CheckRefNodeOffset(const NodePtr &node) {
  1272. GE_CHECK_NOTNULL(node);
  1273. std::map<int32_t, int32_t> out2ins;
  1274. GE_CHK_STATUS_RET(TryGetNodeRefIndexes(node, out2ins), "[Get][RefIndexes]fail for node: %s", node->GetName().c_str());
  1275. auto opdesc = node->GetOpDesc();
  1276. GE_CHECK_NOTNULL(opdesc);
  1277. auto output_list = opdesc->GetOutputOffset();
  1278. auto input_list = opdesc->GetInputOffset();
  1279. for (const auto &out2in : out2ins) {
  1280. auto out_i = out2in.first;
  1281. if (static_cast<size_t>(out_i) >= output_list.size()) {
  1282. std::string error = "Node" + FmtToStr(opdesc->GetName()) + "output offset size" +
  1283. FmtToStr(output_list.size()) + "should bigger than ref out index" + FmtToStr(out_i);
  1284. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1285. return ge::FAILED;
  1286. }
  1287. auto in_i = out2in.second;
  1288. if (static_cast<size_t>(in_i) >= input_list.size()) {
  1289. std::string error = "Node" + FmtToStr(opdesc->GetName()) + "input offset size" +
  1290. FmtToStr(input_list.size()) + "should bigger than ref input index" + FmtToStr(in_i);
  1291. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1292. return ge::FAILED;
  1293. }
  1294. if (output_list[out_i] != input_list[in_i]) {
  1295. std::string error = "Node" + FmtToStr(opdesc->GetName()) + "input offset " + FmtToStr(input_list[in_i]) +
  1296. "should equal to output offset" + FmtToStr(output_list[out_i]) + "with ref in" +
  1297. FmtToStr(in_i) + "to output" + FmtToStr(out_i);
  1298. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1299. return ge::FAILED;
  1300. }
  1301. }
  1302. return ge::SUCCESS;
  1303. }
  1304. ge::Status GraphMemoryAssigner::SetInputOffset() {
  1305. if (memory_offset_.empty()) {
  1306. REPORT_INNER_ERROR("E19999", "InnerData memory_offset_ empty, not expected, graph_id:%u, graph_name:%s",
  1307. compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1308. GELOGE(FAILED, "[Check][InnerData:memory_offset_]empty is not expected, "
  1309. "graph_id:%u, graph_name:%s", compute_graph_->GetGraphID(), compute_graph_->GetName().c_str());
  1310. }
  1311. for (auto pair : memory_offset_) {
  1312. if ((pair.first != RT_MEMORY_HBM) && (pair.second.mem_offset_ == 0)) {
  1313. continue;
  1314. }
  1315. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  1316. pair.second.mem_offset_, pair.first);
  1317. }
  1318. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1319. if (UpdateOpInputOffset(node) != ge::SUCCESS) {
  1320. GELOGE(ge::FAILED, "[Update][Offset:Input]fail for op:%s", node->GetName().c_str());
  1321. return ge::FAILED;
  1322. }
  1323. }
  1324. return ge::SUCCESS;
  1325. }
  1326. NodePtr GraphMemoryAssigner::GetKnownInputNode(const NodePtr &node) const {
  1327. if (!node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX)) {
  1328. return node;
  1329. }
  1330. if (NodeUtils::IsDynamicShape(node)) {
  1331. return node;
  1332. }
  1333. return NodeUtils::GetParentInput(node);
  1334. }
  1335. ge::Status GraphMemoryAssigner::UpdateConstArgsOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1336. uint32_t parent_index = 0;
  1337. if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) {
  1338. return SUCCESS;
  1339. }
  1340. // Subgraph Data Node, check for constant input.
  1341. std::string op_type;
  1342. const auto &in_node = NodeUtils::GetParentInput(node);
  1343. if (NodeUtils::GetConstOpType(in_node, op_type)) {
  1344. input_list = in_node->GetOpDesc()->GetOutputOffset();
  1345. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as const output.
  1346. return SUCCESS; // Constant input.
  1347. }
  1348. // Memory allocated for dynamic shape subgraph Data.
  1349. if (NodeUtils::IsDynamicShape(node)) {
  1350. return SUCCESS;
  1351. }
  1352. const auto &owner = node->GetOwnerComputeGraph();
  1353. const auto &parent_desc = owner->GetParentNode()->GetOpDesc();
  1354. const auto parent_inputs = parent_desc->GetInputOffset();
  1355. if (parent_inputs.size() <= parent_index) {
  1356. std::string error = "Get Parent input offset failed, node is " + FmtToStr(node->GetName()) +
  1357. + ", input_size is " + FmtToStr(parent_inputs.size()) + ", parent index is " +
  1358. FmtToStr(parent_index);
  1359. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1360. return FAILED;
  1361. }
  1362. input_list = {parent_inputs[parent_index]};
  1363. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as parent input.
