You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 46 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <gmock/gmock.h>
  18. #define private public
  19. #define protected public
  20. #include "graph/utils/graph_utils.h"
  21. #include "common/profiling/profiling_manager.h"
  22. #include "graph/load/model_manager/davinci_model.h"
  23. #include "graph/manager/graph_var_manager.h"
  24. using namespace std;
  25. namespace ge {
  26. extern OpDescPtr CreateOpDesc(string name, string type);
  27. class DModelListener : public ModelListener {
  28. public:
  29. DModelListener(){};
  30. uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<ge::Tensor> &outputs) {
  31. return 0;
  32. }
  33. };
  34. shared_ptr<ModelListener> g_local_call_back(new DModelListener());
  35. class UtestDavinciModel : public testing::Test {
  36. protected:
  37. void SetUp() {}
  38. void TearDown() {}
  39. };
  40. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  41. return 0;
  42. }
  43. TEST_F(UtestDavinciModel, init_success) {
  44. DavinciModel model(0, nullptr);
  45. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  46. ProfilingManager::Instance().is_load_profiling_ = true;
  47. GeModelPtr ge_model = make_shared<GeModel>();
  48. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  49. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  50. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  51. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  52. ge_model->SetModelTaskDef(model_task_def);
  53. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  54. TensorUtils::SetSize(tensor, 512);
  55. {
  56. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  57. op_desc->AddInputDesc(tensor);
  58. op_desc->AddOutputDesc(tensor);
  59. op_desc->SetInputOffset({1024});
  60. op_desc->SetOutputOffset({1024});
  61. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  62. }
  63. {
  64. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  65. op_desc->AddInputDesc(tensor);
  66. op_desc->AddOutputDesc(tensor);
  67. op_desc->SetInputOffset({1024});
  68. op_desc->SetOutputOffset({1024});
  69. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  70. domi::TaskDef *task_def = model_task_def->add_task();
  71. task_def->set_stream_id(0);
  72. task_def->set_type(RT_MODEL_TASK_KERNEL);
  73. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  74. kernel_def->set_stub_func("stub_func");
  75. kernel_def->set_args_size(64);
  76. string args(64, '1');
  77. kernel_def->set_args(args.data(), 64);
  78. domi::KernelContext *context = kernel_def->mutable_context();
  79. context->set_op_index(op_desc->GetId());
  80. context->set_kernel_type(2); // ccKernelType::TE
  81. uint16_t args_offset[9] = {0};
  82. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  83. }
  84. {
  85. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  86. op_desc->AddInputDesc(tensor);
  87. op_desc->AddOutputDesc(tensor);
  88. op_desc->SetInputOffset({1024});
  89. op_desc->SetOutputOffset({5120});
  90. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  91. domi::TaskDef *task_def = model_task_def->add_task();
  92. task_def->set_stream_id(0);
  93. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  94. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  95. memcpy_async->set_src(1024);
  96. memcpy_async->set_dst(5120);
  97. memcpy_async->set_dst_max(512);
  98. memcpy_async->set_count(1);
  99. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  100. memcpy_async->set_op_index(op_desc->GetId());
  101. }
  102. {
  103. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  104. op_desc->AddInputDesc(tensor);
  105. op_desc->SetInputOffset({5120});
  106. op_desc->SetSrcName( { "memcpy" } );
  107. op_desc->SetSrcIndex( { 0 } );
  108. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  109. }
  110. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  111. EXPECT_EQ(model.Init(), SUCCESS);
  112. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  113. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  114. EXPECT_EQ(model.task_list_.size(), 2);
  115. OutputData output_data;
  116. vector<ge::Tensor> outputs;
  117. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  118. EXPECT_EQ(output_data.blobs.size(), 1);
  119. EXPECT_EQ(outputs.size(), 1);
  120. ProfilingManager::Instance().is_load_profiling_ = false;
  121. }
  122. TEST_F(UtestDavinciModel, CheckCapability) {
  123. DavinciModel model(0, nullptr);
  124. bool is_support = false;
  125. (void)model.CheckCapability(FEATURE_TYPE_MEMORY, MEMORY_INFO_TS_4G_LIMITED, is_support);
  126. }
  127. TEST_F(UtestDavinciModel, init_data_op) {
  128. DavinciModel model(0, nullptr);
  129. model.ge_model_ = make_shared<GeModel>();
  130. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  131. model.runtime_param_.mem_size = 5120000;
  132. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  133. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  134. TensorUtils::SetSize(tensor, 512);
  135. OpDescPtr op_input = CreateOpDesc("data", DATA);
  136. op_input->AddInputDesc(tensor);
  137. op_input->AddOutputDesc(tensor);
  138. op_input->SetInputOffset({1024});
  139. op_input->SetOutputOffset({1024});
  140. NodePtr node_input = graph->AddNode(op_input);
  141. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  142. op_output->AddInputDesc(tensor);
  143. op_output->SetInputOffset({1024});
  144. op_output->SetSrcName( { "data" } );
  145. op_output->SetSrcIndex( { 0 } );
  146. NodePtr node_output = graph->AddNode(op_output);
  147. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  148. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  149. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  150. EXPECT_EQ(model.op_list_.size(), 2);
  151. }
  152. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  153. DavinciModel model(0, nullptr);
