You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op.cc 20 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op.h"
  17. #include "framework/common/fmk_types.h"
  18. #include "framework/common/ge_types.h"
  19. #include "common/math/math_util.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "framework/common/debug/ge_log.h"
  22. #include "framework/common/util.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "runtime/mem.h"
  25. #include "single_op/single_op_manager.h"
  26. #include "single_op/task/build_task_utils.h"
  27. #include "graph/load/model_manager/model_manager.h"
  28. namespace ge {
  29. namespace {
  30. const size_t kDataMemAlignSize = 32;
  31. const size_t kDataMemAlignUnit = 2;
  32. const string kShapeTypeDynamic = "dynamic";
  33. const string kShapeTypeStatic = "static";
  34. const int64_t kHostMemType = 1;
  35. const uint32_t kFuzzDeviceBufferSize = 1 * 1024 * 1024;
  36. const uint32_t kAlignBytes = 512;
  37. size_t GetAlignedSize(size_t size) {
  38. size_t aligned_size = (size + kDataMemAlignUnit * kDataMemAlignSize - 1) / kDataMemAlignSize * kDataMemAlignSize;
  39. return aligned_size;
  40. }
  41. Status ProfilingTaskInfo(OpTask *op_task, const string &shape_type) {
  42. if (!ProfilingManager::Instance().ProfilingModelLoadOn()) {
  43. return SUCCESS;
  44. }
  45. TaskDescInfo tmp_task_desc_info;
  46. uint32_t model_id;
  47. if (op_task->GetProfilingArgs(tmp_task_desc_info, model_id) != SUCCESS) {
  48. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Get][ProfilingArgs] failed.");
  49. return ACL_ERROR_GE_PARAM_INVALID;
  50. }
  51. GELOGD("ProfilingReport of op[%s] model[%s] start.",
  52. tmp_task_desc_info.op_name.c_str(), tmp_task_desc_info.model_name.c_str());
  53. tmp_task_desc_info.shape_type = shape_type;
  54. tmp_task_desc_info.cur_iter_num = 0;
  55. //ProfilingManager::Instance().GetStepInfoIndex();
  56. tmp_task_desc_info.task_type = op_task->GetTaskType();
  57. std::vector<TaskDescInfo> task_desc_info;
  58. task_desc_info.emplace_back(tmp_task_desc_info);
  59. auto &profiling_manager = ProfilingManager::Instance();
  60. profiling_manager.ReportProfilingData(model_id, task_desc_info);
  61. return SUCCESS;
  62. }
  63. Status CalInputsHostMemSize(const std::vector<DataBuffer> &inputs,
  64. std::vector<std::pair<size_t, uint64_t>> &inputs_size) {
  65. int64_t total_size = 0;
  66. size_t index = 0;
  67. for (auto &input_buffer : inputs) {
  68. int64_t input_size = 0;
  69. if (input_buffer.placement == kHostMemType) {
  70. GE_CHECK_LE(input_buffer.length, INT64_MAX);
  71. input_size = input_buffer.length;
  72. // input_size pad to 512
  73. GE_CHK_STATUS_RET(CheckInt64AddOverflow(input_size, (kAlignBytes - 1)), "Padding size is beyond the INT64_MAX.");
  74. input_size = ((input_size + kAlignBytes - 1) / kAlignBytes) * kAlignBytes;
  75. inputs_size.emplace_back(index, input_size);
  76. GE_CHK_STATUS_RET(CheckInt64AddOverflow(total_size, input_size), "Total size is beyond the INT64_MAX.");
  77. total_size += input_size;
  78. GELOGD("The %zu input mem type is host, the tensor size is %ld.", index, input_size);
  79. }
  80. index++;
  81. }
  82. if (total_size > kFuzzDeviceBufferSize) {
  83. GELOGE(FAILED, "[Check][Size]Total size is %ld, larger than 1M.", total_size);
  84. return FAILED;
  85. }
  86. return SUCCESS;
  87. }
  88. Status UpdateInputsBufferAddr(StreamResource *stream_resource, rtStream_t stream,
