You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

nn_calculation_ops.h 53 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file nn_calculation_ops.h
  18. * \brief
  19. */
  20. #ifndef GE_OP_NN_CALCULATION_OPS_H
  21. #define GE_OP_NN_CALCULATION_OPS_H
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. * @brief Computes the gradients of depthwise convolution with respect to
  26. * the filter . \n
  27. * @par Inputs:
  28. * Three inputs include: \n
  29. * @li input: 4D origin shape of input tensor [N, C, H, W] or [N, H, W, C],
  30. * support float16, float32, double
  31. * @li filter_size: A 4D tensor of type int32, with shape [H, W, C, K]
  32. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C].
  33. * Must be one of the following types: float16, float32, double . \n
  34. * @par Attributes:
  35. * @li strides: A required list or tuple. The stride of the sliding window
  36. * for height and width of input "x" of the convolution.
  37. * Must be with shape [1, 1, stride_height, stride_width] or
  38. * [1, stride_height, stride_width, 1].
  39. * @li dilations: An optional list or tuple. The dilation factor for each
  40. * dimension of input "x".
  41. * If set to k > 1, there will be k-1 skipped cells between each filter element
  42. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  43. * or [1, dilation_height, dilation_width, 1].
  44. * @li pads: A required list or tuple. Padding added to each dimension of the
  45. * input.
  46. * @li data_format: An optional string. Input data format, either "NHWC" or
  47. * "NCHW" . \n
  48. * @par Outputs:
  49. * filter_grad: Gradient of the deep convolution relative to the filter with
  50. * shape [H, W, C, K]. Must be one of the following types: float16, float32,
  51. * double . \n
  52. * @attention Constraints:\n
  53. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  54. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  55. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  56. * [C1, Hf, Wf, K, Co, C0],
  57. * where K is fixed at 1, and Co and C0 are 16.\n
  58. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  59. * data is 5D with shape [N, C1, Ho, Wo, C0],
  60. * where C is the same as that of the feature map and C0 is 16.\n
  61. * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 *
  62. * stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512 . \n
  63. * @par Third-party framework compatibility
  64. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter.
  65. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropFilter.
  66. */
  67. REG_OP(DepthwiseConv2DBackpropFilter)
  68. .INPUT(input, TensorType({float16}))
  69. .INPUT(filter_size, TensorType({DT_INT32, DT_INT64}))
  70. .INPUT(out_backprop, TensorType({float16}))
  71. .OUTPUT(filter_grad, TensorType({float32}))
  72. .REQUIRED_ATTR(strides, ListInt)
  73. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  74. .REQUIRED_ATTR(pads, ListInt)
  75. .ATTR(data_format, String, "NHWC")
  76. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilter)
  77. /**
  78. * @brief Computes the gradients of depthwise convolution with respect to
  79. * the filter . \n
  80. * @par Inputs:
  81. * Two inputs include: \n
  82. * @li input: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of type float16
  83. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C],
  84. * of type float16
  85. * @par Attributes:
  86. * @li filter_size: A required list or tuple. Shape of filter.
  87. * @li strides: A required list or tuple. The stride of the sliding window for
  88. * height and width of input "x" of the convolution.
  89. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  90. * stride_width, 1].
  91. * @li dilations: An optional list or tuple. The dilation factor for each
  92. * dimension of input "x".
  93. * If set to k > 1, there will be k-1 skipped cells between each filter element
  94. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  95. * or [1, dilation_height, dilation_width, 1].
  96. * @li pads: A required list or tuple. Padding added to each dimension of the
  97. * input.
  98. * @li data_format: An optional string. Input data format, either "NHWC" or
  99. * "NCHW" . \n
  100. * @par Outputs:
  101. * filter_grad: Gradient of the deep convolution relative to the filter with
  102. * shape [H, W, C, K]. Must be of type float32 . \n
  103. * @attention Constraints:\n
  104. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  105. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  106. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  107. * [C1, Hf, Wf, K, Co, C0],
  108. * where K is fixed at 1, and Co and C0 are 16.\n
  109. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  110. * data is 5D with shape [N, C1, Ho, Wo, C0],
  111. * where C is the same as that of the feature map and C0 is 16.\n
  112. * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 *
  113. * stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512 . \n
  114. * @par Third-party framework compatibility
  115. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter.
  116. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropFilter.
  117. *
  118. * @par Restrictions:
  119. * Warning: THIS FUNCTION IS DEPRECATED. Please use DepthwiseConv2DBackpropFilter
  120. * instead.
  121. */
  122. REG_OP(DepthwiseConv2DBackpropFilterD)
  123. .INPUT(input, TensorType({float16}))
  124. .INPUT(out_backprop, TensorType({float16}))
  125. .OUTPUT(filter_grad, TensorType({float32}))
  126. .REQUIRED_ATTR(filter_size, ListInt)
  127. .REQUIRED_ATTR(strides, ListInt)
  128. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  129. .REQUIRED_ATTR(pads, ListInt)
  130. .ATTR(data_format, String, "NHWC")
  131. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilterD)
  132. /**
  133. * @brief Computes the gradients of depthwise convolution with respect to the
  134. * input . \n
  135. * @par Inputs:
  136. * Three inputs include: \n
  137. * @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C],
  138. * support int32, int64
  139. * @li filter: 4D filter tensor with shape of [H, W, C, K], support float16.
  140. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C].
  141. * Must be one of the following types: float16 . \n
  142. * @par Attributes:
  143. * @li strides: A required list or tuple of int32. The stride of the sliding window for
  144. * height and width of input "x" of the convolution.
  145. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  146. * stride_width, 1].
  147. * @li dilations: An optional list or tuple of int32. The dilation factor for each
  148. * dimension of input "x". Defaults to "[1, 1, 1, 1]".
  149. * If set to k > 1, there will be k-1 skipped cells between each filter element
  150. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  151. * or [1, dilation_height, dilation_width, 1].
  152. * @li pads: A required list or tuple of int32. Padding added to each dimension of the
  153. * input.
  154. * @li data_format: An optional string. Input data format, either "NHWC" or
  155. * "NCHW". Defaults to "NHWC" . \n
  156. * @par Outputs:
  157. * input_grad: Gradient of the deep convolution relative to the input with shape
  158. * [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16 . \n
  159. * @attention Constraints:\n
  160. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  161. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  162. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  163. * [C1, Hf, Wf, K, Co, C0],
  164. * where K is fixed at 1, and Co and C0 are 16.\n
  165. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  166. * data is 5D with shape [N, C1, Ho, Wo, C0],
  167. * where C is the same as that of the feature map and C0 is 16.\n
  168. * Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf *
  169. * Wf * C0 * C0 * 2) / (2 * Wo *C0).\n
  170. * @par Third-party framework compatibility
  171. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropInput.