  154. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  155. model.runtime_param_.mem_size = 5120000;
  156. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  157. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  158. TensorUtils::SetSize(tensor, 512);
  159. OpDescPtr op_input = CreateOpDesc("data", DATA);
  160. op_input->AddInputDesc(tensor);
  161. op_input->AddOutputDesc(tensor);
  162. op_input->SetInputOffset({1024});
  163. op_input->SetOutputOffset({1024});
  164. NodePtr node = graph->AddNode(op_input);
  165. uint32_t data_op_index = 0;
  166. map<uint32_t, OpDescPtr> data_by_index;
  167. set<const void *> input_outside_addrs;
  168. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  169. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  170. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  171. EXPECT_EQ(data_op_index, 0);
  172. EXPECT_TRUE(data_by_index.empty());
  173. }
  174. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  175. DavinciModel model(0, nullptr);
  176. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  177. model.runtime_param_.mem_size = 5120000;
  178. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  179. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  180. TensorUtils::SetSize(tensor, 512);
  181. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  182. op_output->AddInputDesc(tensor);
  183. op_output->SetInputOffset({1024});
  184. op_output->SetSrcName( { "data" } );
  185. op_output->SetSrcIndex( { 0 } );
  186. NodePtr node = graph->AddNode(op_output);
  187. std::vector<OpDescPtr> output_op_list;
  188. set<const void *> output_outside_addrs;
  189. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  190. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  191. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  192. EXPECT_TRUE(output_op_list.empty());
  193. }
  194. TEST_F(UtestDavinciModel, init_unknown) {
  195. DavinciModel model(0, nullptr);
  196. model.SetKnownNode(true);
  197. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  198. GeModelPtr ge_model = make_shared<GeModel>();
  199. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  200. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  201. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  202. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  203. ge_model->SetModelTaskDef(model_task_def);
  204. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  205. TensorUtils::SetSize(tensor, 512);
  206. OpDescPtr op_input = CreateOpDesc("data", DATA);
  207. op_input->AddInputDesc(tensor);
  208. op_input->AddOutputDesc(tensor);
  209. op_input->SetInputOffset({1024});
  210. op_input->SetOutputOffset({1024});
  211. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  212. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  213. op_kernel->AddInputDesc(tensor);
  214. op_kernel->AddOutputDesc(tensor);
  215. op_kernel->SetInputOffset({1024});
  216. op_kernel->SetOutputOffset({1024});
  217. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  218. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  219. op_memcpy->AddInputDesc(tensor);
  220. op_memcpy->AddOutputDesc(tensor);
  221. op_memcpy->SetInputOffset({1024});
  222. op_memcpy->SetOutputOffset({5120});
  223. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  224. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  225. op_output->AddInputDesc(tensor);
  226. op_output->SetInputOffset({5120});
  227. op_output->SetSrcName( { "memcpy" } );
  228. op_output->SetSrcIndex( { 0 } );
  229. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  230. domi::TaskDef *task_def1 = model_task_def->add_task();
  231. task_def1->set_stream_id(0);
  232. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  233. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  234. kernel_def->set_stub_func("stub_func");
  235. kernel_def->set_args_size(64);
  236. string args(64, '1');
  237. kernel_def->set_args(args.data(), 64);
  238. domi::KernelContext *context = kernel_def->mutable_context();
  239. context->set_op_index(1);
  240. context->set_kernel_type(2); // ccKernelType::TE
  241. uint16_t args_offset[9] = {0};
  242. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  243. domi::TaskDef *task_def2 = model_task_def->add_task();
  244. task_def2->set_stream_id(0);
  245. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  246. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  247. memcpy_async->set_src(1024);
  248. memcpy_async->set_dst(5120);
  249. memcpy_async->set_dst_max(512);
  250. memcpy_async->set_count(1);
  251. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  252. memcpy_async->set_op_index(2);
  253. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  254. ProfilingManager::Instance().is_load_profiling_ = true;
  255. EXPECT_EQ(model.Init(), SUCCESS);
  256. ProfilingManager::Instance().is_load_profiling_ = false;
  257. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  258. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  259. EXPECT_EQ(model.task_list_.size(), 2);
  260. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  261. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  262. vector<string> out_shape_info;
  263. model.GetModelAttr(out_shape_info);
  264. vector<InputOutputDescInfo> input_descs;
  265. vector<InputOutputDescInfo> output_descs;
  266. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  267. int32_t virtual_addr = 0;
  268. const vector<void *> inputs = { &virtual_addr };
  269. const vector<void *> outputs = { &virtual_addr };
  270. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  271. }
  272. TEST_F(UtestDavinciModel, Init_variable_op) {
  273. DavinciModel model(0, g_local_call_back);
  274. model.ge_model_ = make_shared<GeModel>();
  275. model.runtime_param_.mem_size = 51200;