  1364. return SUCCESS;
  1365. }
  1366. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1367. vector<int64_t> origin_input_list;
  1368. vector<int64_t> memory_type;
  1369. auto tmp_op_desc = node->GetOpDesc();
  1370. origin_input_list = tmp_op_desc->GetInputOffset();
  1371. int64_t valid_input_index = 0;
  1372. bool has_mem_type_attr = ge::AttrUtils::GetListInt(tmp_op_desc, ATTR_NAME_INPUT_MEM_TYPE_LIST, memory_type);
  1373. std::map<int32_t, int32_t> out2ins;
  1374. GE_CHK_STATUS_RET(TryGetNodeRefIndexes(node, out2ins), "[Get][RefIndexes]fail for node: %s", node->GetName().c_str());
  1375. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1376. vector<int64_t> output_list;
  1377. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1378. if (peer_out_anchor == nullptr) {
  1379. continue;
  1380. }
  1381. // If the current node not broadcast, the OutputOffset of the previous node is used to update the input_list
  1382. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1383. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1384. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1385. output_list = last_peer_out_op_desc->GetOutputOffset();
  1386. auto out_index = static_cast<unsigned long>(peer_out_anchor->GetIdx());
  1387. if (output_list.size() > static_cast<size_t>(out_index)) {
  1388. bool is_l1_type = false;
  1389. int64_t input_offset = output_list.at(out_index);
  1390. if (has_mem_type_attr && !origin_input_list.empty()) {
  1391. auto input_size = tmp_op_desc->GetInputsSize();
  1392. auto ori_input_offset_list_size = origin_input_list.size();
  1393. auto mem_type_size = memory_type.size();
  1394. if ((input_size != mem_type_size) || (input_size != ori_input_offset_list_size)) {
  1395. std::string error = "Node" + FmtToStr(tmp_op_desc->GetName()) +
  1396. + " input_size" + FmtToStr(input_size) + " diff from memory_type_size" +
  1397. FmtToStr(mem_type_size) + " from ori_input_offset_list_size" +
  1398. FmtToStr(ori_input_offset_list_size);
  1399. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1400. return ge::FAILED;
  1401. }
  1402. GELOGD("Node[%s] input[%d] has origin offset[%ld]", tmp_op_desc->GetName().c_str(), anchor->GetIdx(),
  1403. origin_input_list[valid_input_index]);
  1404. // L1 keep original input_offset
  1405. is_l1_type = (memory_type[valid_input_index] == RT_MEMORY_L1);
  1406. if (is_l1_type) {
  1407. input_offset = origin_input_list[valid_input_index];
  1408. } else {
  1409. // hbm input_offset = original input_offset + output_offset
  1410. input_offset = origin_input_list[valid_input_index] + output_list.at(out_index);
  1411. }
  1412. }
  1413. const auto &in_node = GetKnownInputNode(peer_out_anchor->GetOwnerNode());
  1414. if (in_node->GetType() == CONSTANT) {
  1415. GeTensorDesc tensor_desc = tmp_op_desc->GetInputDesc(static_cast<uint32_t>(anchor->GetIdx()));
  1416. GE_CHK_STATUS(TensorUtils::GetDataOffset(tensor_desc, input_offset));
  1417. }
  1418. if (!is_l1_type) {
  1419. // update ref output_offset when input change
  1420. GE_CHK_STATUS_RET(UpdateRefOpOutputOffset(node, out2ins, anchor->GetIdx(), input_offset),
  1421. "[Update][RefOffset]fail for node: %s", node->GetName().c_str());
  1422. }
  1423. GELOGD("Node[%s] input[%d] is set from node[%s] out index[%lu] offset[%ld]", tmp_op_desc->GetName().c_str(),
  1424. anchor->GetIdx(), peer_out_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(), out_index,
  1425. input_offset);
  1426. input_list.emplace_back(input_offset);
  1427. valid_input_index++;
  1428. }
  1429. }
  1430. return ge::SUCCESS;
  1431. }
  1432. ge::Status GraphMemoryAssigner::UpdateRefOpOutputOffset(const NodePtr &node, const std::map<int32_t, int32_t> &out2ins,
  1433. const int ref_in, const int64_t input_offset) const {
  1434. auto opdesc = node->GetOpDesc();
  1435. GE_CHECK_NOTNULL(opdesc);
  1436. for (const auto &out2in : out2ins) {
  1437. auto out_i = out2in.first;
  1438. auto in_i = out2in.second;
  1439. if (in_i == ref_in) {
  1440. auto origin_output_list = opdesc->GetOutputOffset();
  1441. if (static_cast<size_t>(out_i) >= origin_output_list.size()) {
  1442. std::string error = "Node" + FmtToStr(opdesc->GetName()) + "output offset size" +
  1443. FmtToStr(origin_output_list.size()) + "should bigger than ref out index" + FmtToStr(out_i);
  1444. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1445. return ge::FAILED;
  1446. }
  1447. origin_output_list[out_i] = input_offset;
  1448. opdesc->SetOutputOffset(origin_output_list);
  1449. GELOGI("Node[%s] output[%d] is updated from reuse input index[%d] to offset[%ld]", opdesc->GetName().c_str(),
  1450. out_i, ref_in, input_offset);
  1451. }
  1452. }
  1453. return ge::SUCCESS;
  1454. }
  1455. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node) const {
  1456. GE_CHECK_NOTNULL(node->GetOpDesc());
  1457. vector<int64_t> input_list;
  1458. if (node->GetType() == HCOMBROADCAST || node->GetType() == HVDCALLBACKBROADCAST) {
  1459. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1460. vector<int64_t> output_list;
  1461. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1462. if (peer_out_anchor == nullptr) {
  1463. continue;
  1464. }
  1465. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1466. // If the current node is broadcast and the preceding node is variable, because InputOffset has been set
  1467. // in function:AssignVarAttr2Nodes, then the InputOffset of the broadcast node is taken to update the input_list.
  1468. // Otherwise, the OutputOffset of the previous node is used to update the input_list.