  172. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropInput.
  173. */
  174. REG_OP(DepthwiseConv2DBackpropInput)
  175. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  176. .INPUT(filter, TensorType({DT_FLOAT16}))
  177. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  178. .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
  179. .REQUIRED_ATTR(strides, ListInt)
  180. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  181. .REQUIRED_ATTR(pads, ListInt)
  182. .ATTR(data_format, String, "NHWC")
  183. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInput)
  184. /**
  185. * @brief Computes the gradients of depthwise convolution with respect to the
  186. * input . \n
  187. * @par Inputs:
  188. * Two inputs include: \n
  189. * @li filter: A 4D tensor of type float16, with shape [H, W, C, K]
  190. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of
  191. * type float16
  192. * @par Attributes:
  193. * @li input_size: A required list or tuple. The origin shape of input.
  194. * @li strides: A required list or tuple. The stride of the sliding window for
  195. * height and width of input "x" of the convolution.
  196. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  197. * stride_width, 1].
  198. * @li dilations: An optional list or tuple. The dilation factor for each
  199. * dimension of input "x".
  200. * If set to k > 1, there will be k-1 skipped cells between each filter element
  201. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  202. * or [1, dilation_height, dilation_width, 1].
  203. * @li pads: A required list or tuple. Padding added to each dimension of the
  204. * input.
  205. * @li data_format: An optional string. Input data format, either "NHWC" or
  206. * "NCHW" . \n
  207. * @par Outputs:
  208. * input_grad: Gradient of the deep convolution relative to the input with
  209. * shape [N, C, H, W] or [N, H, W, C]. Must be of type float16 . \n
  210. * @attention Constraints:\n
  211. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  212. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  213. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  214. * [C1, Hf, Wf, K, Co, C0],
  215. * where K is fixed at 1, and Co and C0 are 16.\n
  216. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  217. * data is 5D with shape [N, C1, Ho, Wo, C0],
  218. * where C is the same as that of the feature map and C0 is 16.\n
  219. * Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf *
  220. * Wf * C0 * C0 * 2) / (2 * Wo *C0).\n
  221. * @par Third-party framework compatibility
  222. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropInput.
  223. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropInput.
  224. *
  225. * @par Restrictions:
  226. * Warning: THIS FUNCTION IS DEPRECATED. Please use DepthwiseConv2DBackpropInput
  227. * instead.
  228. */
  229. REG_OP(DepthwiseConv2DBackpropInputD)
  230. .INPUT(filter, TensorType({DT_FLOAT16}))
  231. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  232. .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
  233. .REQUIRED_ATTR(input_size, ListInt)
  234. .REQUIRED_ATTR(strides, ListInt)
  235. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  236. .REQUIRED_ATTR(pads, ListInt)
  237. .ATTR(data_format, String, "NHWC")
  238. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInputD)
  239. /**
  240. *@brief Computes a 2D deep convolution given a 4D input tensor and a filter
  241. * tensor . \n
  242. *@par Inputs:
  243. *Two required inputs and two optional inputs, including: \n
  244. * @li x: A 4D tensor of type float16 or int8, with shape [N, C, H, W] or [N, H, W, C]
  245. * @li filter: A 4D tensor of type float16 or int8, with shape [H, W, C, K]
  246. * @li bias: An optional tensor of type float16 or int32
  247. * @li offset_w: An optional float16 or int8, used for quantized inference
  248. * @par Attributes:
  249. * @li strides: A required list or tuple. The stride of the sliding window for
  250. * height and width of input "x" of the convolution.
  251. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  252. * stride_width, 1].
  253. * @li dilations: An optional list or tuple. The dilation factor for each
  254. * dimension of input "x".
  255. * If set to k > 1, there will be k-1 skipped cells between each filter element
  256. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  257. * or [1, dilation_height, dilation_width, 1]. Defaults to "[1, 1, 1, 1]".
  258. * @li pads: A required list or tuple of int32. Padding added to each dimension of the
  259. * input.
  260. * @li data_format: An optional string. Input data format, either "NHWC" or
  261. * "NCHW". Defaults to "NHWC".
  262. * @li offset_x: An optional int. Input offset, used for quantized inference.
  263. * Defaults to 0 . \n
  264. * @par Outputs:
  265. * y: 4D tensor of type float16 or int32, with shape [N, C, H, W] or [N, H, W, C]
  266. * @attention Constraints:\n
  267. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  268. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  269. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  270. * [C1, Hf, Wf, K, Co, C0],
  271. * where K is fixed at 1, and Co and C0 are 16.\n
  272. * Limited by the size of L1 buffer memory: \n
  273. * (l1_size - filter_h*filter_w*BLOCK_SIZE*BLOCK_SIZE*data_size) // (Wi *
  274. * BLOCK_SIZE * data_size) >= (BLOCK_SIZE * strides_h + filter_h - strides_h).\n
  275. * @par Quantization supported or not
  276. * Yes
  277. * @par Third-party framework compatibility
  278. * @li Compatible with the TensorFlow operator DepthwiseConv2D.
  279. * @li Compatible with the Caffe operator DepthwiseConv2D.
  280. *
  281. * @par Restrictions:
  282. * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  283. */
  284. REG_OP(DepthwiseConv2D)
  285. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  286. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  287. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  288. .OPTIONAL_INPUT(offset_w, TensorType({DT_FLOAT16, DT_INT8}))
  289. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  290. .REQUIRED_ATTR(strides, ListInt)
  291. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  292. .REQUIRED_ATTR(pads, ListInt)
  293. .ATTR(data_format, String, "NHWC")
  294. .ATTR(offset_x, Int, 0)
  295. .OP_END_FACTORY_REG(DepthwiseConv2D)
  296. /**
  297. *@brief Performs the the backward operation for "BiasAdd" on the "bias" tensor.
  298. * It accumulates all the values from out_backprop into the feature
  299. * dimension. For NHWC data format, the feature dimension is the last.
  300. * For NCHW data format, the feature dimension is the third-to-last . \n
  301. *@par Inputs:
  302. *x: A Tensor of type NumberType . \n
  303. *@par Attributes:
  304. *data_format: Data format. Defaults to "NHWC" . \n
  305. *@par Outputs:
  306. *y: A Tensor.Has the same type as "x" . \n
  307. *@par Third-party framework compatibility
  308. * Compatible with the TensorFlow operator BiasAddGrad.