  276. model.runtime_param_.mem_base = (uint8_t *)malloc(model.runtime_param_.mem_size);
  277. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  278. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  279. TensorUtils::SetSize(tensor, 512);
  280. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  281. var1->AddInputDesc(tensor);
  282. var1->AddOutputDesc(tensor);
  283. var1->SetInputOffset({1024});
  284. var1->SetOutputOffset({1024});
  285. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  286. graph->AddNode(var1);
  287. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  288. var2->AddInputDesc(tensor);
  289. var2->AddOutputDesc(tensor);
  290. var2->SetInputOffset({1024});
  291. var2->SetOutputOffset({1024});
  292. graph->AddNode(var2);
  293. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  294. EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
  295. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  296. OutputData output_data;
  297. EXPECT_FALSE(model.has_output_node_);
  298. EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
  299. EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
  300. free(model.runtime_param_.mem_base);
  301. model.runtime_param_.mem_base = nullptr;
  302. }
  303. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  304. DavinciModel model(0, nullptr);
  305. model.ge_model_ = make_shared<GeModel>();
  306. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  307. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  308. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  309. op_output->AddInputDesc(tensor);
  310. op_output->SetInputOffset({1024});
  311. NodePtr node_output = graph->AddNode(op_output);
  312. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  313. }
  314. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  315. DavinciModel model(0, nullptr);
  316. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  317. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  318. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  319. data1->AddInputDesc(shape_desc);
  320. data1->AddOutputDesc(shape_desc);
  321. NodePtr data1_node = graph->AddNode(data1);
  322. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  323. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  324. case_node->AddInputDesc(tensor);
  325. case_node->AddOutputDesc(tensor);
  326. NodePtr case1_node = graph->AddNode(case_node);
  327. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  328. output->AddInputDesc(tensor);
  329. output->SetSrcName( { "case1" } );
  330. output->SetSrcIndex( { 0 } );
  331. NodePtr output_node = graph->AddNode(output);
  332. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  333. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  334. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  335. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  336. model.is_getnext_sink_dynamic_ = false;
  337. model.is_online_infer_dynamic_ = true;
  338. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  339. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  340. EXPECT_EQ(ret, SUCCESS);
  341. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  342. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  343. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  344. EXPECT_EQ(ret, SUCCESS);
  345. }
  346. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  347. DavinciModel model(0, nullptr);
  348. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  349. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  350. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  351. data1->AddInputDesc(shape_desc);
  352. data1->AddOutputDesc(shape_desc);
  353. NodePtr data1_node = graph->AddNode(data1);
  354. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  355. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  356. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  357. shape_node->AddInputDesc(in_tensor);
  358. shape_node->AddOutputDesc(out_tensor);
  359. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  360. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  361. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  362. output->AddInputDesc(tensor);
  363. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  364. output->SetSrcIndex( { 0, 1 } );
  365. NodePtr output_node = graph->AddNode(output);
  366. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  367. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  368. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  369. model.is_getnext_sink_dynamic_ = true;
  370. model.is_online_infer_dynamic_ = false;
  371. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  372. EXPECT_EQ(ret, SUCCESS);
  373. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  374. model.runtime_param_.mem_size = 4;
  375. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  376. EXPECT_EQ(ret, SUCCESS);
  377. }
  378. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  379. DavinciModel model(0, nullptr);
  380. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  381. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  382. model.runtime_param_.mem_size = 5120000;
  383. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  384. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  385. TensorUtils::SetSize(tensor, 512);
  386. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  387. op_desc->AddInputDesc(tensor);
  388. op_desc->AddOutputDesc(tensor);
  389. op_desc->SetInputOffset({1024});
  390. op_desc->SetOutputOffset({1024});
  391. NodePtr node = graph->AddNode(op_desc);
  392. GeAttrValue::NAMED_ATTRS aipp_attr;
  393. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  394. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  395. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  396. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  397. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  398. AippConfigInfo aipp_info;
