You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 34 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/utils/graph_utils.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "graph/load/model_manager/davinci_model.h"
  22. using namespace std;
  23. namespace ge {
  24. extern OpDescPtr CreateOpDesc(string name, string type);
  25. class UtestDavinciModel : public testing::Test {
  26. protected:
  27. void SetUp() {}
  28. void TearDown() {}
  29. };
  30. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  31. return 0;
  32. }
  33. TEST_F(UtestDavinciModel, init_success) {
  34. DavinciModel model(0, nullptr);
  35. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  36. ProfilingManager::Instance().is_load_profiling_ = true;
  37. GeModelPtr ge_model = make_shared<GeModel>();
  38. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  39. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  40. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  41. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  42. ge_model->SetModelTaskDef(model_task_def);
  43. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  44. TensorUtils::SetSize(tensor, 512);
  45. {
  46. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  47. op_desc->AddInputDesc(tensor);
  48. op_desc->AddOutputDesc(tensor);
  49. op_desc->SetInputOffset({1024});
  50. op_desc->SetOutputOffset({1024});
  51. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  52. }
  53. {
  54. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  55. op_desc->AddInputDesc(tensor);
  56. op_desc->AddOutputDesc(tensor);
  57. op_desc->SetInputOffset({1024});
  58. op_desc->SetOutputOffset({1024});
  59. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  60. domi::TaskDef *task_def = model_task_def->add_task();
  61. task_def->set_stream_id(0);
  62. task_def->set_type(RT_MODEL_TASK_KERNEL);
  63. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  64. kernel_def->set_stub_func("stub_func");
  65. kernel_def->set_args_size(64);
  66. string args(64, '1');
  67. kernel_def->set_args(args.data(), 64);
  68. domi::KernelContext *context = kernel_def->mutable_context();
  69. context->set_op_index(op_desc->GetId());
  70. context->set_kernel_type(2); // ccKernelType::TE
  71. uint16_t args_offset[9] = {0};
  72. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  73. }
  74. {
  75. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  76. op_desc->AddInputDesc(tensor);
  77. op_desc->AddOutputDesc(tensor);
  78. op_desc->SetInputOffset({1024});
  79. op_desc->SetOutputOffset({5120});
  80. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  81. domi::TaskDef *task_def = model_task_def->add_task();
  82. task_def->set_stream_id(0);
  83. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  84. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  85. memcpy_async->set_src(1024);
  86. memcpy_async->set_dst(5120);
  87. memcpy_async->set_dst_max(512);
  88. memcpy_async->set_count(1);
  89. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  90. memcpy_async->set_op_index(op_desc->GetId());
  91. }
  92. {
  93. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  94. op_desc->AddInputDesc(tensor);
  95. op_desc->SetInputOffset({5120});
  96. op_desc->SetSrcName( { "memcpy" } );
  97. op_desc->SetSrcIndex( { 0 } );
  98. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  99. }
  100. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  101. EXPECT_EQ(model.Init(), SUCCESS);
  102. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  103. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  104. EXPECT_EQ(model.task_list_.size(), 2);
  105. OutputData output_data;
  106. vector<OutputTensorInfo> outputs;
  107. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  108. EXPECT_EQ(output_data.blobs.size(), 1);
  109. EXPECT_EQ(outputs.size(), 1);
  110. ProfilingManager::Instance().is_load_profiling_ = false;
  111. }
  112. TEST_F(UtestDavinciModel, init_data_op) {
  113. DavinciModel model(0, nullptr);
  114. model.ge_model_ = make_shared<GeModel>();
  115. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  116. model.runtime_param_.mem_size = 5120000;
  117. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  118. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  119. TensorUtils::SetSize(tensor, 512);
  120. OpDescPtr op_input = CreateOpDesc("data", DATA);
  121. op_input->AddInputDesc(tensor);
  122. op_input->AddOutputDesc(tensor);
  123. op_input->SetInputOffset({1024});
  124. op_input->SetOutputOffset({1024});
  125. NodePtr node_input = graph->AddNode(op_input);
  126. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  127. op_output->AddInputDesc(tensor);
  128. op_output->SetInputOffset({1024});
  129. op_output->SetSrcName( { "data" } );
  130. op_output->SetSrcIndex( { 0 } );
  131. NodePtr node_output = graph->AddNode(op_output);
  132. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  133. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  134. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  135. EXPECT_EQ(model.op_list_.size(), 2);
  136. }
  137. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  138. DavinciModel model(0, nullptr);
  139. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  140. model.runtime_param_.mem_size = 5120000;
  141. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  142. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  143. TensorUtils::SetSize(tensor, 512);
  144. OpDescPtr op_input = CreateOpDesc("data", DATA);
  145. op_input->AddInputDesc(tensor);