  1469. if (last_peer_out_node->GetType() != VARIABLE) {
  1470. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1471. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1472. output_list = last_peer_out_op_desc->GetOutputOffset();
  1473. if (output_list.size() > static_cast<size_t>(peer_out_anchor->GetIdx())) {
  1474. input_list.emplace_back(output_list.at(peer_out_anchor->GetIdx()));
  1475. }
  1476. } else {
  1477. vector<int64_t> cur_node_input_list;
  1478. auto cur_node_op_desc = node->GetOpDesc();
  1479. GE_CHECK_NOTNULL(cur_node_op_desc);
  1480. cur_node_input_list = cur_node_op_desc->GetInputOffset();
  1481. if (cur_node_input_list.size() > static_cast<size_t>(anchor->GetIdx())) {
  1482. input_list.emplace_back(cur_node_input_list.at(anchor->GetIdx()));
  1483. }
  1484. }
  1485. }
  1486. } else if (node->GetType() == DATA_TYPE) {
  1487. if (UpdateConstArgsOffset(node, input_list) != SUCCESS) {
  1488. GELOGE(FAILED, "[Update][Offset:Input:Const]fail for node:%s ", node->GetName().c_str());
  1489. return FAILED;
  1490. }
  1491. } else {
  1492. if (UpdateOpInputOffset(node, input_list) != SUCCESS) {
  1493. GELOGE(FAILED, "[Update][Offset:Input]fail for node:%s", node->GetName().c_str());
  1494. return FAILED;
  1495. }
  1496. }
  1497. node->GetOpDesc()->SetInputOffset(input_list);
  1498. return SUCCESS;
  1499. }
  1500. Status GraphMemoryAssigner::SetIndependentAtomicAttr(const ge::NodePtr &node, int64_t atomic_mem_start,
  1501. const vector<int64_t> &mem_offset_end, int64_t memory_type) {
  1502. GELOGD("Start to set independent atomic attr, atomic_addr_clean memory offset start is %ld", atomic_mem_start);
  1503. // Parsing offset and size vectors
  1504. vector<int64_t> memory_offset_start;
  1505. vector<int64_t> memory_offset_size;
  1506. memory_offset_start.emplace_back(atomic_mem_start);
  1507. for (size_t i = 0; i < mem_offset_end.size(); ++i) {
  1508. memory_offset_start.emplace_back(mem_offset_end[i]);
  1509. // Number 1 means element index
  1510. auto size = memory_offset_start[i + 1] - memory_offset_start[i];
  1511. memory_offset_size.emplace_back(size);
  1512. }
  1513. memory_offset_start.pop_back();
  1514. const auto &in_control_anchor = node->GetInControlAnchor();
  1515. if (!memory_offset_size.empty() && in_control_anchor != nullptr) {
  1516. for (auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1517. if (peer_out_control_anchor == nullptr) {
  1518. continue;
  1519. }
  1520. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1521. auto peer_out_node_desc = peer_out_node->GetOpDesc();
  1522. if (peer_out_node_desc == nullptr) {
  1523. continue;
  1524. }
  1525. GELOGD("Current node memory_offset vector size is %zu, node name %s, node type is %s.", memory_offset_size.size(),
  1526. peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str());
  1527. if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) {
  1528. if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size, memory_type) != SUCCESS) {
  1529. GELOGE(FAILED, "[Set][AtomicCleanAttr]fail for node:%s", peer_out_node->GetName().c_str());
  1530. return FAILED;
  1531. }
  1532. }
  1533. }
  1534. }
  1535. return SUCCESS;
  1536. }
  1537. ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const vector<int64_t> &atomic_mem_start,
  1538. const vector<int64_t> &atomic_mem_size, int64_t memory_type) {
  1539. auto node_op_desc = node->GetOpDesc();
  1540. if (node_op_desc != nullptr) {
  1541. GELOGD("Node %s, set atomic clean attr start.", node->GetName().c_str());
  1542. vector<int64_t> workspace_vector = node_op_desc->GetWorkspace();
  1543. vector<int64_t> workspace_byte_vector = node_op_desc->GetWorkspaceBytes();
  1544. workspace_vector.insert(workspace_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1545. workspace_byte_vector.insert(workspace_byte_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1546. node_op_desc->SetWorkspace(workspace_vector);
  1547. node_op_desc->SetWorkspaceBytes(workspace_byte_vector);
  1548. std::vector<int64_t> mem_start_vector;
  1549. // If GetListInt fail, mem_start_vector is empty.
  1550. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector);
  1551. mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1552. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector),
  1553. REPORT_INNER_ERROR("E19999", "Set Attr:%s failed, op_name:%s",
  1554. ATTR_NAME_AUTOMIC_ADD_START.c_str(), node_op_desc->GetName().c_str());
  1555. GELOGE(FAILED, "[Set][Attr:%s]fail for op_name:%s",
  1556. ATTR_NAME_AUTOMIC_ADD_START.c_str(), node_op_desc->GetName().c_str());
  1557. return FAILED);
  1558. std::vector<int64_t> mem_size_vector;
  1559. // If GetListInt fail, mem_size_vector is empty.
  1560. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector);
  1561. mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1562. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector),
  1563. REPORT_INNER_ERROR("E19999", "Set Attr:%s failed, op_name:%s",
  1564. ATTR_NAME_AUTOMIC_ADD_MEM_SIZE.c_str(), node_op_desc->GetName().c_str());
  1565. GELOGE(FAILED, "[Set][Attr:%s]fail for op_name:%s",
  1566. ATTR_NAME_AUTOMIC_ADD_MEM_SIZE.c_str(), node_op_desc->GetName().c_str());
  1567. return FAILED);
  1568. std::stringstream ss;
  1569. for (auto iter : atomic_mem_start) {
  1570. ss << iter << " ";
  1571. }
  1572. string atomic_mem_start_str = ss.str();
  1573. ss.clear();
  1574. ss.str("");
  1575. for (auto iter : atomic_mem_size) {
  1576. ss << iter << " ";
  1577. }
  1578. string atomic_mem_size_str = ss.str();
  1579. GELOGI("[IMAS]SetAtomicCleanAttr : Set %s atomic_node name[%s] optype[%s] output[0] offset to [%s] streamid[%ld]"
  1580. " memtype[%ld] size[%s]",node->GetOwnerComputeGraph()->GetName().c_str(), node_op_desc->GetName().c_str(),
  1581. node->GetType().c_str(), atomic_mem_start_str.c_str(), node->GetOpDesc()->GetStreamId(), memory_type,
  1582. atomic_mem_size_str.c_str());
  1583. }
  1584. return SUCCESS;
  1585. }
  1586. void GraphMemoryAssigner::AlignMemOffset(const int64_t &mem_align_size, int64_t memory_type) {
  1587. if (mem_align_size <= 0) {
  1588. return;
  1589. }
  1590. auto iter = memory_offset_.find(memory_type);
  1591. if (iter == memory_offset_.end()) {
  1592. GELOGW("Memory offset don't have memory type[%ld].", memory_type);
  1593. return;
  1594. }
  1595. iter->second.mem_offset_ =
  1596. (iter->second.mem_offset_ + mem_align_size - 1) / mem_align_size * mem_align_size;
  1597. }
  1598. ge::Status GraphMemoryAssigner::GetNodeListMemoryType(const vector<NodePtr> &nodes, int32_t mem_reuse_model,
  1599. int64_t &memory_type) {
  1600. memory_type = RT_MEMORY_HBM;
  1601. // In the dynamic batch scenario, the memory attributes of nodes are the same.