  399. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  400. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  401. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  402. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  403. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  404. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  405. EXPECT_EQ(model.op_list_.size(), 1);
  406. }
  407. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  408. DavinciModel model(0, nullptr);
  409. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  410. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  411. model.runtime_param_.mem_size = 5120000;
  412. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  413. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  414. TensorUtils::SetSize(tensor, 512);
  415. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  416. op_desc->AddInputDesc(tensor);
  417. op_desc->AddOutputDesc(tensor);
  418. op_desc->SetInputOffset({1024});
  419. op_desc->SetOutputOffset({1024});
  420. NodePtr node = graph->AddNode(op_desc);
  421. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  422. InputAippType aipp_type;
  423. size_t aipp_index = 0;
  424. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  425. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  426. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  427. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  428. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  429. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  430. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  431. EXPECT_EQ(model.op_list_.size(), 1);
  432. }
  433. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  434. DavinciModel model(0, nullptr);
  435. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  436. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  437. model.runtime_param_.mem_size = 5120000;
  438. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  439. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  440. TensorUtils::SetSize(tensor, 512);
  441. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  442. op_desc->AddInputDesc(tensor);
  443. op_desc->AddOutputDesc(tensor);
  444. op_desc->SetInputOffset({1024});
  445. op_desc->SetOutputOffset({1024});
  446. NodePtr node = graph->AddNode(op_desc); // op_index 0
  447. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  448. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  449. InputAippType aipp_type;
  450. size_t aipp_index = 0;
  451. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  452. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  453. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  454. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  455. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  456. EXPECT_EQ(model.op_list_.size(), 1);
  457. }
  458. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  459. DavinciModel model(0, nullptr);
  460. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  461. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  462. model.runtime_param_.mem_size = 5120000;
  463. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  464. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  465. TensorUtils::SetSize(tensor, 512);
  466. {
  467. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  468. op_desc->AddInputDesc(tensor);
  469. op_desc->AddOutputDesc(tensor);
  470. op_desc->SetInputOffset({1024});
  471. op_desc->SetOutputOffset({1024});
  472. NodePtr node = graph->AddNode(op_desc); // op_index 0
  473. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  474. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  475. }
  476. {
  477. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  478. op_desc->AddInputDesc(tensor);
  479. op_desc->AddOutputDesc(tensor);
  480. op_desc->SetInputOffset({1024});
  481. op_desc->SetOutputOffset({1024});
  482. NodePtr node = graph->AddNode(op_desc); // op_index 1
  483. }
  484. InputAippType aipp_type;
  485. size_t aipp_index = 0;
  486. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  487. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  488. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  489. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  490. EXPECT_EQ(aipp_index, 1);
  491. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  492. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  493. EXPECT_EQ(model.op_list_.size(), 2);
  494. }
  495. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  496. DavinciModel model(0, nullptr);
  497. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  498. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  499. model.runtime_param_.mem_size = 5120000;
  500. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  501. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  502. TensorUtils::SetSize(tensor, 512);
  503. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  504. op_desc->AddInputDesc(tensor);
  505. op_desc->AddOutputDesc(tensor);
  506. op_desc->SetInputOffset({1024});
  507. op_desc->SetOutputOffset({1024});
  508. NodePtr node = graph->AddNode(op_desc); // op_index 0
  509. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  510. InputAippType aipp_type;
  511. size_t aipp_index = 0;
  512. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  513. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  514. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  515. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  516. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  517. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  518. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  519. EXPECT_EQ(model.op_list_.size(), 1);