  309. */
  310. REG_OP(BiasAddGrad)
  311. .INPUT(x, TensorType::NumberType())
  312. .OUTPUT(y, TensorType::NumberType())
  313. .ATTR(data_format, String, "NHWC")
  314. .OP_END_FACTORY_REG(BiasAddGrad)
  315. /**
  316. *@brief Computes the gradients of convolution with respect to the input.
  317. *@par Inputs:
  318. * Three inputs:
  319. * @li input_size: A const Tensor of type int32. Currently does not support
  320. * data tensor. An integer vector representing the shape of input, where
  321. * input is a 4-D tensor [batch, height, width, channels]
  322. * or [batch, channels, height, width].
  323. * @li filter: A Tensor. Must be one of the following types: float16, float32,
  324. * float64. 4-D with shape
  325. * [filter_height, filter_width, in_channels, out_channels]
  326. * or [out_channels, filter_height, filter_width, in_channels]
  327. * or [out_channels, in_channel, filter_height, filter_width].
  328. * @li out_backprop: A Tensor. Must have the same type as filter.
  329. * 4-D with shape [batch, out_height, out_width, out_channels]
  330. * or [batch, out_channels, out_height, out_width].
  331. * Gradients with respect to the output of the convolution.
  332. *@par Attributes:
  333. * Five attributes:
  334. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  335. * for H/W dimension. The index of H/W is same as data_format.
  336. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads
  337. * on feature map
  338. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  339. * dimension of input, defaults to [1,1,1,1].
  340. * @li groups: Number of blocked connections from input channels to output
  341. * channels.
  342. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  343. * "NHWC". Specify the data format of the input and output data.
  344. *@par Outputs:
  345. * y: A Tensor. Has the same type as filter,and has same format as input_size.
  346. *@par Third-party framework compatibility
  347. * Compatible with Tensorflow's conv2d_backprop_input
  348. */
  349. REG_OP(Conv2DBackpropInput)
  350. .INPUT(input_size, TensorType({DT_INT32}))
  351. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  352. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  353. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  354. .REQUIRED_ATTR(strides, ListInt)
  355. .REQUIRED_ATTR(pads, ListInt)
  356. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  357. .ATTR(groups, Int, 1)
  358. .ATTR(data_format, String, "NHWC")
  359. .OP_END_FACTORY_REG(Conv2DBackpropInput)
  360. /**
  361. *@brief Computes the gradients of convolution with respect to the input.
  362. *@par Inputs:
  363. * Two inputs:
  364. * @li filter: A Tensor. Types is float16.
  365. * 4-D with shape [filter_height, filter_width, in_channels, out_channels]
  366. * or [out_channels, filter_height, filter_width, in_channels]
  367. * or [out_channels, in_channel, filter_height, filter_width].
  368. * @li out_backprop: A Tensor. Must have the same type as filter.
  369. * 4-D with shape [batch, out_height, out_width, out_channels]
  370. * or [batch, out_channels, out_height, out_width].
  371. * Gradients with respect to the output of the convolution.
  372. *@par Attributes:
  373. * Six attributes:
  374. * @li input_size A Tensor of type int32. An integer vector representing the
  375. * shape of input, where input is a 4-D tensor [batch, height, width, channels]
  376. * or [batch, channels, height, width].
  377. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  378. * for H/W dimension. The index of H/W is same as data_format.
  379. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  380. * feature map
  381. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  382. * dimension of input, defaults to [1,1,1,1].
  383. * @li groups: Number of blocked connections from input channels to output
  384. * channels.
  385. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  386. * "NHWC". Specify the data format of the input and output data.
  387. *@par Outputs:
  388. * y: A Tensor. Has the same type as filter,4-D tensor [batch, height, width,
  389. * channels] or [batch, channels, height, width].
  390. *@par Third-party framework compatibility
  391. * Compatible with Tensorflow's conv2d_backprop_input
  392. *@par Restrictions:
  393. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DBackpropInput instead.
  394. */
  395. REG_OP(Conv2DBackpropInputD)
  396. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  397. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_INT8}))
  398. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  399. .REQUIRED_ATTR(input_size, ListInt)
  400. .REQUIRED_ATTR(strides, ListInt)
  401. .REQUIRED_ATTR(pads, ListInt)
  402. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  403. .ATTR(groups, Int, 1)
  404. .ATTR(data_format, String, "NHWC")
  405. .OP_END_FACTORY_REG(Conv2DBackpropInputD)
  406. /**
  407. *@brief Computes the Deconvolution with respect to the input.
  408. *@par Inputs:
  409. * Three inputs:
  410. * @li x: A Tensor of type float16 or int8. 4D with shape
  411. * [batch, out_channels, out_height, out_width]. Gradients with respect
  412. * to the output of the convolution.
  413. * @li filter: A Tensor. Must have the same type as "x".
  414. * 4D with shape [out_channels, in_channel, filter_height, filter_width].\n
  415. * Two optional inputs:
  416. * @li bias: An optional tensor. Must have the same type as "y".
  417. * @li offset_w: An optional 1D tensor for quantized deconvolution.
  418. * Type is int8. Reserved.\n
  419. *@par Attributes:
  420. * Six attributes:
  421. * @li strides: A tuple or list of 2 integers. The stride of the sliding window
  422. * for H/W dimension.
  423. * @li pads: A tuple or list of 4 integers. The [top, bottom, left, right]
  424. * padding on the feature map.
  425. * @li dilations: A tuple or list of 4 integers. The dilation factor for each
  426. * dimension of input, defaults to [1,1,1,1].
  427. * @li groups: Number of blocked connections from input channels to
  428. output channels. Defaults to "1".
  429. * @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n
  430. Specify the data format of the input and output data.
  431. * @li offset_x: An optional integer for quantized deconvolution.
  432. * Defaults to "0".
  433. *@par Outputs:
  434. * y: A Tensor. 4D tensor with shape [batch, channels, height, width].
  435. * When type of x is float16, the type of y must be float16.
  436. * When type of x is int8, the type of y must be int32.