  1602. for (auto &n : nodes) {
  1603. if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
  1604. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "input"),
  1605. "[Get][MemType:input]fail for node:%s", n->GetName().c_str())
  1606. break;
  1607. }
  1608. if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
  1609. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "output"),
  1610. "[Get][MemType:output]fail for node:%s", n->GetName().c_str())
  1611. break;
  1612. }
  1613. }
  1614. return SUCCESS;
  1615. }
  1616. ge::Status GraphMemoryAssigner::GetNodeMemoryType(const NodePtr &node, int64_t &memory_type, string input_or_output) {
  1617. memory_type = RT_MEMORY_HBM;
  1618. vector<int64_t> mem_type_list;
  1619. if (input_or_output == "input") {
  1620. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_INPUT_MEM_TYPE_LIST, mem_type_list);
  1621. }
  1622. if (input_or_output == "output") {
  1623. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_OUTPUT_MEM_TYPE_LIST, mem_type_list);
  1624. }
  1625. if (mem_type_list.empty()) {
  1626. if (memory_offset_.find(memory_type) == memory_offset_.end()) {
  1627. std::string error = "Memory offset map does not have memory type" + FmtToStr(memory_type) +
  1628. + ", opname is " + FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1629. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1630. return FAILED;
  1631. }
  1632. return SUCCESS;
  1633. }
  1634. if (mem_type_list.size() != node->GetAllInDataAnchorsSize()) {
  1635. std::string error = "The size" + FmtToStr(mem_type_list.size()) +
  1636. " of mem type list is not equal to the size of in data anchor" +
  1637. FmtToStr(node->GetAllInDataAnchorsSize()) + ", opname is " +
  1638. FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1639. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1640. return FAILED;
  1641. }
  1642. if (!CheckContinuousMemType(mem_type_list)) {
  1643. GELOGE(FAILED, "[Check][MemType:Continuous]fail for node:%s", node->GetName().c_str());
  1644. return FAILED;
  1645. }
  1646. // It is continuous memory and memory type is the same, so use the first memory.
  1647. memory_type = mem_type_list[0];
  1648. return SUCCESS;
  1649. }
  1650. bool GraphMemoryAssigner::CheckContinuousMemType(vector<int64_t> mem_type_list) {
  1651. if (mem_type_list.size() == 0) {
  1652. return true;
  1653. }
  1654. int64_t mem_type_tmp = mem_type_list[0];
  1655. for (auto mem_type : mem_type_list) {
  1656. if (mem_type != mem_type_tmp) {
  1657. REPORT_INNER_ERROR(
  1658. "E19999",
  1659. "The memory is continuous, but the type of the input memory is inconsistent. They are %s and %s",
  1660. FmtToStr(mem_type_tmp).c_str(), FmtToStr(mem_type).c_str());
  1661. GELOGW("The memory is continuous, but the type of the input memory is inconsistent. They are [%ld] and [%ld].",
  1662. mem_type_tmp, mem_type);
  1663. return false;
  1664. }
  1665. }
  1666. if (memory_offset_.find(mem_type_tmp) == memory_offset_.end()) {
  1667. REPORT_INNER_ERROR("E19999", "Memory offset map does not have memory type %s", FmtToStr(mem_type_tmp).c_str());
  1668. GELOGW("Memory offset map does not have memory type[%ld].", mem_type_tmp);
  1669. return false;
  1670. }
  1671. return true;
  1672. }
  1673. void GraphMemoryAssigner::PrintMemoryOffset() {
  1674. for (auto pair : memory_offset_) {
  1675. // Assign memory of max batch nodes that have the same batch label.