  520. }
  521. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  522. DavinciModel model(0, nullptr);
  523. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  524. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  525. model.runtime_param_.mem_size = 5120000;
  526. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  527. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  528. TensorUtils::SetSize(tensor, 512);
  529. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  530. op_desc->AddInputDesc(tensor);
  531. op_desc->AddOutputDesc(tensor);
  532. op_desc->SetInputOffset({1024});
  533. op_desc->SetOutputOffset({1024});
  534. NodePtr node = graph->AddNode(op_desc); // op_index 0
  535. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  536. InputAippType aipp_type;
  537. size_t aipp_index = 0;
  538. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  539. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  540. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  541. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  542. EXPECT_EQ(model.op_list_.size(), 1);
  543. }
  544. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  545. DavinciModel model(0, nullptr);
  546. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  547. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  548. model.runtime_param_.mem_size = 5120000;
  549. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  550. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  551. TensorUtils::SetSize(tensor, 512);
  552. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  553. op_desc->AddInputDesc(tensor);
  554. op_desc->AddOutputDesc(tensor);
  555. op_desc->SetInputOffset({1024});
  556. op_desc->SetOutputOffset({1024});
  557. NodePtr node = graph->AddNode(op_desc); // op_index 0
  558. vector<string> inputs = {};
  559. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  560. vector<string> outputs = {};
  561. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  562. OriginInputInfo orig_input_info;
  563. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  564. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  565. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  566. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  567. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  568. EXPECT_EQ(model.op_list_.size(), 1);
  569. }
  570. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  571. DavinciModel model(0, nullptr);
  572. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  573. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  574. model.runtime_param_.mem_size = 5120000;
  575. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  576. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  577. TensorUtils::SetSize(tensor, 512);
  578. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  579. op_desc->AddInputDesc(tensor);
  580. op_desc->AddOutputDesc(tensor);
  581. op_desc->SetInputOffset({1024});
  582. op_desc->SetOutputOffset({1024});
  583. NodePtr node = graph->AddNode(op_desc); // op_index 0
  584. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  585. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  586. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  587. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  588. OriginInputInfo orig_input_info;
  589. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  590. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  591. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  592. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  593. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  594. EXPECT_EQ(model.op_list_.size(), 1);
  595. }
  596. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  597. DavinciModel model(0, nullptr);
  598. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  599. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  600. model.runtime_param_.mem_size = 5120000;
  601. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  602. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  603. TensorUtils::SetSize(tensor, 512);
  604. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  605. op_desc->AddInputDesc(tensor);
  606. op_desc->AddOutputDesc(tensor);
  607. op_desc->SetInputOffset({1024});
  608. op_desc->SetOutputOffset({1024});
  609. NodePtr node = graph->AddNode(op_desc); // op_index 0
  610. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  611. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  612. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  613. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  614. OriginInputInfo orig_input_info;
  615. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  616. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  617. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  618. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  619. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  620. EXPECT_EQ(model.op_list_.size(), 1);
  621. }
  622. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  623. DavinciModel model(0, nullptr);
  624. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  625. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  626. model.runtime_param_.mem_size = 5120000;
  627. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  628. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  629. TensorUtils::SetSize(tensor, 512);
  630. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  631. op_desc->AddInputDesc(tensor);
  632. op_desc->AddOutputDesc(tensor);
  633. op_desc->SetInputOffset({1024});
  634. op_desc->SetOutputOffset({1024});
  635. NodePtr node = graph->AddNode(op_desc); // op_index 0