  437. */
  438. REG_OP(Deconvolution)
  439. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  440. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  441. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  442. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  443. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  444. .REQUIRED_ATTR(strides, ListInt)
  445. .REQUIRED_ATTR(pads, ListInt)
  446. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  447. .ATTR(groups, Int, 1)
  448. .ATTR(data_format, String, "NCHW")
  449. .ATTR(offset_x, Int, 0)
  450. .OP_END_FACTORY_REG(Deconvolution)
  451. /**
  452. *@brief Computes the gradients of convolution with respect to the filter
  453. *@par Inputs:
  454. * Three inputs:
  455. * @li x: A Tensor. Must be one of the following types: float16, float32,
  456. * float64.4-D with shape [batch, in_height, in_width, in_channels] or
  457. * [batch, in_channels, in_height, in_width].
  458. * @li filter_size: A const Tensor of type int32. Currently does not support
  459. * data tensor. An integer vector representing the tensor shape of filter,
  460. * where filter is a 4-D tensor [filter_height, filter_width, in_channels,
  461. * out_channels] or [out_channels, filter_height, filter_width, in_channels]
  462. * or [out_channels, in_channel, filter_height, filter_width].
  463. * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape
  464. * [batch, out_height, out_width, out_channels] or [batch, out_channels,
  465. * out_height, out_width]. Gradients with respect to the output of the
  466. * convolution.
  467. *@par Attributes:
  468. * Five attributes:
  469. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  470. * for H/W dimension. The index of H/W is same as data_format.
  471. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  472. * feature map.
  473. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  474. * dimension of input, defaults to [1,1,1,1].
  475. * @li groups: Number of blocked connections from input channels to output
  476. * channels.
  477. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  478. * "NHWC". Specify the data format of the input and output data.
  479. *@par Outputs:
  480. * y: A Tensor. Has the same type as x, has the same format as filter_size.
  481. *@par Third-party framework compatibility
  482. * Compatible with Tensorflow's conv2d_backprop_filter
  483. */
  484. REG_OP(Conv2DBackpropFilter)
  485. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  486. .INPUT(filter_size, TensorType({DT_INT32}))
  487. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  488. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  489. .REQUIRED_ATTR(strides, ListInt)
  490. .REQUIRED_ATTR(pads, ListInt)
  491. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  492. .ATTR(groups, Int, 1)
  493. .ATTR(data_format, String, "NHWC")
  494. .OP_END_FACTORY_REG(Conv2DBackpropFilter)
  495. /**
  496. *@brief Computes the gradients of convolution with respect to the filter.
  497. *@par Inputs:
  498. * Two inputs:
  499. * @li x: A Tensor. Type is float16.
  500. * 4-D with shape [batch, in_height, in_width, in_channels] or [batch,
  501. * in_channels, in_height, in_width].
  502. * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape
  503. * [batch, out_height, out_width, out_channels] or [batch, out_channels,
  504. * out_height, out_width]. Gradients with respect to the output of the
  505. * convolution.
  506. *@par Attributes:
  507. * Six attributes:
  508. * @li filter_size: A Tensor of type integers. An integer vector representing
  509. * the tensor shape of filter,
  510. * where filter is a 4-D tensor [filter_height, filter_width, in_channels,
  511. * out_channels] or [out_channels, filter_height, filter_width, in_channels]
  512. * or [out_channels, in_channel, filter_height, filter_width].
  513. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  514. * for H/W dimension. The index of H/W is same as data_format.
  515. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  516. * feature map
  517. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  518. * dimension of input, defaults to [1,1,1,1].
  519. * @li groups: Number of blocked connections from input channels to output
  520. * channels.
  521. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  522. * "NHWC". Specify the data format of the input and output data.
  523. *@par Outputs:
  524. * y: A Tensor. Type is float32, a 4-D tensor [filter_height, filter_width,
  525. * in_channels, out_channels] or [out_channels, filter_height, filter_width,
  526. * in_channels] or [out_channels, in_channel, filter_height, filter_width].
  527. * Compatible with Tensorflow's conv2d_backprop_filter
  528. *@par Restrictions:
  529. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DBackpropFilter instead.
  530. */
  531. REG_OP(Conv2DBackpropFilterD)
  532. .INPUT(x, TensorType({DT_FLOAT16}))
  533. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  534. .OUTPUT(y, TensorType({DT_FLOAT}))
  535. .REQUIRED_ATTR(filter_size, ListInt)
  536. .REQUIRED_ATTR(strides, ListInt)
  537. .REQUIRED_ATTR(pads, ListInt)
  538. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  539. .ATTR(groups, Int, 1)
  540. .ATTR(data_format, String, "NHWC")
  541. .OP_END_FACTORY_REG(Conv2DBackpropFilterD)
  542. /**
  543. *@brief Computes a 2D convolution given 4D "x" and "filter" tensors.
  544. *@par Inputs:
  545. * @li x: A 4D tensor of input images.
  546. * @li filter: A 4D tensor of filters.
  547. * @li bias: An optional 1D tensor.
  548. * @li offset_w: An optional 1D tensor for quantized convolution. Reserved.
  549. *
  550. * The input and output tensor attributes are listed as follows:
  551. * @verbatim
  552. |Tensor | x | filter | bias | offset_w | y
  553. -----------|---------|---------|---------|----------|--------
  554. |Data Type | float16 | float16 | float16 | _ | float16
  555. | |---------|---------|---------|----------|--------
  556. | | float32 | float32 | float32 | _ | float32
  557. | |---------|---------|---------|----------|--------
  558. | | int8 | int8 | int32 | int8 | int32
  559. -----------|---------|---------|---------|----------|--------
  560. |Format | NCHW | NCHW | ND | ND | NCHW
  561. | | NHWC | NHWC | | | NHWC
  562. | | | HWCN | | |
  563. @endverbatim
  564. * It should be noted that the data types must correspond to each other, but the
  565. * format does not need to . \n
  566. *@par Attributes:
  567. * @li strides: A list of 4 integers. Specifying the strides of the
  568. * convolution along the height and width. The dimension order is determined
  569. * by the data format of "x". By default the N and C dimensions are set to 1.
  570. * @li pads: A list of 4 integers. Specifying the top, bottom, left and right
  571. * padding.
  572. * @li dilations: A list of 4 integers. Specifying the dilation rate to use
  573. * for dilated convolution. Has the same dimension order and value as "strides".
  574. * @li groups: Number of blocked connections from input channels to output
  575. * channels. Input channels and output channels must both be divisible by
  576. * "groups".Type is int32.
  577. * @li offset_x: An optional integer for quantized convolution. Type is int32. Defaults to "0".