  89. const std::vector<std::pair<size_t, uint64_t>> &inputs_size,
  90. std::vector<DataBuffer> &update_buffers) {
  91. GE_CHECK_NOTNULL(stream_resource);
  92. auto dst_addr = reinterpret_cast<uint8_t *>(stream_resource->GetDeviceBufferAddr());
  93. // copy host mem from input_buffer to device mem of dst_addr
  94. for (const auto &input_size : inputs_size) {
  95. auto index = input_size.first;
  96. auto size = input_size.second;
  97. GELOGD("Do h2d for %zu input, dst size is %zu, src length is %lu.", index, size, update_buffers[index].length);
  98. GE_CHK_RT_RET(rtMemcpyAsync(dst_addr, size, update_buffers[index].data, update_buffers[index].length,
  99. RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
  100. update_buffers[index].data = dst_addr;
  101. dst_addr = dst_addr + size;
  102. }
  103. return SUCCESS;
  104. }
  105. Status ModifyTensorDesc(GeTensorDesc &tensor) {
  106. int64_t storage_format_val = static_cast<Format>(FORMAT_RESERVED);
  107. (void)AttrUtils::GetInt(tensor, ge::ATTR_NAME_STORAGE_FORMAT, storage_format_val);
  108. auto storage_format = static_cast<Format>(storage_format_val);
  109. auto format = tensor.GetFormat();
  110. if (storage_format != FORMAT_RESERVED && storage_format != format) {
  111. std::vector<int64_t> storage_shape;
  112. if (!AttrUtils::GetListInt(tensor, ge::ATTR_NAME_STORAGE_SHAPE, storage_shape)) {
  113. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][storage_shape]failed while storage_format was set.");
  114. REPORT_INNER_ERROR("E19999", "Get storage_shape failed while storage_format was set.");
  115. return ACL_ERROR_GE_INTERNAL_ERROR;
  116. }
  117. GELOGD("Storage format set. update shape to [%s], and original shape to [%s]",
  118. GeShape(storage_shape).ToString().c_str(), tensor.GetShape().ToString().c_str());
  119. tensor.SetOriginShape(tensor.GetShape());
  120. tensor.SetOriginFormat(format);
  121. tensor.SetShape(GeShape(storage_shape));
  122. tensor.SetFormat(storage_format);
  123. }
  124. return SUCCESS;
  125. }
  126. Status InitHybridModelArgs(const std::vector<DataBuffer> &input_buffers,
  127. const std::vector<DataBuffer> &output_buffers,
  128. const std::vector<GeTensorDesc> &inputs_desc,
  129. hybrid::HybridModelExecutor::ExecuteArgs &args) {
  130. for (auto &input : input_buffers) {
  131. args.inputs.emplace_back(hybrid::TensorValue(input.data, input.length));
  132. }
  133. for (auto &output : output_buffers) {
  134. args.outputs.emplace_back(hybrid::TensorValue(output.data, output.length));
  135. }
  136. for (auto &tensor_desc : inputs_desc) {
  137. auto desc = MakeShared<GeTensorDesc>(tensor_desc);
  138. GE_CHECK_NOTNULL(desc);
  139. GE_CHK_STATUS_RET_NOLOG(ModifyTensorDesc(*desc));
  140. args.input_desc.emplace_back(desc);
  141. }
  142. return SUCCESS;
  143. }
  144. } // namespace
  145. SingleOp::SingleOp(StreamResource *stream_resource, std::mutex *stream_mutex, rtStream_t stream)
  146. : stream_resource_(stream_resource), stream_mutex_(stream_mutex), stream_(stream) {
  147. }
  148. FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY SingleOp::~SingleOp() {
  149. for (auto task : tasks_) {
  150. delete task;
  151. task = nullptr;
  152. }
  153. }
  154. Status SingleOp::ValidateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
  155. auto num_inputs = inputs.size();
  156. if (num_inputs != input_sizes_.size()) {