  636. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  637. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  638. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  639. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  640. vector<InputOutputDims> input_dims;
  641. vector<InputOutputDims> output_dims;
  642. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  643. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  644. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  645. EXPECT_EQ(input_dims.size(), 1);
  646. EXPECT_EQ(output_dims.size(), 1);
  647. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  648. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  649. EXPECT_EQ(model.op_list_.size(), 1);
  650. }
  651. // test label_set_task Init
  652. TEST_F(UtestDavinciModel, label_task_success) {
  653. DavinciModel model(0, nullptr);
  654. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  655. GeModelPtr ge_model = make_shared<GeModel>();
  656. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  657. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  658. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  659. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  660. ge_model->SetModelTaskDef(model_task_def);
  661. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  662. TensorUtils::SetSize(tensor, 64);
  663. {
  664. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  665. op_desc->AddInputDesc(tensor);
  666. op_desc->SetInputOffset({1024});
  667. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  668. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  669. domi::TaskDef *task_def1 = model_task_def->add_task();
  670. task_def1->set_stream_id(0);
  671. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  672. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  673. label_task_def->set_op_index(op_desc->GetId());
  674. label_task_def->set_label_max(2);
  675. }
  676. {
  677. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  678. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  679. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  680. domi::TaskDef *task_def1 = model_task_def->add_task();
  681. task_def1->set_stream_id(0);
  682. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  683. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  684. label_task_def->set_op_index(op_desc->GetId());
  685. }
  686. {
  687. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  688. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  689. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  690. domi::TaskDef *task_def2 = model_task_def->add_task();
  691. task_def2->set_stream_id(0);
  692. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  693. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  694. label_task_def->set_op_index(op_desc->GetId());
  695. }
  696. {
  697. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  698. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  699. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  700. domi::TaskDef *task_def1 = model_task_def->add_task();
  701. task_def1->set_stream_id(0);
  702. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  703. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  704. label_task_def->set_op_index(op_desc->GetId());
  705. }
  706. {
  707. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  708. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  709. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  710. domi::TaskDef *task_def1 = model_task_def->add_task();
  711. task_def1->set_stream_id(0);
  712. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  713. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  714. label_task_def->set_op_index(op_desc->GetId());
  715. }
  716. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  717. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  718. EXPECT_EQ(model.Init(), SUCCESS);
  719. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  720. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  721. EXPECT_EQ(model.task_list_.size(), 5);
  722. }
  723. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  724. DavinciModel model(0, nullptr);
  725. model.ge_model_ = make_shared<GeModel>();
  726. model.input_queue_ids_.emplace_back(0);
  727. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  728. EXPECT_EQ(model.input_data_info_.size(), 0);
  729. ZeroCopyOffset zero_copy_offset;
  730. model.input_data_info_[0] = zero_copy_offset;
  731. model.output_queue_ids_.emplace_back(0);
  732. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  733. EXPECT_EQ(model.output_data_info_.size(), 0);
  734. model.output_data_info_[0] = zero_copy_offset;
  735. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  736. EXPECT_EQ(model.active_stream_list_.size(), 0);
  737. }
  738. TEST_F(UtestDavinciModel, Sink_model_profile) {
  739. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  740. ProfileInfo profile;
  741. profile.fusion_info.op_name = "relu";
  742. DavinciModel model(0, nullptr);
  743. model.profile_list_.emplace_back(profile);
  744. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  745. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  746. model.profiler_report_op_info_ = op_info;
  747. model.SinkModelProfile();
  748. }
  749. TEST_F(UtestDavinciModel, Sink_time_profile) {
  750. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  751. DavinciModel model(0, nullptr);
  752. InputData current_data;
  753. model.SinkTimeProfile(current_data);
  754. }
  755. class ClassTest {
  756. public:
  757. virtual ~ClassTest() {}
  758. virtual int func0() {
  759. return 0;
  760. }
  761. virtual int func1(int a) {
  762. return a;
  763. }
  764. virtual int func2(int a, int b) {
  765. return a + b;
  766. }
  767. virtual int func3(int a, int b) const {
  768. return a - b;
  769. }
  770. };
  771. class MockTest : public ClassTest {