  1676. GELOGD("Reassign memory for max batch virtual nodes, memory type = %ld, memory offset = %zu.",
  1677. pair.first, pair.second.mem_offset_);
  1678. }
  1679. }
  1680. ge::Status GraphMemoryAssigner::TryGetNodeRefIndexes(const NodePtr &node, map<int32_t, int32_t> &out2ins) const{
  1681. // data and netoutput no need check because only data's output or netoutput's input is used
  1682. if (node->GetType() == DATA || node->GetType() == NETOUTPUT) {
  1683. return ge::SUCCESS;
  1684. }
  1685. for (const auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  1686. int32_t reuse_in_index = -1;
  1687. // nopadding means output[0] reuse input[0], but as history reason,
  1688. // other output index also return true for mem assign in block_mem_assigner
  1689. if (GraphUtils::IsNoPaddingRefFromInput(out_data_anchor, reuse_in_index)) {
  1690. out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index);
  1691. return ge::SUCCESS;
  1692. }
  1693. bool reuse_input_flag = GraphUtils::IsRefFromInput(out_data_anchor, reuse_in_index);
  1694. if (reuse_input_flag) {
  1695. if (node->GetInDataAnchor(reuse_in_index) != nullptr) {
  1696. out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index);
  1697. } else {
  1698. REPORT_INNER_ERROR("E19999", "Invalid reuse_input value %d on output %d of node %s, "
  1699. "please check attr reuse_input",
  1700. reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
  1701. GELOGE(FAILED, "[Check][Attr]Invalid reuse_input value %d on output %d of node %s, "
  1702. "please check attr reuse_input",
  1703. reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
  1704. return FAILED;
  1705. }
  1706. }
  1707. }
  1708. return ge::SUCCESS;
  1709. }
  1710. bool GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcessDirectly(
  1711. const NodePtr &input_continuous_node, map<NodePtr, uint32_t> &node_2_continuous_type) {
  1712. for (const auto &in_node : input_continuous_node->GetInDataNodes()) {
  1713. if (in_node->GetType() == VARIABLE) {
  1714. GELOGI("node %s 's precursor node %s is variable, do not store.", input_continuous_node->GetName().c_str(),
  1715. in_node->GetName().c_str());
  1716. return true;
  1717. }
  1718. auto iter = node_2_continuous_type.find(in_node);
  1719. // In node's topo order in the front, so function can not be exception
  1720. auto continuous_type = iter->second;
  1721. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1722. if (continuous_input) {
  1723. GELOGI("[Store][Node] of %s cause it's precursor node %s need assign continuous input memory",
  1724. input_continuous_node->GetName().c_str(), in_node->GetName().c_str());
  1725. return false;
  1726. }
  1727. }
  1728. for (const auto &out_node : input_continuous_node->GetOutDataNodes()) {
  1729. auto continuous_type = GetContinuousMemoryType(out_node->GetOpDesc());
  1730. node_2_continuous_type.emplace(out_node, continuous_type);
  1731. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1732. if (continuous_input) {
  1733. GELOGI("[Store][Node] of %s cause it's succeed node %s need assign continuous input memory",
  1734. input_continuous_node->GetName().c_str(), out_node->GetName().c_str());
  1735. return false;
  1736. }
  1737. }
  1738. return true;
  1739. }
  1740. ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(const NodePtr &input_continuous_node,
  1741. uint32_t continuous_type,
  1742. bool reverse_refresh) {
  1743. int64_t mem_clean_start = 0;
  1744. int64_t mem_clean_size = 0;
  1745. int64_t memory_type = RT_MEMORY_HBM;
  1746. GE_CHK_STATUS_RET(GetNodeMemoryType(input_continuous_node, memory_type, "input"),
  1747. "[Get][MemType]fail for node:%s", input_continuous_node->GetName().c_str());
  1748. auto ret = AssignContinuousInputMemory(input_continuous_node, mem_clean_start, mem_clean_size, memory_type,
  1749. continuous_type, reverse_refresh);
  1750. if (ret != ge::SUCCESS) {
  1751. GELOGE(ret, "[Assign][Memory:Input:continuous]fail for node:%s", input_continuous_node->GetName().c_str());
  1752. return ret;
  1753. }
  1754. // Clean up atomic address, eg, hcom node
  1755. vector<int32_t> input_indexes;
  1756. // If GetListInt fail, input_indexes is empty.
  1757. (void)ge::AttrUtils::GetListInt(input_continuous_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, input_indexes);
  1758. if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) {
  1759. // check whether there is an atomic conflict between the current node and the peer out node
  1760. if (!CheckInputIsSupportAtomic(input_continuous_node)) {
  1761. return ge::FAILED;
  1762. }
  1763. const auto &in_control_anchor = input_continuous_node->GetInControlAnchor();
  1764. GE_CHECK_NOTNULL(in_control_anchor);
  1765. for (const auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1766. GE_CHECK_NOTNULL(peer_out_control_anchor);
  1767. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1768. if (peer_out_node->GetType() == ATOMICADDRCLEAN) {
  1769. ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size}, memory_type);
  1770. if (ret != SUCCESS) {
  1771. GELOGE(ret, "[Set][AtomicCleanAttr]fail for node:%s", peer_out_node->GetName().c_str());
  1772. return ret;
  1773. }
  1774. }
  1775. }
  1776. }
  1777. return ge::SUCCESS;
  1778. }
  1779. Status GraphMemoryAssigner::AssignBufferPoolMemory() {
  1780. auto is_buffer_pool_mem_enable = [] (const ComputeGraphPtr &graph) -> bool {
  1781. for (NodePtr &node : graph->GetAllNodes()) {
  1782. auto op_desc = node->GetOpDesc();
  1783. if (op_desc == nullptr) {
  1784. continue;
  1785. }
  1786. bool has_attrs = op_desc->HasAttr(ATTR_NAME_BUFFER_POOL_ID) && op_desc->HasAttr(ATTR_NAME_BUFFER_POOL_SIZE);
  1787. if (has_attrs) {
  1788. return true;
  1789. }
  1790. }
  1791. return false;
  1792. };
  1793. auto root_graph = GraphUtils::FindRootGraph(compute_graph_);
  1794. GE_CHECK_NOTNULL(root_graph);
  1795. if (root_graph->GetGraphUnknownFlag()) {
  1796. GELOGI("[Check][Enable]Unknown root graph does not support buffer pool memory, graph:%s.",
  1797. compute_graph_->GetName().c_str());
  1798. return SUCCESS;
  1799. }
  1800. if (!is_buffer_pool_mem_enable(compute_graph_)) {
  1801. GELOGD("[Check][Enable]Buffer pool memory is not enable, graph:%s.", compute_graph_->GetName().c_str());
  1802. return SUCCESS;
  1803. }
  1804. map<int64_t, size_t> mem_type_to_offset;
  1805. for (const auto &pair : memory_offset_) {
  1806. mem_type_to_offset[pair.first] = pair.second.mem_offset_;
  1807. }
  1808. BufferPoolMemAssigner buffer_pool_mem_assigner(compute_graph_, mem_type_to_offset);
  1809. Status status = buffer_pool_mem_assigner.Assign();
  1810. if (status != SUCCESS) {
  1811. GELOGE(status, "[Assign][BufferPoolMem]Graph:%s.", compute_graph_->GetName().c_str());
  1812. REPORT_INNER_ERROR("E19999", "Failed to assign buffer pool memory, graph:%s.", compute_graph_->GetName().c_str());
  1813. return status;
  1814. }
  1815. int64_t mem_type = buffer_pool_mem_assigner.GetMemType();
  1816. auto iter = memory_offset_.find(mem_type);
  1817. if (iter == memory_offset_.end()) {
  1818. GELOGE(FAILED, "[Check][MemType]Memory type is not supported, graph:%s, mem type:%ld.",
  1819. compute_graph_->GetName().c_str(), mem_type);
  1820. REPORT_INNER_ERROR("E19999", "Memory type is not supported, graph:%s, mem type:%ld.",
  1821. compute_graph_->GetName().c_str(), mem_type);
  1822. return FAILED;
  1823. }
  1824. iter->second.mem_offset_ = buffer_pool_mem_assigner.GetMemOffset();
  1825. GELOGI("[Assign][BufferPoolMem]Assign buffer pool memory successfully, graph:%s, mem type:%ld, mem offset:%zu.",
  1826. compute_graph_->GetName().c_str(), mem_type, buffer_pool_mem_assigner.GetMemOffset());
  1827. return SUCCESS;
  1828. }
  1829. // if producer and customers in the same stream, or customers on the same stream when producer not assign a stream,
  1830. // then return false.