  157. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  158. "[Check][Param:inputs]Input num mismatch. model expect %zu, but given %zu", input_addr_list_.size(),
  159. inputs.size());
  160. REPORT_INPUT_ERROR("E10401", std::vector<std::string>({"expect_num", "input_num"}),
  161. std::vector<std::string>({std::to_string(input_addr_list_.size()), std::to_string(num_inputs)}));
  162. return ACL_ERROR_GE_PARAM_INVALID;
  163. }
  164. for (size_t i = 0; i < num_inputs; ++i) {
  165. // preventing from read out of bound
  166. size_t aligned_size = GetAlignedSize(inputs[i].length);
  167. GELOGI("Input [%zu], aligned_size:%zu, inputs.length:%lu, input_sizes_:%zu",
  168. i, aligned_size, inputs[i].length, input_sizes_[i]);
  169. if (aligned_size < input_sizes_[i]) {
  170. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  171. "[Check][Param:inputs]Input size mismatch. index = %zu, model expect %zu, but given %zu(after align)",
  172. i, input_sizes_[i], aligned_size);
  173. REPORT_INPUT_ERROR("E10402", std::vector<std::string>({"index", "expect_size", "input_size"}),
  174. std::vector<std::string>({std::to_string(i), std::to_string(input_sizes_[i]), std::to_string(aligned_size)})
  175. );
  176. return ACL_ERROR_GE_PARAM_INVALID;
  177. }
  178. }
  179. auto num_outputs = outputs.size();
  180. if (num_outputs != output_sizes_.size()) {
  181. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:outputs]output num mismatch. model expect %zu, but given %zu",
  182. output_sizes_.size(), outputs.size());
  183. REPORT_INPUT_ERROR("E10403", std::vector<std::string>({"expect_num", "input_num"}),
  184. std::vector<std::string>({std::to_string(output_sizes_.size()), std::to_string(outputs.size())}));
  185. return ACL_ERROR_GE_PARAM_INVALID;
  186. }
  187. for (size_t i = 0; i < num_outputs; ++i) {
  188. // preventing from write out of bound
  189. size_t aligned_size = GetAlignedSize(outputs[i].length);
  190. GELOGI("Output [%zu], aligned_size:%zu, outputs.length:%lu, output_sizes_:%zu",
  191. i, aligned_size, outputs[i].length, output_sizes_[i]);
  192. if (aligned_size < output_sizes_[i]) {
  193. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  194. "[Check][Param:outputs]Output size mismatch. index = %zu, model expect %zu, but given %zu(after align)",
  195. i, output_sizes_[i], aligned_size);
  196. REPORT_INPUT_ERROR("E10404", std::vector<std::string>({"index", "expect_size", "input_size"}),
  197. std::vector<std::string>({std::to_string(i), std::to_string(output_sizes_[i]), std::to_string(aligned_size)})
  198. );
  199. return ACL_ERROR_GE_PARAM_INVALID;
  200. }
  201. }
  202. return SUCCESS;
  203. }
  204. Status SingleOp::GetArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
  205. size_t arg_index = 0;
  206. for (auto &input : inputs) {
  207. args_[arg_index++] = reinterpret_cast<uintptr_t>(input.data);
  208. }
  209. for (auto &output : outputs) {
  210. args_[arg_index++] = reinterpret_cast<uintptr_t>(output.data);
  211. }
  212. return SUCCESS;
  213. }
  214. Status SingleOp::UpdateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
  215. Status ret = GetArgs(inputs, outputs);
  216. if (ret != SUCCESS) {
  217. return ret;
  218. }
  219. // update tbe task args
  220. size_t num_args = arg_table_.size();
  221. for (size_t i = 0; i < num_args; ++i) {
  222. std::vector<uintptr_t *> &ptr_to_arg_in_tasks = arg_table_[i];