  578. * @li data_format: An optional string from: "NHWC", "NCHW". Specifying the
  579. * data format of the input and output images. Type is string. Defaults to "NHWC". Reserved . \n
  580. *@par Outputs:
  581. * @li y: A 4D Tensor of output images . \n
  582. *@attention
  583. * @li The parameter scope is listed as follows:
  584. * @verbatim
  585. |Name | Field | Scope
  586. ------------------|--------------|----------
  587. |Input Image Size | H dimension | [1, 4096]
  588. | | W dimension | [1, 4096]
  589. ------------------|--------------|----------
  590. |Filter Size | H dimension | [1, 255]
  591. | | W dimension | [1, 255]
  592. ------------------|--------------|----------
  593. |Stride Size | H dimension | [1, 63]
  594. | | W dimension | [1, 63]
  595. ------------------|--------------|----------
  596. |Padding Size | top side | [0, 255]
  597. | | bottom side | [0, 255]
  598. | | left side | [0, 255]
  599. | | right side | [0, 255]
  600. ------------------|--------------|----------
  601. |Dilation Size | H dimension | [1, 255]
  602. | W dimension | [1, 255]
  603. @endverbatim
  604. * @li There are restrictions for certain scenarios:
  605. * @verbatim
  606. Output | Restrictions
  607. ------------------|----------------------------------------------
  608. W dimension == 1 | HxW(input) == HxW(filter)
  609. H dimension == 1 |
  610. ------------------|----------------------------------------------
  611. W dimension == 1 | Not supported
  612. H dimension != 1 |
  613. @endverbatim
  614. * As shown above, "HxW(input)" indicates the image size after padding and
  615. * "HxW(filter)" indicates the filter size after dilation . \n
  616. *@par Quantization supported or not
  617. * Yes
  618. *@par Third-party framework compatibility
  619. *@li Compatible with the TensorFlow operator "conv2d".
  620. *@li Compatible with the Caffe operator 2D "Convolution".
  621. */
  622. REG_OP(Conv2D)
  623. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  624. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  625. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  626. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  627. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  628. .REQUIRED_ATTR(strides, ListInt)
  629. .REQUIRED_ATTR(pads, ListInt)
  630. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  631. .ATTR(groups, Int, 1)
  632. .ATTR(data_format, String, "NHWC")
  633. .ATTR(offset_x, Int, 0)
  634. .OP_END_FACTORY_REG(Conv2D)
  635. REG_OP(Conv2DCompress)
  636. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8}))
  637. .INPUT(filter_compress, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT8}))
  638. .INPUT(compress_index, TensorType({DT_INT8}))
  639. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32}))
  640. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  641. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32}))
  642. .REQUIRED_ATTR(strides, ListInt)
  643. .REQUIRED_ATTR(pads, ListInt)
  644. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  645. .ATTR(groups, Int, 1)
  646. .ATTR(data_format, String, "NHWC")
  647. .ATTR(offset_x, Int, 0)
  648. .OP_END_FACTORY_REG(Conv2DCompress)
  649. /**
  650. *@brief Computes a 3D convolution given 5D "x" and "filter" tensors.
  651. *@par Inputs:
  652. * @li x: A 5D tensor. Must be one of the following types: float16,
  653. * (Currently does not support int8). The format of x is NCDHW or NDHWC.
  654. * @li filter: A 5D tensor of the same type as "x".
  655. * (Currently does not support int8).
  656. * The format is NCDHW, NDHWC or DHWCN . \n
  657. *@par Optional input:
  658. * @li bias: An optional 1D tensor of the same type as "x".
  659. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  660. *@par Required Attributes:
  661. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  662. * for each dimension of "x".
  663. * The N and C dimensions must be 1. Has the same format as "x".
  664. * @li pads: A list of 6 integers.
  665. * Supports only padding along the D, H and W dimensions in sequence of head,
  666. * tail, top, bottom, left and right . \n
  667. *@par Attributes:
  668. * @li groups: Number of blocked connections from input channels to output
  669. * channels. Reserved.
  670. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  671. * Defaults to "NDHWC". Specify the data format of the input and output data.
  672. * @li dilations: A list of 5 integers. Specifies the dilation factor for each
  673. * dimension of "x", now only support [1,1,1,1,1]
  674. * The N and C dimensions must be 1. Has the same format as "x".
  675. * @li offset_x: An optional int. Input offset, used for quantized inference.
  676. * Defaults to 0. Reserved . \n
  677. *@par Outputs:
  678. *y: A Tensor. Has the same type and data format as "x". \n
  679. *@attention Constraints:
  680. *The image size after padding is greater than the filter size . \n
  681. *@par Third-party framework compatibility
  682. * @li Compatible with the TensorFlow operator conv3d.
  683. * @li Compatible with the Caffe operator Convolution.
  684. */
  685. REG_OP(Conv3D)
  686. .INPUT(x, TensorType({DT_FLOAT16}))
  687. .INPUT(filter, TensorType({DT_FLOAT16}))
  688. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  689. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  690. .OUTPUT(y, TensorType({DT_FLOAT16}))
  691. .REQUIRED_ATTR(strides, ListInt)
  692. .REQUIRED_ATTR(pads, ListInt)
  693. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  694. .ATTR(groups, Int, 1)
  695. .ATTR(data_format, String, "NDHWC")
  696. .ATTR(offset_x, Int, 0)
  697. .OP_END_FACTORY_REG(Conv3D)
  698. /**
  699. *@brief Computes the gradients of convolution 3d with respect to the input.
  700. *@par Inputs:
  701. * Three inputs:
  702. * @li input_size: A Tensor of type int32, int64. An integer vector representing
  703. * the shape of input, where input is a 5-D tensor
  704. * [batch, depth, height, width, channels] or
  705. * [batch, channels, depth, height, width].
  706. * @li filter: A Tensor. Must be one of the following types: float16, float32.
  707. * Currently does not support double.
  708. * @li out_backprop: A Tensor. Must have the same type as filter.
  709. * 5-D with shape [batch, depth, out_height, out_width, out_channels]
  710. * or [batch, out_channels, depth, out_height, out_width]. Gradients with
  711. * respect to the output of the convolution . \n
  712. *@par Required Attributes:
  713. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  714. * for each dimension of "x".
  715. * The N and C dimensions must be 1. Has the same format as "x".
  716. * @li pads: A list of 6 integers.
  717. * Supports only padding along the D, H and W dimensions in sequence of head,
  718. * tail, top, bottom, left and right . \n
  719. *@par Attributes:
  720. * Three attributes:
  721. * @li groups: Number of blocked connections from input channels to output
  722. * channels. Reserved.
  723. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  724. * Defaults to "NDHWC". Specify the data format of the input and output data.