  1831. bool GraphMemoryAssigner::IsOutputVisitedByMultiStream(const NodePtr &peer_out_node, int64_t out_anchor_index) {
  1832. GE_IF_BOOL_EXEC(peer_out_node->GetOpDesc() == nullptr, return true);
  1833. int64_t unique_stream_id = peer_out_node->GetOpDesc()->GetStreamId();
  1834. GE_IF_BOOL_EXEC(peer_out_node->GetOutDataAnchor(out_anchor_index) == nullptr, return true);
  1835. for (const auto &in_data_anchor : peer_out_node->GetOutDataAnchor(out_anchor_index)->GetPeerInDataAnchors()) {
  1836. auto node = in_data_anchor->GetOwnerNode();
  1837. GE_IF_BOOL_EXEC(node == nullptr || node->GetOpDesc() == nullptr, continue);
  1838. if (node->GetOpDesc()->GetStreamId() == kInvalidStream) {
  1839. continue;
  1840. }
  1841. if (unique_stream_id == kInvalidStream) { // peer_out_node not belong to any stream
  1842. unique_stream_id = node->GetOpDesc()->GetStreamId();
  1843. continue;
  1844. }
  1845. if (node->GetOpDesc()->GetStreamId() != unique_stream_id) {
  1846. return true;
  1847. }
  1848. }
  1849. return false;
  1850. }
  1851. void GraphMemoryAssigner::UpdatePrevNodeInputDesc(const NodePtr &prev_node,
  1852. const vector<int64_t> &prev_node_input_index_vec,
  1853. int64_t distance) {
  1854. GE_IF_BOOL_EXEC(prev_node == nullptr, return);
  1855. auto prev_node_op_desc = prev_node->GetOpDesc();
  1856. GE_IF_BOOL_EXEC(prev_node_op_desc == nullptr, return);
  1857. for (const auto prev_node_input_index : prev_node_input_index_vec) {
  1858. auto input_desc = prev_node_op_desc->GetInputDesc(prev_node_input_index);
  1859. vector<int64_t> prev_next_distances;
  1860. if (!ge::AttrUtils::GetListInt(input_desc, ATTR_NAME_DATA_VISIT_DISTANCE, prev_next_distances)) {
  1861. GELOGW("Get [%s] input [%ld] ATTR_NAME_DATA_VISIT_DISTANCE failed",
  1862. prev_node_op_desc->GetName().c_str(),
  1863. prev_node_input_index);
  1864. continue;
  1865. }
  1866. if (prev_next_distances.size() == kPrevNextDistanceNum) {
  1867. prev_next_distances[1] = distance;
  1868. } else {
  1869. GELOGW("Size of prev_next_distances is not %d.", kPrevNextDistanceNum);
  1870. continue;
  1871. }
  1872. if (!ge::AttrUtils::SetListInt(input_desc, ATTR_NAME_DATA_VISIT_DISTANCE, prev_next_distances)) {
  1873. GELOGW("Set [%s] input [%ld] ATTR_NAME_DATA_VISIT_DISTANCE failed.",
  1874. prev_node_op_desc->GetName().c_str(),
  1875. prev_node_input_index);
  1876. continue;
  1877. }
  1878. if (prev_node_op_desc->UpdateInputDesc(prev_node_input_index, input_desc) != GRAPH_SUCCESS) {
  1879. GELOGW("Update [%s] input [%ld] ATTR_NAME_DATA_VISIT_DISTANCE failed.",
  1880. prev_node_op_desc->GetName().c_str(),
  1881. prev_node_input_index);
  1882. continue;
  1883. }
  1884. GELOGD("Set the next distance[%ld] to node[%s], input index[%ld]",
  1885. distance,
  1886. prev_node->GetName().c_str(),
  1887. prev_node_input_index);
  1888. }
  1889. return;
  1890. }
  1891. void GraphMemoryAssigner::UpdateCurNodeInputDesc(const NodePtr &cur_node,
  1892. int64_t cur_node_input_index,
  1893. int64_t distance) {
  1894. GE_IF_BOOL_EXEC(cur_node == nullptr, return);
  1895. GE_IF_BOOL_EXEC(cur_node->GetOpDesc() == nullptr, return);
  1896. auto input_desc = cur_node->GetOpDesc()->GetInputDesc(cur_node_input_index);
  1897. vector<int64_t> prev_next_distances{distance, -1};
  1898. if (!ge::AttrUtils::SetListInt(input_desc, ATTR_NAME_DATA_VISIT_DISTANCE, prev_next_distances)) {
  1899. GELOGW("Set [%s] input[%ld] ATTR_NAME_DATA_VISIT_DISTANCE failed.",
  1900. cur_node->GetOpDesc()->GetName().c_str(),
  1901. cur_node_input_index);
  1902. return;
  1903. }
  1904. if (cur_node->GetOpDesc()->UpdateInputDesc(cur_node_input_index, input_desc) != GRAPH_SUCCESS) {
  1905. GELOGW("Update [%s] input[%ld] ATTR_NAME_DATA_VISIT_DISTANCE failed.",
  1906. cur_node->GetOpDesc()->GetName().c_str(),
  1907. cur_node_input_index);
  1908. return;
  1909. }
  1910. GELOGD("Set the prev distance[%ld] to node[%s], input index[%ld]",
  1911. distance,
  1912. cur_node->GetName().c_str(),
  1913. cur_node_input_index);
  1914. return;
  1915. }
  1916. void GraphMemoryAssigner::CheckNeedCalcDistAndUpdateVisitInfo(
  1917. const NodePtr &peer_out_node,
  1918. const OutDataAnchorPtr &peer_out_anchor,
  1919. size_t matched_mem_offset,
  1920. map<size_t, pair<NodePtr, vector<int64_t>>> &mem_block_visit_info,
  1921. bool &is_need_calc_distance) {
  1922. auto iter = mem_block_visit_info.find(matched_mem_offset);
  1923. // cannot find visit info, peer_out_node must be a producer and this data is the first time to be visited.