  223. if (ptr_to_arg_in_tasks.empty()) {
  224. GELOGW("found NO arg address to update for arg[%lu]", i);
  225. continue;
  226. }
  227. for (uintptr_t *arg_addr : ptr_to_arg_in_tasks) {
  228. *arg_addr = args_[i];
  229. }
  230. }
  231. return SUCCESS;
  232. }
  233. FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status SingleOp::ExecuteAsync(const std::vector<DataBuffer> &inputs,
  234. const std::vector<DataBuffer> &outputs) {
  235. GELOGD("Start SingleOp::ExecuteAsync.");
  236. Status ret = ValidateArgs(inputs, outputs);
  237. if (ret != SUCCESS) {
  238. return ret;
  239. }
  240. GE_CHECK_NOTNULL(stream_resource_);
  241. vector<pair<size_t, uint64_t>> inputs_size;
  242. GE_CHK_STATUS_RET_NOLOG(CalInputsHostMemSize(inputs, inputs_size));
  243. std::lock_guard<std::mutex> lk(*stream_mutex_);
  244. vector<DataBuffer> update_buffers = inputs;
  245. if (!inputs_size.empty()) {
  246. GE_CHK_STATUS_RET_NOLOG(UpdateInputsBufferAddr(stream_resource_, stream_, inputs_size, update_buffers));
  247. }
  248. if (hybrid_model_executor_ != nullptr) {
  249. GELOGD("Execute multi-task single op by hybrid model executor");
  250. hybrid::HybridModelExecutor::ExecuteArgs args;
  251. GE_CHK_STATUS_RET_NOLOG(InitHybridModelArgs(update_buffers, outputs, inputs_desc_, args));
  252. return hybrid_model_executor_->Execute(args);
  253. }
  254. auto current_mem_base = stream_resource_->GetMemoryBase();
  255. if (running_param_->mem_base != current_mem_base) {
  256. running_param_->mem_base = const_cast<uint8_t *>(current_mem_base);
  257. GELOGD("Memory base changed, new memory base = %p", current_mem_base);
  258. for (auto &task : tasks_) {
  259. auto new_address = BuildTaskUtils::GetAddresses(task->GetOpdesc(), *running_param_);
  260. GE_CHK_STATUS_RET(task->UpdateArgTable(*running_param_), "[Update][ArgTable] failed, single op:%s.",
  261. task->GetOpdesc()->GetName().c_str());
  262. }
  263. }
  264. ret = UpdateArgs(update_buffers, outputs);
  265. if (ret != SUCCESS) {
  266. return ret;
  267. }
  268. for (auto &task : tasks_) {
  269. ret = task->LaunchKernel(stream_);
  270. GELOGD("[DEBUG_TASK_INFO : Static Task] %s %s",
  271. task->GetTaskName().c_str(),
  272. BuildTaskUtils::GetTaskInfo(task->GetOpdesc(), inputs, outputs).c_str());
  273. if (ret != SUCCESS) {
  274. return ret;
  275. }
  276. GE_CHK_STATUS_RET(task->OpenDump(stream_), "[Open][Dump]failed, single op:%s.",
  277. task->GetOpdesc()->GetName().c_str());
  278. GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(task, kShapeTypeStatic));
  279. }
  280. return ret;
  281. }
  282. void SingleOp::SetStream(rtStream_t stream) {
  283. stream_ = stream;
  284. }
  285. DynamicSingleOp::DynamicSingleOp(uintptr_t resource_id, std::mutex *stream_mutex, rtStream_t stream)
  286. : resource_id_(resource_id), stream_mutex_(stream_mutex), stream_(stream) {
  287. }
  288. Status DynamicSingleOp::ValidateParams(const vector<GeTensorDesc> &input_desc,
  289. const std::vector<DataBuffer> &inputs,
  290. std::vector<GeTensorDesc> &output_desc,
  291. std::vector<DataBuffer> &outputs) const {
  292. if (inputs.size() != input_desc.size()) {
  293. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  294. "[Check][Param:inputs]Input number mismatches input desc number. Input num = %zu, input desc num = %zu",
  295. inputs.size(), input_desc.size());
  296. REPORT_INPUT_ERROR("E10405", std::vector<std::string>({"input_num", "input_desc_num"}),