  725. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  726. * dimension of the input, now only support [1,1,1,1,1]
  727. *@par Outputs:
  728. * y: A Tensor. Has the same type as filter,and has same format as input_size
  729. *@par Third-party framework compatibility
  730. * Compatible with Tensorflow's conv3d_backprop_input
  731. */
  732. REG_OP(Conv3DBackpropInput)
  733. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  734. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  735. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  736. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  737. .REQUIRED_ATTR(strides, ListInt)
  738. .REQUIRED_ATTR(pads, ListInt)
  739. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  740. .ATTR(groups, Int, 1)
  741. .ATTR(data_format, String, "NDHWC")
  742. .OP_END_FACTORY_REG(Conv3DBackpropInput)
  743. /**
  744. *@brief Computes the gradients of convolution 3d with respect to the input.
  745. *@par Inputs:
  746. * Two inputs:
  747. * @li filter: A Tensor whose type is float16. The format of filter is NCDHW,
  748. * NDHWC or DHWCN.
  749. * @li out_backprop: A Tensor. Must have the same type as filter. The format is
  750. * NDHWC or NCDHW. \n
  751. *@par Required Attributes:
  752. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  753. * for each dimension of "x".
  754. * The N and C dimensions must be 1. Has the same format as "x".
  755. * @li pads: A list of 6 integers. Supports only padding along the D, H and W
  756. * dimensions in sequence of head, tail, top, bottom, left and right.
  757. * @li input_size: A tuple/list of type int32, int64. An integer vector
  758. * representing the shape of input, where input is a 5-D tensor
  759. * [batch, depth, height, width, channels] or
  760. * [batch, channels, depth, height, width] . \n
  761. *@par Attributes:
  762. * Three attributes:
  763. * @li groups: Number of blocked connections from input channels to output
  764. * channels. Reserved.
  765. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  766. * Defaults to "NDHWC". Specify the data format of the input and output data.
  767. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  768. * dimension of input, now only support [1,1,1,1,1]
  769. *@par Outputs:
  770. * y: A Tensor. Has the same type and data format as out_backprop.
  771. *@par Third-party framework compatibility
  772. * Compatible with Tensorflow's conv3d_backprop_input
  773. *@par Restrictions:
  774. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DBackpropInput instead.
  775. */
  776. REG_OP(Conv3DBackpropInputD)
  777. .INPUT(filter, TensorType({DT_FLOAT16}))
  778. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  779. .OUTPUT(y, TensorType({DT_FLOAT16}))
  780. .REQUIRED_ATTR(input_size, ListInt)
  781. .REQUIRED_ATTR(strides, ListInt)
  782. .REQUIRED_ATTR(pads, ListInt)
  783. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  784. .ATTR(groups, Int, 1)
  785. .ATTR(data_format, String, "NDHWC")
  786. .OP_END_FACTORY_REG(Conv3DBackpropInputD)
  787. /**
  788. *@brief Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence . \n
  789. *@par Inputs:
  790. * @li x: A Tensor dtype of float16.
  791. * @li cont: A Tensor dtype of float16, float32.
  792. * @li w_x: A Tensor dtype of float16.
  793. * @li bias: A Tensor dtype of int16, int32, float16, float32.
  794. * @li w_h: A Tensor dtype of float16.
  795. * @li x_static: A optinal Tensor dtype of float16.
  796. * @li h_0: A optinal Tensor dtype of float16, float32.
  797. * @li c_0: A optinal Tensor dtype of float16, float32.
  798. * @li w_x_static: A optinal Tensor dtype of float16 . \n
  799. *@par Attributes:
  800. *@li num_output: A Scalar of output size dtype of int.
  801. *@li expose_hidden: A Scalar(bool) of features hidden . \n
  802. *@par Outputs:
  803. *@li h: A Tensor dtype of float16, float32.
  804. * @li h_t: A optinal Tensor dtype of float16, float32. The hidden state at time t.
  805. * @li c_t: A optinal Tensor dtype of float16, float32. The cell state at time t . \n
  806. *@par Third-party framework compatibility:
  807. * Compatible with the Pytorch operator adds.
  808. *@par Restrictions:
  809. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  810. */
  811. REG_OP(LSTM)
  812. .INPUT(x, TensorType({DT_FLOAT16}))
  813. .INPUT(cont, TensorType({DT_FLOAT32,DT_FLOAT16}))
  814. .INPUT(w_x, TensorType({DT_FLOAT16}))
  815. .INPUT(bias, TensorType({DT_FLOAT16,DT_FLOAT32,DT_INT16,DT_INT32}))
  816. .INPUT(w_h, TensorType({DT_FLOAT16}))
  817. .OPTIONAL_INPUT(x_static, TensorType({DT_FLOAT16}))
  818. .OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16,DT_FLOAT32}))
  819. .OPTIONAL_INPUT(c_0, TensorType({DT_FLOAT16,DT_FLOAT32}))
  820. .OPTIONAL_INPUT(w_x_static, TensorType({DT_FLOAT16}))
  821. .OUTPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
  822. .OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
  823. .OUTPUT(c_t, TensorType({DT_FLOAT16, DT_FLOAT}))
  824. .ATTR(num_output, Int, 0)
  825. .ATTR(expose_hidden, Bool, false)
  826. .OP_END_FACTORY_REG(LSTM)
  827. /**
  828. *@brief Computes the gradients of convolution3D with respect to the filter
  829. *@par Inputs:
  830. * Three inputs:
  831. * @li x: A Tensor. Must be one of the following types: float16, float32.
  832. * Currently does not support double.
  833. * 5-D with shape [batch, in_depth, in_height, in_width, in_channels]
  834. * or [batch, in_channels, in_depth, in_height, in_width].
  835. * @li filter_size: A Tensor of type int32. An integer vector representing the
  836. * tensor shape of filter, where filter is a 5-D tensor
  837. * [filter_depth, filter_height, filter_width, in_channels, out_channels]
  838. * [out_channels, in_channels, filter_depth, filter_height, filter_width]
  839. * or [out_channels, filter_depth, filter_height, filter_width, in_channels].
  840. * @li out_backprop: A Tensor. Must have the same type as x.
  841. * 5-D with shape [batch, out_depth, out_height, out_width, out_channels]
  842. * or [batch, out_channels, out_depth, out_height, out_width].
  843. * Gradients with respect to the output of the convolution. \n
  844. *@par Required Attributes:
  845. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  846. * window for each dimension of "x". The N and C dimensions must be 1.
  847. * Has the same format as "x".