  1924. if (iter == mem_block_visit_info.end()) {
  1925. if (IsOutputVisitedByMultiStream(peer_out_node, peer_out_anchor->GetIdx())) {
  1926. vector<int64_t> temp;
  1927. mem_block_visit_info.insert(std::make_pair(matched_mem_offset, std::make_pair(nullptr, temp)));
  1928. is_need_calc_distance = false;
  1929. return;
  1930. } else {
  1931. vector<int64_t> temp = {-1};
  1932. // producer's prev_node_index set to -1 as default
  1933. mem_block_visit_info.insert(std::make_pair(matched_mem_offset, std::make_pair(peer_out_node, temp)));
  1934. is_need_calc_distance = true;
  1935. return;
  1936. }
  1937. } else {
  1938. if (mem_block_visit_info[matched_mem_offset].first == nullptr) {
  1939. // multi-stream visit, no need to calculate
  1940. is_need_calc_distance = false;
  1941. return;
  1942. }
  1943. if (peer_out_node->GetOpDesc()->GetStreamId() !=
  1944. mem_block_visit_info[matched_mem_offset].first->GetOpDesc()->GetStreamId()) {
  1945. // cur node and peer_out_node not in the same stream, no need to calculate
  1946. is_need_calc_distance = false;
  1947. return;
  1948. }
  1949. }
  1950. is_need_calc_distance = true;
  1951. return;
  1952. }
  1953. // calculate distance, update visit info, update prev_node input desc, update cur node input desc
  1954. void GraphMemoryAssigner::CalcDistanceAndUpdateDesc(const map<string, int64_t> &node_index_in_stream,
  1955. const InDataAnchorPtr &in_data_anchor,
  1956. size_t matched_mem_offset,
  1957. NodePtr &node,
  1958. map<size_t, pair<NodePtr, vector<int64_t>>> &mem_block_visit_info,
  1959. bool &is_need_skip) {
  1960. int64_t distance = -1;
  1961. auto prev_node = mem_block_visit_info[matched_mem_offset].first;
  1962. auto prev_node_input_index_vec = mem_block_visit_info[matched_mem_offset].second;
  1963. GE_IF_BOOL_EXEC(prev_node == nullptr, is_need_skip = true; return);
  1964. if (prev_node_input_index_vec.size() == 1 && prev_node_input_index_vec[0] == -1) {
  1965. // prev_node is producer and the data is just be produced(not visited by other node)
  1966. GE_IF_BOOL_EXEC(prev_node->GetOpDesc() == nullptr, is_need_skip = true; return);
  1967. if (prev_node->GetOpDesc()->GetStreamId() == -1) { // producer not assigned a stream
  1968. distance = 0;
  1969. } else {
  1970. auto iter = node_index_in_stream.find(prev_node->GetName());
  1971. if (iter == node_index_in_stream.end()) {
  1972. distance = 0;
  1973. } else {
  1974. distance = node_index_in_stream.at(node->GetName()) - iter->second - 1;
  1975. }
  1976. }
  1977. mem_block_visit_info[matched_mem_offset].first = node;
  1978. mem_block_visit_info[matched_mem_offset].second.clear();
  1979. mem_block_visit_info[matched_mem_offset].second.push_back(in_data_anchor->GetIdx());
  1980. } else { // the data is visit by other customer just before.