  146. op_input->AddOutputDesc(tensor);
  147. op_input->SetInputOffset({1024});
  148. op_input->SetOutputOffset({1024});
  149. NodePtr node = graph->AddNode(op_input);
  150. uint32_t data_op_index = 0;
  151. map<uint32_t, OpDescPtr> data_by_index;
  152. set<const void *> input_outside_addrs;
  153. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  154. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  155. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  156. EXPECT_EQ(data_op_index, 0);
  157. EXPECT_TRUE(data_by_index.empty());
  158. }
  159. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  160. DavinciModel model(0, nullptr);
  161. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  162. model.runtime_param_.mem_size = 5120000;
  163. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  164. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  165. TensorUtils::SetSize(tensor, 512);
  166. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  167. op_output->AddInputDesc(tensor);
  168. op_output->SetInputOffset({1024});
  169. op_output->SetSrcName( { "data" } );
  170. op_output->SetSrcIndex( { 0 } );
  171. NodePtr node = graph->AddNode(op_output);
  172. std::vector<OpDescPtr> output_op_list;
  173. set<const void *> output_outside_addrs;
  174. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  175. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  176. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  177. EXPECT_TRUE(output_op_list.empty());
  178. }
  179. TEST_F(UtestDavinciModel, init_unknown) {
  180. DavinciModel model(0, nullptr);
  181. model.SetKnownNode(true);
  182. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  183. GeModelPtr ge_model = make_shared<GeModel>();
  184. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  185. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  186. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  187. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  188. ge_model->SetModelTaskDef(model_task_def);
  189. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  190. TensorUtils::SetSize(tensor, 512);
  191. OpDescPtr op_input = CreateOpDesc("data", DATA);
  192. op_input->AddInputDesc(tensor);
  193. op_input->AddOutputDesc(tensor);
  194. op_input->SetInputOffset({1024});
  195. op_input->SetOutputOffset({1024});
  196. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  197. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  198. op_kernel->AddInputDesc(tensor);
  199. op_kernel->AddOutputDesc(tensor);
  200. op_kernel->SetInputOffset({1024});
  201. op_kernel->SetOutputOffset({1024});
  202. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  203. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  204. op_memcpy->AddInputDesc(tensor);
  205. op_memcpy->AddOutputDesc(tensor);
  206. op_memcpy->SetInputOffset({1024});
  207. op_memcpy->SetOutputOffset({5120});
  208. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  209. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  210. op_output->AddInputDesc(tensor);
  211. op_output->SetInputOffset({5120});
  212. op_output->SetSrcName( { "memcpy" } );
  213. op_output->SetSrcIndex( { 0 } );
  214. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  215. domi::TaskDef *task_def1 = model_task_def->add_task();
  216. task_def1->set_stream_id(0);
  217. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  218. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  219. kernel_def->set_stub_func("stub_func");
  220. kernel_def->set_args_size(64);
  221. string args(64, '1');
  222. kernel_def->set_args(args.data(), 64);
  223. domi::KernelContext *context = kernel_def->mutable_context();
  224. context->set_op_index(1);
  225. context->set_kernel_type(2); // ccKernelType::TE
  226. uint16_t args_offset[9] = {0};
  227. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  228. domi::TaskDef *task_def2 = model_task_def->add_task();
  229. task_def2->set_stream_id(0);
  230. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  231. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  232. memcpy_async->set_src(1024);
  233. memcpy_async->set_dst(5120);
  234. memcpy_async->set_dst_max(512);
  235. memcpy_async->set_count(1);
  236. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  237. memcpy_async->set_op_index(2);
  238. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  239. EXPECT_EQ(model.Init(), SUCCESS);
  240. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  241. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  242. EXPECT_EQ(model.task_list_.size(), 2);
  243. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  244. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  245. vector<string> out_shape_info;
  246. model.GetModelAttr(out_shape_info);
  247. vector<InputOutputDescInfo> input_descs;
  248. vector<InputOutputDescInfo> output_descs;
  249. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  250. int32_t virtual_addr = 0;
  251. const vector<void *> inputs = { &virtual_addr };
  252. const vector<void *> outputs = { &virtual_addr };
  253. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  254. }
  255. TEST_F(UtestDavinciModel, Init_variable_op) {
  256. DavinciModel model(0, nullptr);
  257. model.ge_model_ = make_shared<GeModel>();
  258. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  259. model.runtime_param_.mem_size = 5120000;
  260. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  261. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  262. TensorUtils::SetSize(tensor, 512);