  848. * @li pads: A tuple/list of 6 integers, [front, back, top, bottom, left, right]
  849. * pads on feature map . \n
  850. *@par Attributes:
  851. * Three attributes:
  852. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  853. * dimension of input, now only support [1,1,1,1,1].
  854. * @li groups: Number of blocked connections from input channels to output
  855. * channels. Reserved.
  856. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  857. * Defaults to "NDHWC". Specify the data format of the input and output data.
  858. *@par Outputs:
  859. * y: A Tensor that has the same type as x
  860. * and the format is NDHWC, NCDHW or DHWCN.
  861. *@par Third-party framework compatibility
  862. * Compatible with Tensorflow's conv3d_backprop_filter
  863. */
  864. REG_OP(Conv3DBackpropFilter)
  865. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  866. .INPUT(filter_size, TensorType({DT_INT32}))
  867. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  868. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  869. .REQUIRED_ATTR(strides, ListInt)
  870. .REQUIRED_ATTR(pads, ListInt)
  871. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  872. .ATTR(groups, Int, 1)
  873. .ATTR(data_format, String, "NDHWC")
  874. .OP_END_FACTORY_REG(Conv3DBackpropFilter)
  875. /**
  876. *@brief Computes the gradients of convolution with respect to the filter.
  877. *@par Inputs:
  878. * Two inputs:
  879. * @li x: A Tensor of type float16.
  880. * 5-D with shape [batch, in_depth, in_height, in_width, in_channels]
  881. * or [batch, in_channels, in_depth, in_height, in_width].
  882. * @li out_backprop: A Tensor. Must have the same type as x.
  883. * 5-D with shape [batch, out_depth, out_height, out_width, out_channels]
  884. * or [batch, out_channels, out_depth, out_height, out_width].
  885. * Gradients with respect to the output of the convolution. \n
  886. *@par Required Attributes:
  887. * @li filter_size: A tuple/list of type integers. An integer vector
  888. * representing the tensor shape of filter, where filter is a 5-D tensor
  889. * [filter_depth, filter_height, filter_width, in_channels, out_channels],
  890. * [out_channels, filter_depth, filter_height, filter_width, in_channels]
  891. * or [out_channels, in_channels, filter_depth, filter_height, filter_width].
  892. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  893. * window for each dimension of "x".
  894. * The N and C dimensions must be 1. Has the same format as "x".
  895. * @li pads: A tuple/list of 6 integers, [front, back, top, bottom, left, right]
  896. * pads on feature map. \n
  897. *@par Attributes:
  898. * Three attributes:
  899. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  900. * dimension of input, now only support [1,1,1,1,1].
  901. * @li groups: Number of blocked connections from input channels to output
  902. * channels. Reserved.
  903. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  904. * Defaults to "NDHWC". Specify the data format of the input and output data.
  905. *@par Outputs:
  906. * y: A Tensor of type float32 and the format is NDHWC, NCDHW or DHWCN.
  907. *@par Third-party framework compatibility
  908. * Compatible with Tensorflow's conv3d_backprop_filter
  909. *@par Restrictions:
  910. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DBackpropFilter instead.
  911. */
  912. REG_OP(Conv3DBackpropFilterD)
  913. .INPUT(x, TensorType({DT_FLOAT16}))
  914. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  915. .OUTPUT(y, TensorType({DT_FLOAT}))
  916. .REQUIRED_ATTR(filter_size, ListInt)
  917. .REQUIRED_ATTR(strides, ListInt)
  918. .REQUIRED_ATTR(pads, ListInt)
  919. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  920. .ATTR(groups, Int, 1)
  921. .ATTR(data_format, String, "NDHWC")
  922. .OP_END_FACTORY_REG(Conv3DBackpropFilterD)
  923. /**
  924. *@brief Computes the transpose of convolution 3d with respect to the input.
  925. *@par Inputs:
  926. * Three inputs:
  927. * @li input_size: A Tensor of type int32. An integer vector representing the
  928. * shape of input.
  929. * @li x: A Tensor of type float16, currently does not support int8. The format
  930. * is NDHWC or NCDHW.
  931. * @li filter: A Tensor of type float16, currently does not support int8.
  932. * The format is NDHWC, NCDHW or DHWCN.
  933. *@par Optional input:
  934. * Two optional inputs
  935. * @li bias: An optional 1D tensor of the same type as "x". Reserved.
  936. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  937. *@par Required Attributes:
  938. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  939. * window for each dimension of "x".
  940. * The N and C dimensions must be 1. Has the same format as "x".
  941. * @li pads: A tuple/list of 6 integers
  942. *@par Attributes:
  943. * Five attributes:
  944. * @li groups: Number of blocked connections from input channels to output
  945. * channels. Reserved.
  946. * @li dilations: A tuple/list of 5 integers,
  947. * The dilation factor for each dimension of input, now only support [1,1,1,1,1]
  948. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  949. * Defaults to "NDHWC". Specify the data format of the input and output data.
  950. * @li output_padding: The size will be added in the output shape.
  951. * @li offset_x: Input offset_x value. Reserved.
  952. *@par Outputs:
  953. * y: A Tensor. Has the same type and format as x.
  954. */
  955. REG_OP(Conv3DTranspose)
  956. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  957. .INPUT(x, TensorType({DT_FLOAT16}))
  958. .INPUT(filter, TensorType({DT_FLOAT16}))
  959. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  960. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  961. .OUTPUT(y, TensorType({DT_FLOAT16}))
  962. .REQUIRED_ATTR(strides, ListInt)
  963. .REQUIRED_ATTR(pads, ListInt)
  964. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  965. .ATTR(groups, Int, 1)
  966. .ATTR(data_format, String, "NDHWC")
  967. .ATTR(output_padding, ListInt, {0, 0, 0, 0, 0})
  968. .ATTR(offset_x, Int, 0)
  969. .OP_END_FACTORY_REG(Conv3DTranspose)
  970. /**
  971. *@brief Computes the transpose of convolution 3d with respect to the input.
  972. *@par Inputs:
  973. * @li x: A Tensor of type float16, currently does not support int8.
  974. * The format is NDHWC or NCDHW.
  975. * @li filter: A Tensor of type float16, currently does not support int8.
  976. * The format is NDHWC, NCDHW or DHWCN.
  977. *@par Optional inputs:
  978. * @li bias: An optional 1D tensor of the same type as "x". Reserved.
  979. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  980. *@par Required Attributes:
  981. * @li input_size: A tuple/list of type int32.
  982. * An integer vector representing the shape of input
  983. * @li strides: A tuple/list of 5 integers.
  984. * Specifies the stride of the sliding window for each dimension of "x".