  772. public:
  773. MOCK_METHOD0(func0, int());
  774. MOCK_METHOD1(func1, int(int a));
  775. MOCK_METHOD2(func2, int(int a, int b));
  776. MOCK_CONST_METHOD2(func3, int(int a, int b));
  777. };
  778. TEST_F(UtestDavinciModel, simple_test_gmock) {
  779. MockTest mock_stub;
  780. ON_CALL(mock_stub, func0()).WillByDefault(testing::Return(250));
  781. EXPECT_EQ(mock_stub.func0(), 250);
  782. EXPECT_EQ(mock_stub.func0(), 250);
  783. EXPECT_EQ(mock_stub.func0(), 250);
  784. EXPECT_CALL(mock_stub, func1(testing::_)).Times(2).WillOnce(testing::Return(1024)).WillOnce(testing::Return(250));
  785. EXPECT_EQ(mock_stub.func1(1), 1024);
  786. EXPECT_EQ(mock_stub.func1(1), 250);
  787. EXPECT_CALL(mock_stub, func2(testing::_, 5)).Times(3).WillRepeatedly(testing::Return(1023));
  788. EXPECT_EQ(mock_stub.func2(1, 5), 1023);
  789. EXPECT_EQ(mock_stub.func2(2, 5), 1023);
  790. EXPECT_EQ(mock_stub.func2(3, 5), 1023);
  791. }
  792. TEST_F(UtestDavinciModel, NnExecute) {
  793. DavinciModel model(0, nullptr);
  794. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  795. ProfilingManager::Instance().is_load_profiling_ = true;
  796. GeModelPtr ge_model = make_shared<GeModel>();
  797. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  798. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  799. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  800. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  801. ge_model->SetModelTaskDef(model_task_def);
  802. GeTensorDesc tensor(GeShape({1,4,128,128}), FORMAT_NCHW, DT_FLOAT);
  803. TensorUtils::SetSize(tensor, 512);
  804. {
  805. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  806. op_desc->AddInputDesc(tensor);
  807. op_desc->AddOutputDesc(tensor);
  808. op_desc->SetInputOffset({1024});
  809. op_desc->SetOutputOffset({1024});
  810. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  811. }
  812. {
  813. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  814. op_desc->AddInputDesc(tensor);
  815. op_desc->AddOutputDesc(tensor);
  816. op_desc->SetInputOffset({1024});
  817. op_desc->SetOutputOffset({5120});
  818. NodePtr node = graph->AddNode(op_desc);
  819. domi::TaskDef *task_def = model_task_def->add_task();
  820. task_def->set_stream_id(0);
  821. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  822. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  823. memcpy_async->set_src(1024);
  824. memcpy_async->set_dst(5120);
  825. memcpy_async->set_dst_max(512);
  826. memcpy_async->set_count(1);
  827. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  828. memcpy_async->set_op_index(op_desc->GetId());
  829. }
  830. {
  831. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  832. op_desc->AddInputDesc(tensor);
  833. op_desc->SetInputOffset({5120});
  834. op_desc->SetSrcName( { "memcpy" } );
  835. op_desc->SetSrcIndex( { 0 } );
  836. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  837. }
  838. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  839. EXPECT_EQ(model.Init(), SUCCESS);
  840. rtStream_t stream = nullptr;
  841. InputData input_data;
  842. OutputData output_data;
  843. vector<ge::Tensor> outputs;
  844. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  845. EXPECT_EQ(output_data.blobs.size(), 1);
  846. EXPECT_EQ(outputs.size(), 1);
  847. input_data.blobs = output_data.blobs;
  848. EXPECT_EQ(input_data.blobs.size(), 1);
  849. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  850. ProfilingManager::Instance().device_id_.emplace_back(0);
  851. model.task_list_.resize(1);
  852. EXPECT_EQ(model.NnExecute(stream, false, input_data, output_data), SUCCESS);
  853. input_data.blobs[0].length = 128;
  854. EXPECT_NE(model.NnExecute(stream, false, input_data, output_data), SUCCESS);
  855. }
  856. TEST_F(UtestDavinciModel, update_io_addr_success) {
  857. DavinciModel model(0, nullptr);
  858. uint32_t task_id = 1;
  859. uint32_t stream_id = 2;
  860. model.fixed_mem_base_ = 0x22;
  861. model.mem_base_ = reinterpret_cast<uint8_t *>(&task_id);
  862. OpDescInfo op_desc_info = {"Save", "Save", 1, 2, {FORMAT_NCHW}, {{1}}, {DT_FLOAT}, {nullptr}, {2},
  863. {FORMAT_NCHW}, {{1}}, {DT_FLOAT}, {nullptr}, {2}};
  864. model.exception_dumper_.op_desc_info_ = { op_desc_info };
  865. vector<void *> io_addr = {nullptr, nullptr};
  866. model.UpdateOpIOAddrs(task_id, stream_id, io_addr);
  867. }
  868. TEST_F(UtestDavinciModel, get_total_memsize_exclude_zero_copy) {
  869. DavinciModel model(0, nullptr);
  870. model.runtime_param_.mem_size = 1024;
  871. model.runtime_param_.zero_copy_size = 2048;
  872. int64_t total_useful_size = 0;
  873. EXPECT_EQ(model.GetTotalMemSizeExcludeZeroCopy(total_useful_size), FAILED);
  874. EXPECT_EQ(total_useful_size, 0);
  875. model.runtime_param_.zero_copy_size = 512;
  876. EXPECT_EQ(model.GetTotalMemSizeExcludeZeroCopy(total_useful_size), SUCCESS);
  877. EXPECT_EQ(total_useful_size, 512);
  878. }
  879. // test InitTbeHandle
  880. TEST_F(UtestDavinciModel, init_tbe_handle) {
  881. DavinciModel model(0, nullptr);
  882. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  883. model.ge_model_ = make_shared<GeModel>();
  884. // without kernel
  885. EXPECT_EQ(model.InitTbeHandle(op_desc), INTERNAL_ERROR);
  886. vector<char> buffer;
  887. string key = op_desc->GetName();
  888. TBEKernelPtr tbe_kernel_ptr = std::make_shared<ge::OpKernelBin>(key, std::move(buffer));
  889. op_desc->SetExtAttr(OP_EXTATTR_NAME_TBE_KERNEL, tbe_kernel_ptr);
  890. string attr_kernel_name = op_desc->GetName() + "_kernelname";
  891. string kernel_name = "kernel_name";
  892. AttrUtils::SetStr(op_desc, attr_kernel_name, kernel_name);
  893. EXPECT_EQ(model.InitTbeHandle(op_desc), SUCCESS);
  894. // rtQueryFunctionRegistered(bin_file_key) failed
  895. EXPECT_EQ(model.used_tbe_handle_map_.size(), 0);
  896. }
  897. // test InitTbeHandleWithFfts