  263. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  264. var1->AddInputDesc(tensor);
  265. var1->AddOutputDesc(tensor);
  266. var1->SetInputOffset({1024});
  267. var1->SetOutputOffset({1024});
  268. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  269. graph->AddNode(var1);
  270. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  271. var2->AddInputDesc(tensor);
  272. var2->AddOutputDesc(tensor);
  273. var2->SetInputOffset({1024});
  274. var2->SetOutputOffset({1024});
  275. graph->AddNode(var2);
  276. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  277. EXPECT_EQ(model.ReturnNoOutput(1), PARAM_INVALID);
  278. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  279. }
  280. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  281. DavinciModel model(0, nullptr);
  282. model.ge_model_ = make_shared<GeModel>();
  283. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  284. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  285. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  286. op_output->AddInputDesc(tensor);
  287. op_output->SetInputOffset({1024});
  288. NodePtr node_output = graph->AddNode(op_output);
  289. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  290. }
  291. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  292. DavinciModel model(0, nullptr);
  293. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  294. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  295. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  296. data1->AddInputDesc(shape_desc);
  297. data1->AddOutputDesc(shape_desc);
  298. NodePtr data1_node = graph->AddNode(data1);
  299. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  300. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  301. case_node->AddInputDesc(tensor);
  302. case_node->AddOutputDesc(tensor);
  303. NodePtr case1_node = graph->AddNode(case_node);
  304. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  305. output->AddInputDesc(tensor);
  306. output->SetSrcName( { "case1" } );
  307. output->SetSrcIndex( { 0 } );
  308. NodePtr output_node = graph->AddNode(output);
  309. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  310. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  311. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  312. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  313. model.is_getnext_sink_dynamic_ = false;
  314. model.is_online_infer_dynamic_ = true;
  315. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  316. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  317. EXPECT_EQ(ret, SUCCESS);
  318. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  319. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  320. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  321. EXPECT_EQ(ret, SUCCESS);
  322. }
  323. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  324. DavinciModel model(0, nullptr);
  325. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  326. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  327. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  328. data1->AddInputDesc(shape_desc);
  329. data1->AddOutputDesc(shape_desc);
  330. NodePtr data1_node = graph->AddNode(data1);
  331. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  332. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  333. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  334. shape_node->AddInputDesc(in_tensor);
  335. shape_node->AddOutputDesc(out_tensor);
  336. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  337. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  338. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  339. output->AddInputDesc(tensor);
  340. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  341. output->SetSrcIndex( { 0, 1 } );
  342. NodePtr output_node = graph->AddNode(output);
  343. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  344. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  345. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  346. model.is_getnext_sink_dynamic_ = true;
  347. model.is_online_infer_dynamic_ = false;
  348. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  349. EXPECT_EQ(ret, SUCCESS);
  350. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  351. model.runtime_param_.mem_size = 4;
  352. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  353. EXPECT_EQ(ret, SUCCESS);
  354. }
  355. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  356. DavinciModel model(0, nullptr);
  357. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  358. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  359. model.runtime_param_.mem_size = 5120000;
  360. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  361. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  362. TensorUtils::SetSize(tensor, 512);
  363. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  364. op_desc->AddInputDesc(tensor);
  365. op_desc->AddOutputDesc(tensor);
  366. op_desc->SetInputOffset({1024});
  367. op_desc->SetOutputOffset({1024});
  368. NodePtr node = graph->AddNode(op_desc);
  369. GeAttrValue::NAMED_ATTRS aipp_attr;
  370. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  371. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  372. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  373. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  374. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  375. AippConfigInfo aipp_info;