  297. std::vector<std::string>({std::to_string(inputs.size()), std::to_string(input_desc.size())}));
  298. return ACL_ERROR_GE_PARAM_INVALID;
  299. }
  300. if (outputs.size() != output_desc.size()) {
  301. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  302. "[Check][Param:outputs]Output number mismatches output desc number. Output num = %zu, output desc num = %zu",
  303. outputs.size(), output_desc.size());
  304. REPORT_INPUT_ERROR("E10406", std::vector<std::string>({"out_num", "out_desc_num"}),
  305. std::vector<std::string>({std::to_string(outputs.size()), std::to_string(output_desc.size())}));
  306. return ACL_ERROR_GE_PARAM_INVALID;
  307. }
  308. if (input_desc.size() != num_inputs_) {
  309. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:input_desc]Input number mismatches. expect %zu, but given %zu",
  310. num_inputs_, input_desc.size());
  311. REPORT_INPUT_ERROR("E10401", std::vector<std::string>({"expect_num", "input_num"}),
  312. std::vector<std::string>({std::to_string(num_inputs_), std::to_string(input_desc.size())}));
  313. return ACL_ERROR_GE_PARAM_INVALID;
  314. }
  315. if (output_desc.size() != num_outputs_) {
  316. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:output_desc]Output number mismatches. expect %zu, but given %zu",
  317. num_outputs_, output_desc.size());
  318. REPORT_INPUT_ERROR("E10403", std::vector<std::string>({"expect_num", "input_num"}),
  319. std::vector<std::string>({std::to_string(num_outputs_), std::to_string(output_desc.size())}));
  320. return ACL_ERROR_GE_PARAM_INVALID;
  321. }
  322. return SUCCESS;
  323. }
  324. Status DynamicSingleOp::SetHostTensorValue(const std::vector<std::pair<size_t, uint64_t>> &inputs_size,
  325. const vector<GeTensorDesc> &input_desc,
  326. const std::vector<DataBuffer> &input_buffers) {
  327. auto op_desc = op_task_->GetOpdesc();
  328. GE_CHECK_NOTNULL(op_desc);
  329. GELOGD("Start update inputs tensor value of %s.", op_desc->GetName().c_str());
  330. for (const auto &input_size : inputs_size) {
  331. size_t index = input_size.first;
  332. auto ge_tensor_desc = input_desc.at(index);
  333. // reconstruct GeTensor by DataBuffer
  334. GeTensorPtr ge_tensor = MakeShared<GeTensor>(ge_tensor_desc);
  335. GE_CHECK_NOTNULL(ge_tensor);
  336. GELOGD("The %zu tensor input type is host, desc data type is %d, input buffer addr is %p, size is %ld.",
  337. index, ge_tensor_desc.GetDataType(), input_buffers[index].data, input_buffers[index].length);
  338. if (ge_tensor->SetData(reinterpret_cast<uint8_t *>(input_buffers[index].data),
  339. static_cast<size_t>(input_buffers[index].length)) != SUCCESS) {
  340. GELOGE(INTERNAL_ERROR, "[Set][Data]Failed to set data of ge tensor.");
  341. return INTERNAL_ERROR;
  342. }
  343. auto tensor_desc = op_desc->MutableInputDesc(index);
  344. GE_CHECK_NOTNULL(tensor_desc);
  345. if (!AttrUtils::SetTensor(tensor_desc, ATTR_NAME_VALUE, ge_tensor)) {
  346. GELOGE(FAILED, "[Set][ATTR_NAME_VALUE]Failed to set ATTR_NAME_VALUE to %s.", op_desc->GetName().c_str());
  347. return FAILED;
  348. }
  349. }
  350. return SUCCESS;
  351. }
  352. Status DynamicSingleOp::SetHostTensorValue(const vector<GeTensorDesc> &input_desc,
  353. const vector<DataBuffer> &input_buffers) {
  354. for (auto &tensor_map : tensor_with_hostmem_) {
  355. auto index = static_cast<size_t>(tensor_map.first);