  985. * The N and C dimensions must be 1. Has the same format as "x".
  986. * @li pads: A tuple/list of 6 integers . \n
  987. *@par Attributes:
  988. * Five attributes:
  989. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  990. * dimension of input, now only support [1,1,1,1,1]
  991. * @li groups: Number of blocked connections from input channels to output
  992. * channels. Reserved.
  993. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  994. * Defaults to "NDHWC". Specify the data format of the input and output data.
  995. * @li output_padding: The size will be added in the output shape.
  996. * @li offset_x: Input offset_x value. Reserved.
  997. *@par Outputs:
  998. * y: A Tensor. Has the same type and format as x.
  999. *@par Restrictions:
  1000. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DTranspose instead.
  1001. */
  1002. REG_OP(Conv3DTransposeD)
  1003. .INPUT(x, TensorType({DT_FLOAT16}))
  1004. .INPUT(filter, TensorType({DT_FLOAT16}))
  1005. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  1006. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1007. .OUTPUT(y, TensorType({DT_FLOAT16}))
  1008. .REQUIRED_ATTR(input_size, ListInt)
  1009. .REQUIRED_ATTR(strides, ListInt)
  1010. .REQUIRED_ATTR(pads, ListInt)
  1011. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1012. .ATTR(groups, Int, 1)
  1013. .ATTR(data_format, String, "NDHWC")
  1014. .ATTR(output_padding, ListInt, {0, 0, 0, 0, 0})
  1015. .ATTR(offset_x, Int, 0)
  1016. .OP_END_FACTORY_REG(Conv3DTransposeD)
  1017. /**
  1018. *@brief Computes the transpose of convolution 2d with respect to the input.
  1019. *@par Inputs:
  1020. * Five inputs:
  1021. * @li input_size: A Tensor of type int32 or int64. An integer vector
  1022. * representing the shape of input, where input is a 4-D tensor
  1023. * [batch, height, width, channels] or [batch, channels, height, width].
  1024. * @li x: A Tensor of type float16, int8. 4-D with shape [batch, out_height,
  1025. * out_width, out_channels] or [batch, out_channels, out_height, out_width].
  1026. * @li filter: A Tensor of type float16, int8. Must have the same type as "x".
  1027. * 4-D with shape [filter_height, filter_width, in_channels, out_channels]
  1028. * or [out_channels, filter_height, filter_width, in_channels]
  1029. * or [out_channels, in_channel, filter_height, filter_width].
  1030. * @li bias: An optional 1D tensor of type float16 or int32. Format is "ND".
  1031. * @li offset_w: An optional 1D tensor for quantized inference. Reserved.
  1032. *@par Required Attributes:
  1033. * @li strides: A required tuple/list of 4 integers. The stride of the sliding
  1034. * window for H/W dimension. The index of H/W is same as data_format.
  1035. * @li pads: A required tuple/list of 4 integers, [top, bottom, left, right]
  1036. * pads on feature map.
  1037. *@par Attributes:
  1038. * Five attributes:
  1039. * @li groups: Number of blocked connections from input channels to output
  1040. * channels.
  1041. * Defaults to "1".
  1042. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  1043. * dimension of input. Must be [1, 1, 1, 1].
  1044. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
  1045. * Specify the data format of the input and output data.
  1046. * @li output_padding: The size will be added in the output shape. Defaults
  1047. * to [0, 0, 0, 0].
  1048. * @li offset_x: An optional int. Input offset, used for quantized inference.
  1049. * Defaults to "0".
  1050. *@par Outputs:
  1051. * y: A Tensor. A Tensor of type float16 or int32, and has same format as
  1052. * input_size.
  1053. */
  1054. REG_OP(Conv2DTranspose)
  1055. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  1056. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  1057. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  1058. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  1059. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1060. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  1061. .REQUIRED_ATTR(strides, ListInt)
  1062. .REQUIRED_ATTR(pads, ListInt)
  1063. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1064. .ATTR(groups, Int, 1)
  1065. .ATTR(data_format, String, "NHWC")
  1066. .ATTR(output_padding, ListInt, {0, 0, 0, 0})
  1067. .ATTR(offset_x, Int, 0)
  1068. .OP_END_FACTORY_REG(Conv2DTranspose)
  1069. /**
  1070. *@brief Computes the transpose of convolution 2d with respect to the input.
  1071. *@par Inputs:
  1072. * Four inputs:
  1073. * @li x: A Tensor of type float16, int8.
  1074. * @li filter: A Tensor of type float16, int8. Must have the same type as "x".
  1075. * @li bias: An optional 1D tensor of the same type as "x".
  1076. * @li offset_w: An optional 1D tensor for quantized inference. Type is int8. Reserved.
  1077. *@par Required Attributes:
  1078. * @li input_size: A Tensor of type int32 or int64. An integer vector representing the
  1079. * shape of input.
  1080. * @li strides: A required list or tuple. The stride of the sliding window for
  1081. * height and width for H/W dimension.
  1082. * @li pads: A required list or tuple of int32. Padding added to each dimension
  1083. * of the input.
  1084. *@par Attributes:
  1085. * Five attributes:
  1086. * @li groups: Number of blocked connections from input channels to output channels.
  1087. * Defaults to "1".
  1088. * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension
  1089. * of input. Must be [1, 1, 1, 1].
  1090. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
  1091. * Specify the data format of the input and output data.
  1092. * @li output_padding: The size will be added in the output shape. Defaults
  1093. * to [0, 0, 0, 0].
  1094. * @li offset_x: An optional int. Input offset, used for quantized inference.
  1095. * Defaults to "0".
  1096. *@par Outputs:
  1097. * y: A Tensor. Has the same type as "filter".
  1098. *@par Restrictions:
  1099. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DTranspose instead.
  1100. */
  1101. REG_OP(Conv2DTransposeD)
  1102. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  1103. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  1104. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  1105. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1106. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  1107. .REQUIRED_ATTR(input_size, ListInt)
  1108. .REQUIRED_ATTR(strides, ListInt)
  1109. .REQUIRED_ATTR(pads, ListInt)
  1110. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1111. .ATTR(groups, Int, 1)
  1112. .ATTR(data_format, String, "NHWC")
  1113. .ATTR(output_padding, ListInt, {0, 0, 0, 0})
  1114. .ATTR(offset_x, Int, 0)
  1115. .OP_END_FACTORY_REG(Conv2DTransposeD)
  1116. } // namespace ge
  1117. #endif // GE_OP_NN_CALCULATION_OPS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示