  376. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  377. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  378. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  379. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  380. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  381. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  382. EXPECT_EQ(model.op_list_.size(), 1);
  383. }
  384. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  385. DavinciModel model(0, nullptr);
  386. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  387. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  388. model.runtime_param_.mem_size = 5120000;
  389. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  390. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  391. TensorUtils::SetSize(tensor, 512);
  392. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  393. op_desc->AddInputDesc(tensor);
  394. op_desc->AddOutputDesc(tensor);
  395. op_desc->SetInputOffset({1024});
  396. op_desc->SetOutputOffset({1024});
  397. NodePtr node = graph->AddNode(op_desc);
  398. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  399. InputAippType aipp_type;
  400. size_t aipp_index = 0;
  401. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  402. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  403. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  404. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  405. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  406. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  407. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  408. EXPECT_EQ(model.op_list_.size(), 1);
  409. }
  410. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  411. DavinciModel model(0, nullptr);
  412. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  413. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  414. model.runtime_param_.mem_size = 5120000;
  415. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  416. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  417. TensorUtils::SetSize(tensor, 512);
  418. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  419. op_desc->AddInputDesc(tensor);
  420. op_desc->AddOutputDesc(tensor);
  421. op_desc->SetInputOffset({1024});
  422. op_desc->SetOutputOffset({1024});
  423. NodePtr node = graph->AddNode(op_desc); // op_index 0
  424. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  425. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  426. InputAippType aipp_type;
  427. size_t aipp_index = 0;
  428. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  429. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  430. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  431. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  432. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  433. EXPECT_EQ(model.op_list_.size(), 1);
  434. }
  435. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  436. DavinciModel model(0, nullptr);
  437. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  438. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  439. model.runtime_param_.mem_size = 5120000;
  440. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  441. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  442. TensorUtils::SetSize(tensor, 512);
  443. {
  444. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  445. op_desc->AddInputDesc(tensor);
  446. op_desc->AddOutputDesc(tensor);
  447. op_desc->SetInputOffset({1024});
  448. op_desc->SetOutputOffset({1024});
  449. NodePtr node = graph->AddNode(op_desc); // op_index 0
  450. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  451. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  452. }
  453. {
  454. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  455. op_desc->AddInputDesc(tensor);
  456. op_desc->AddOutputDesc(tensor);
  457. op_desc->SetInputOffset({1024});
  458. op_desc->SetOutputOffset({1024});
  459. NodePtr node = graph->AddNode(op_desc); // op_index 1
  460. }
  461. InputAippType aipp_type;
  462. size_t aipp_index = 0;
  463. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  464. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  465. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  466. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  467. EXPECT_EQ(aipp_index, 1);
  468. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  469. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  470. EXPECT_EQ(model.op_list_.size(), 2);
  471. }
  472. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  473. DavinciModel model(0, nullptr);
  474. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  475. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  476. model.runtime_param_.mem_size = 5120000;
  477. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  478. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  479. TensorUtils::SetSize(tensor, 512);
  480. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  481. op_desc->AddInputDesc(tensor);
  482. op_desc->AddOutputDesc(tensor);
  483. op_desc->SetInputOffset({1024});
  484. op_desc->SetOutputOffset({1024});
  485. NodePtr node = graph->AddNode(op_desc); // op_index 0
  486. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  487. InputAippType aipp_type;
  488. size_t aipp_index = 0;
  489. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  490. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  491. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  492. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  493. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  494. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  495. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  496. EXPECT_EQ(model.op_list_.size(), 1);