  356. if (index >= input_desc.size() || index >= input_buffers.size()) {
  357. GELOGE(INTERNAL_ERROR, "[Check][Size]Index %zu should smaller then input desc size %zu "
  358. "and input buffers size %zu.", index, input_desc.size(), input_buffers.size());
  359. return INTERNAL_ERROR;
  360. }
  361. auto ge_tensor_desc = input_desc[index];
  362. // reconstruct GeTensor by DataBuffer
  363. GeTensorPtr ge_tensor = MakeShared<GeTensor>(ge_tensor_desc);
  364. GE_CHECK_NOTNULL(ge_tensor);
  365. GELOGD("The %zu tensor input type is host, desc data type is %d, input buffer addr is %p, size is %ld.",
  366. index, ge_tensor_desc.GetDataType(), input_buffers[index].data, input_buffers[index].length);
  367. if (ge_tensor->SetData(reinterpret_cast<uint8_t *>(input_buffers[index].data),
  368. static_cast<size_t>(input_buffers[index].length)) != SUCCESS) {
  369. GELOGE(INTERNAL_ERROR, "[Set][Data]Failed to set data of ge tensor.");
  370. return INTERNAL_ERROR;
  371. }
  372. for (auto &tensor_desc : tensor_map.second) {
  373. GE_CHECK_NOTNULL(tensor_desc);
  374. if (!AttrUtils::SetTensor(tensor_desc, ATTR_NAME_VALUE, ge_tensor)) {
  375. GELOGE(FAILED, "[Set][ATTR_NAME_VALUE]Failed to set ATTR_NAME_VALUE.");
  376. return FAILED;
  377. }
  378. }
  379. }
  380. return SUCCESS;
  381. }
  382. Status DynamicSingleOp::ExecuteAsync(const vector<GeTensorDesc> &input_desc,
  383. const vector<DataBuffer> &input_buffers,
  384. vector<GeTensorDesc> &output_desc,
  385. vector<DataBuffer> &output_buffers) {
  386. GELOGD("Start DynamicSingleOp::ExecuteAsync.");
  387. GE_CHK_STATUS_RET_NOLOG(ValidateParams(input_desc, input_buffers, output_desc, output_buffers));
  388. vector<pair<size_t, uint64_t>> inputs_size;
  389. GE_CHK_STATUS_RET_NOLOG(CalInputsHostMemSize(input_buffers, inputs_size));
  390. vector<DataBuffer> update_buffers = input_buffers;
  391. std::lock_guard<std::mutex> lk(*stream_mutex_);
  392. if (!inputs_size.empty()) {
  393. StreamResource *stream_resource = SingleOpManager::GetInstance().GetResource(resource_id_, stream_);
  394. GE_CHK_STATUS_RET_NOLOG(UpdateInputsBufferAddr(stream_resource, stream_, inputs_size, update_buffers));
  395. GE_CHK_STATUS_RET_NOLOG(SetHostTensorValue(input_desc, input_buffers));
  396. }
  397. if (hybrid_model_executor_ != nullptr) {
  398. GELOGD("Execute multi-task dynamic single op by hybrid model executor");
  399. hybrid::HybridModelExecutor::ExecuteArgs args;
  400. GE_CHK_STATUS_RET_NOLOG(InitHybridModelArgs(update_buffers, output_buffers, input_desc, args));
  401. return hybrid_model_executor_->Execute(args);
  402. }
  403. GE_CHECK_NOTNULL(op_task_);
  404. if (!inputs_size.empty()) {
  405. GE_CHK_STATUS_RET_NOLOG(SetHostTensorValue(inputs_size, input_desc, input_buffers));
  406. GE_CHK_STATUS_RET_NOLOG(op_task_->LaunchKernel(input_desc, update_buffers, output_desc, output_buffers, stream_));
  407. } else {
  408. GE_CHK_STATUS_RET_NOLOG(op_task_->LaunchKernel(input_desc, input_buffers, output_desc, output_buffers, stream_));
  409. }
  410. GELOGD("[DEBUG_TASK_INFO : Dynamic Task] %s",
  411. BuildTaskUtils::GetTaskInfo(op_task_->GetOpdesc(), input_buffers, output_buffers).c_str());
  412. GE_CHK_STATUS_RET_NOLOG(op_task_->OpenDump(stream_));
  413. GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(op_task_.get(), kShapeTypeDynamic));
  414. return SUCCESS;
  415. }
  416. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示