  898. TEST_F(UtestDavinciModel, init_tbe_handle_with_ffts) {
  899. DavinciModel model(0, nullptr);
  900. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  901. model.ge_model_ = make_shared<GeModel>();
  902. // without tbe_kernel
  903. EXPECT_EQ(model.InitTbeHandleWithFfts(op_desc), INTERNAL_ERROR);
  904. std::vector<OpKernelBinPtr> tbe_kernel;
  905. vector<char> buffer;
  906. string key = op_desc->GetName();
  907. OpKernelBinPtr tbe_kernel_ptr0 = std::make_shared<ge::OpKernelBin>(key, std::move(buffer));
  908. OpKernelBinPtr tbe_kernel_ptr1 = std::make_shared<ge::OpKernelBin>(key, std::move(buffer));
  909. tbe_kernel.push_back(tbe_kernel_ptr0);
  910. tbe_kernel.push_back(tbe_kernel_ptr1);
  911. op_desc->SetExtAttr(OP_EXTATTR_NAME_THREAD_TBE_KERNEL, tbe_kernel);
  912. // without _register_stub_func
  913. EXPECT_EQ(model.InitTbeHandleWithFfts(op_desc), INTERNAL_ERROR);
  914. vector<string> bin_file_keys;
  915. bin_file_keys.emplace_back(op_desc->GetName() + "_0");
  916. bin_file_keys.emplace_back(op_desc->GetName() + "_1");
  917. AttrUtils::SetListStr(op_desc, "_register_stub_func", bin_file_keys);
  918. EXPECT_EQ(model.InitTbeHandleWithFfts(op_desc), SUCCESS);
  919. // rtQueryFunctionRegistered(bin_file_key) failed
  920. EXPECT_EQ(model.used_tbe_handle_map_.size(), 0);
  921. }
  922. // test InitBinaryMagic
  923. TEST_F(UtestDavinciModel, init_binary_magic) {
  924. DavinciModel model(0, nullptr);
  925. rtDevBinary_t binary;
  926. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  927. bool is_ffts = true;
  928. vector<string> json_list;
  929. AttrUtils::SetListStr(op_desc, TVM_ATTR_NAME_THREAD_MAGIC, json_list);
  930. // without tvm_magic
  931. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 0, binary), INTERNAL_ERROR);
  932. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF_AICPU");
  933. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF");
  934. op_desc->DelAttr(TVM_ATTR_NAME_THREAD_MAGIC);
  935. AttrUtils::SetListStr(op_desc, TVM_ATTR_NAME_THREAD_MAGIC, json_list);
  936. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 0, binary), SUCCESS);
  937. EXPECT_EQ(binary.magic, RT_DEV_BINARY_MAGIC_ELF_AICPU);
  938. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 1, binary), SUCCESS);
  939. EXPECT_EQ(binary.magic, RT_DEV_BINARY_MAGIC_ELF);
  940. json_list.clear();
  941. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF_AIVEC");
  942. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF_AICUBE");
  943. op_desc->DelAttr(TVM_ATTR_NAME_THREAD_MAGIC);
  944. AttrUtils::SetListStr(op_desc, TVM_ATTR_NAME_THREAD_MAGIC, json_list);
  945. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 0, binary), SUCCESS);
  946. EXPECT_EQ(binary.magic, RT_DEV_BINARY_MAGIC_ELF_AIVEC);
  947. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 1, binary), SUCCESS);
  948. EXPECT_EQ(binary.magic, RT_DEV_BINARY_MAGIC_ELF_AICUBE);
  949. // with invalid json type
  950. json_list.clear();
  951. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF_INVALID");
  952. json_list.emplace_back("RT_DEV_BINARY_MAGIC_ELF_INVALID");
  953. op_desc->DelAttr(TVM_ATTR_NAME_THREAD_MAGIC);
  954. AttrUtils::SetListStr(op_desc, TVM_ATTR_NAME_THREAD_MAGIC, json_list);
  955. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 0, binary), PARAM_INVALID);
  956. // test unffts
  957. is_ffts = false;
  958. string json_string = "RT_DEV_BINARY_MAGIC_ELF_AIVEC";
  959. AttrUtils::SetStr(op_desc, TVM_ATTR_NAME_MAGIC, json_string);
  960. EXPECT_EQ(model.InitBinaryMagic(op_desc, is_ffts, 0, binary), SUCCESS);
  961. EXPECT_EQ(binary.magic, RT_DEV_BINARY_MAGIC_ELF_AIVEC);
  962. }
  963. // test InitMetaData
  964. TEST_F(UtestDavinciModel, init_meta_data) {
  965. DavinciModel model(0, nullptr);
  966. void *bin_handle;
  967. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  968. bool is_ffts = true;
  969. vector<string> meta_data_list;
  970. // with empty meta_data
  971. EXPECT_EQ(model.InitMetaData(op_desc, is_ffts, 0, bin_handle), INTERNAL_ERROR);
  972. meta_data_list.emplace_back("meta_data_0");
  973. meta_data_list.emplace_back("meta_data_1");
  974. AttrUtils::SetListStr(op_desc, TVM_ATTR_NAME_THREAD_METADATA, meta_data_list);
  975. EXPECT_EQ(model.InitMetaData(op_desc, is_ffts, 0, bin_handle), SUCCESS);
  976. is_ffts = false;
  977. string meta_data = "meta_data";
  978. AttrUtils::SetStr(op_desc, TVM_ATTR_NAME_METADATA, meta_data);
  979. EXPECT_EQ(model.InitMetaData(op_desc, is_ffts, 0, bin_handle), SUCCESS);
  980. }
  981. // test InitKernelName
  982. TEST_F(UtestDavinciModel, init_kernel_name) {
  983. DavinciModel model(0, nullptr);
  984. string kernel_name;
  985. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  986. bool is_ffts = true;
  987. // failed when name is invalid
  988. EXPECT_EQ(model.InitKernelName(op_desc, is_ffts, 0, kernel_name), INTERNAL_ERROR);
  989. OpDescPtr op_desc1 = CreateOpDesc("sgt_graph_nodes/loss_scale", SCALE);
  990. string attr_kernel_name = "loss_scale_thread_kernelname";
  991. vector<string> kernel_name_list;
  992. AttrUtils::SetListStr(op_desc, attr_kernel_name, kernel_name_list);
  993. // failed without kernel_name
  994. EXPECT_EQ(model.InitKernelName(op_desc, is_ffts, 0, kernel_name), INTERNAL_ERROR);
  995. kernel_name_list.emplace_back("kernel_name_0");
  996. kernel_name_list.emplace_back("kernel_name_1");
  997. AttrUtils::SetListStr(op_desc1, attr_kernel_name, kernel_name_list);
  998. EXPECT_EQ(model.InitKernelName(op_desc1, is_ffts, 0, kernel_name), SUCCESS);
  999. // without ffts
  1000. is_ffts = false;
  1001. attr_kernel_name = "data_kernelname";
  1002. kernel_name = "kernel_name";
  1003. AttrUtils::SetStr(op_desc, attr_kernel_name, kernel_name);
  1004. EXPECT_EQ(model.InitKernelName(op_desc, is_ffts, 0, kernel_name), SUCCESS);
  1005. }
  1006. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示