  497. }
  498. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  499. DavinciModel model(0, nullptr);
  500. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  501. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  502. model.runtime_param_.mem_size = 5120000;
  503. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  504. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  505. TensorUtils::SetSize(tensor, 512);
  506. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  507. op_desc->AddInputDesc(tensor);
  508. op_desc->AddOutputDesc(tensor);
  509. op_desc->SetInputOffset({1024});
  510. op_desc->SetOutputOffset({1024});
  511. NodePtr node = graph->AddNode(op_desc); // op_index 0
  512. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  513. InputAippType aipp_type;
  514. size_t aipp_index = 0;
  515. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  516. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  517. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  518. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  519. EXPECT_EQ(model.op_list_.size(), 1);
  520. }
  521. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  522. DavinciModel model(0, nullptr);
  523. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  524. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  525. model.runtime_param_.mem_size = 5120000;
  526. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  527. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  528. TensorUtils::SetSize(tensor, 512);
  529. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  530. op_desc->AddInputDesc(tensor);
  531. op_desc->AddOutputDesc(tensor);
  532. op_desc->SetInputOffset({1024});
  533. op_desc->SetOutputOffset({1024});
  534. NodePtr node = graph->AddNode(op_desc); // op_index 0
  535. vector<string> inputs = {};
  536. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  537. vector<string> outputs = {};
  538. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  539. OriginInputInfo orig_input_info;
  540. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  541. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  542. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  543. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  544. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  545. EXPECT_EQ(model.op_list_.size(), 1);
  546. }
  547. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  548. DavinciModel model(0, nullptr);
  549. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  550. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  551. model.runtime_param_.mem_size = 5120000;
  552. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  553. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  554. TensorUtils::SetSize(tensor, 512);
  555. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  556. op_desc->AddInputDesc(tensor);
  557. op_desc->AddOutputDesc(tensor);
  558. op_desc->SetInputOffset({1024});
  559. op_desc->SetOutputOffset({1024});
  560. NodePtr node = graph->AddNode(op_desc); // op_index 0
  561. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  562. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  563. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  564. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  565. OriginInputInfo orig_input_info;
  566. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  567. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  568. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  569. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  570. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  571. EXPECT_EQ(model.op_list_.size(), 1);
  572. }
  573. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  574. DavinciModel model(0, nullptr);
  575. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  576. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  577. model.runtime_param_.mem_size = 5120000;
  578. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  579. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  580. TensorUtils::SetSize(tensor, 512);
  581. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  582. op_desc->AddInputDesc(tensor);
  583. op_desc->AddOutputDesc(tensor);
  584. op_desc->SetInputOffset({1024});
  585. op_desc->SetOutputOffset({1024});
  586. NodePtr node = graph->AddNode(op_desc); // op_index 0
  587. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  588. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  589. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  590. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  591. OriginInputInfo orig_input_info;
  592. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  593. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  594. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  595. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  596. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  597. EXPECT_EQ(model.op_list_.size(), 1);
  598. }
  599. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  600. DavinciModel model(0, nullptr);
  601. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  602. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  603. model.runtime_param_.mem_size = 5120000;
  604. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  605. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  606. TensorUtils::SetSize(tensor, 512);
  607. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  608. op_desc->AddInputDesc(tensor);