  1981. if (prev_node_input_index_vec.empty()) {
  1982. GELOGW("Missing prev node[%s] input index.", prev_node->GetName().c_str());
  1983. is_need_skip = true;
  1984. return;
  1985. }
  1986. if (prev_node == node) { // scene: multiple anchors of a node access the same data
  1987. vector<int64_t> prev_next_distances;
  1988. GE_IF_BOOL_EXEC(prev_node->GetOpDesc() == nullptr, is_need_skip = true; return);
  1989. auto input_desc = prev_node->GetOpDesc()->GetInputDesc(prev_node_input_index_vec[0]);
  1990. if (!ge::AttrUtils::GetListInt(input_desc, ATTR_NAME_DATA_VISIT_DISTANCE, prev_next_distances)) {
  1991. GELOGW("Get ATTR_NAME_DATA_VISIT_DISTANCE failed.");
  1992. is_need_skip = true;
  1993. return;
  1994. }
  1995. if (prev_next_distances.size() != kPrevNextDistanceNum) {
  1996. GELOGW("Size of prev_next_distance is not %d.", kPrevNextDistanceNum);
  1997. is_need_skip = true;
  1998. return;
  1999. } else {
  2000. distance = prev_next_distances[0]; // use the same prev_distance as previous anchor
  2001. }
  2002. mem_block_visit_info[matched_mem_offset].second.push_back(in_data_anchor->GetIdx());
  2003. } else {
  2004. distance = node_index_in_stream.at(node->GetName()) - node_index_in_stream.at(prev_node->GetName()) - 1;
  2005. UpdatePrevNodeInputDesc(prev_node, prev_node_input_index_vec, distance);
  2006. mem_block_visit_info[matched_mem_offset].first = node;
  2007. mem_block_visit_info[matched_mem_offset].second.clear();
  2008. mem_block_visit_info[matched_mem_offset].second.push_back(in_data_anchor->GetIdx());
  2009. }
  2010. }
  2011. UpdateCurNodeInputDesc(node, in_data_anchor->GetIdx(), distance);
  2012. }
  2013. void GraphMemoryAssigner::DeleteVisitInfoWhenLifecycleEnded(
  2014. const NodePtr &node,
  2015. const InDataAnchorPtr &in_data_anchor,
  2016. size_t matched_mem_offset,
  2017. map<size_t, pair<NodePtr, vector<int64_t>>> &mem_block_visit_info) {
  2018. GE_IF_BOOL_EXEC(node->GetOpDesc() == nullptr, return);
  2019. auto input_desc = node->GetOpDesc()->GetInputDesc(in_data_anchor->GetIdx());
  2020. bool is_end_of_inputmem_lifecycle = false;
  2021. // if is_end_of_inputmem_lifecycle is true, indicating that cur node is the last customer of this data,
  2022. // then we need to delete the visit info of the block in case that the memblock be reused and visited.
  2023. if (ge::AttrUtils::GetBool(input_desc, ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE, is_end_of_inputmem_lifecycle) &&
  2024. is_end_of_inputmem_lifecycle) {
  2025. GELOGD("ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE is true, node name is [%s], in_data_anchor index is [%d]",
  2026. node->GetName().c_str(),
  2027. in_data_anchor->GetIdx());
  2028. auto iter = mem_block_visit_info.find(matched_mem_offset);
  2029. if (iter != mem_block_visit_info.end()) {
  2030. mem_block_visit_info.erase(iter);
  2031. }
  2032. }
  2033. }
  2034. void GraphMemoryAssigner::MarkNodeDistanceAttr(const ComputeGraphPtr &compute_graph,
  2035. NodePtr &node,
  2036. map<size_t, pair<NodePtr, vector<int64_t>>> &mem_block_visit_info,
  2037. const map<string, int64_t> &node_index_in_stream) {
  2038. GELOGD("Begin to mark node distance attr, node name is [%s]", node->GetName().c_str());
  2039. GE_IF_BOOL_EXEC(node == nullptr, return);
  2040. for (const auto &in_data_anchor : node->GetAllInDataAnchors()) {
  2041. auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor();
  2042. GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
  2043. auto peer_out_node = peer_out_anchor->GetOwnerNode();
  2044. GE_IF_BOOL_EXEC(peer_out_node == nullptr, continue);
  2045. GE_IF_BOOL_EXEC(peer_out_node->GetOpDesc() == nullptr, continue);
  2046. auto matched_mem_offset = peer_out_node->GetOpDesc()->GetOutputOffset().at(peer_out_anchor->GetIdx());
  2047. bool is_need_calc_distance = false;
  2048. CheckNeedCalcDistAndUpdateVisitInfo(peer_out_node, peer_out_anchor, matched_mem_offset,
  2049. mem_block_visit_info, is_need_calc_distance);
  2050. if (!is_need_calc_distance) {
  2051. continue;
  2052. }
  2053. bool is_need_skip = false;
  2054. CalcDistanceAndUpdateDesc(node_index_in_stream, in_data_anchor, matched_mem_offset, node,
  2055. mem_block_visit_info, is_need_skip);
  2056. if (is_need_skip) {
  2057. continue;
  2058. }
  2059. DeleteVisitInfoWhenLifecycleEnded(node, in_data_anchor, matched_mem_offset, mem_block_visit_info);
  2060. }
  2061. }
  2062. void GraphMemoryAssigner::MarkDistanceAttr() {
  2063. // key: mem_offset of the memory which we visited. value: node we visited and input index of this node
  2064. map<size_t, pair<NodePtr, vector<int64_t>>> mem_block_visit_info;
  2065. // key: node name, value: topo order of node in it's belonged stream(exclude ge_local_op)
  2066. map<string, int64_t> node_index_in_stream;
  2067. // key: stream id, value: cur nodes num in that stream
  2068. map<int64_t, int64_t> stream_nodes_num;
  2069. for (auto &node : compute_graph_->GetAllNodes()) {
  2070. auto node_op_desc = node->GetOpDesc();
  2071. GE_IF_BOOL_EXEC(node_op_desc == nullptr, return);
  2072. int64_t stream_id = node_op_desc->GetStreamId();
  2073. if (node_op_desc->GetOpKernelLibName() != kEngineNameGeLocal) {
  2074. if (stream_nodes_num.find(stream_id) == stream_nodes_num.end()) {
  2075. stream_nodes_num.insert(std::make_pair(stream_id, 1));
  2076. } else {
  2077. ++stream_nodes_num[stream_id];
  2078. }
  2079. node_index_in_stream.insert(std::make_pair(node->GetName(), stream_nodes_num[stream_id] - 1));
  2080. MarkNodeDistanceAttr(compute_graph_, node, mem_block_visit_info, node_index_in_stream);
  2081. } else {
  2082. GELOGD("node[%s] is ge_local_op, no need to calculate distance.", node->GetName().c_str());
  2083. }
  2084. }
  2085. }
  2086. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示