  609. op_desc->AddOutputDesc(tensor);
  610. op_desc->SetInputOffset({1024});
  611. op_desc->SetOutputOffset({1024});
  612. NodePtr node = graph->AddNode(op_desc); // op_index 0
  613. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  614. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  615. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  616. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  617. vector<InputOutputDims> input_dims;
  618. vector<InputOutputDims> output_dims;
  619. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  620. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  621. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  622. EXPECT_EQ(input_dims.size(), 1);
  623. EXPECT_EQ(output_dims.size(), 1);
  624. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  625. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  626. EXPECT_EQ(model.op_list_.size(), 1);
  627. }
  628. // test label_set_task Init
  629. TEST_F(UtestDavinciModel, label_task_success) {
  630. DavinciModel model(0, nullptr);
  631. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  632. GeModelPtr ge_model = make_shared<GeModel>();
  633. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  634. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  635. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  636. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  637. ge_model->SetModelTaskDef(model_task_def);
  638. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  639. TensorUtils::SetSize(tensor, 64);
  640. {
  641. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  642. op_desc->AddInputDesc(tensor);
  643. op_desc->SetInputOffset({1024});
  644. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  645. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  646. domi::TaskDef *task_def1 = model_task_def->add_task();
  647. task_def1->set_stream_id(0);
  648. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  649. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  650. label_task_def->set_op_index(op_desc->GetId());
  651. label_task_def->set_label_max(2);
  652. }
  653. {
  654. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  655. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  656. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  657. domi::TaskDef *task_def1 = model_task_def->add_task();
  658. task_def1->set_stream_id(0);
  659. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  660. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  661. label_task_def->set_op_index(op_desc->GetId());
  662. }
  663. {
  664. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  665. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  666. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  667. domi::TaskDef *task_def2 = model_task_def->add_task();
  668. task_def2->set_stream_id(0);
  669. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  670. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  671. label_task_def->set_op_index(op_desc->GetId());
  672. }
  673. {
  674. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  675. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  676. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  677. domi::TaskDef *task_def1 = model_task_def->add_task();
  678. task_def1->set_stream_id(0);
  679. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  680. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  681. label_task_def->set_op_index(op_desc->GetId());
  682. }
  683. {
  684. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  685. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  686. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  687. domi::TaskDef *task_def1 = model_task_def->add_task();
  688. task_def1->set_stream_id(0);
  689. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  690. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  691. label_task_def->set_op_index(op_desc->GetId());
  692. }
  693. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  694. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  695. EXPECT_EQ(model.Init(), SUCCESS);
  696. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  697. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  698. EXPECT_EQ(model.task_list_.size(), 5);
  699. }
  700. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  701. DavinciModel model(0, nullptr);
  702. model.ge_model_ = make_shared<GeModel>();
  703. model.input_queue_ids_.emplace_back(0);
  704. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  705. EXPECT_EQ(model.input_data_info_.size(), 0);
  706. ZeroCopyOffset zero_copy_offset;
  707. model.input_data_info_[0] = zero_copy_offset;
  708. model.output_queue_ids_.emplace_back(0);
  709. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  710. EXPECT_EQ(model.output_data_info_.size(), 0);
  711. model.output_data_info_[0] = zero_copy_offset;
  712. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  713. EXPECT_EQ(model.active_stream_list_.size(), 0);
  714. }
  715. TEST_F(UtestDavinciModel, Sink_model_profile) {
  716. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  717. ProfileInfo profile;
  718. profile.fusion_info.op_name = "relu";
  719. DavinciModel model(0, nullptr);
  720. model.profile_list_.emplace_back(profile);
  721. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  722. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  723. model.profiler_report_op_info_ = op_info;
  724. model.SinkModelProfile();
  725. }
  726. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示